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Spinor Structure of Space-Times in General Relativity. I 
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In order to define spinor fields on a space-time M, it is necessary first to endow M with some further 
structure in addition to its Lorentz metric. This is the spinor structure. The definition and the elementary 
implications of the existence of a spinor st~ucture are di~cusse~. It is proved that a necessary and 
sufficient condition for a noncompact space-time M to admit a spmor structure IS that M have a global 
field of orthonormal tetrads. 

INTRODUCTION 

It is sometimes convenient to formulate general 
properties which any space-time! should have if it is 
to be of physical interest. For example, one would 
normally reject space-times having closed timelike 
curves,2 and possibly also those having incomplete 
geodesics. 3 It has been argued,4 based on a recent 
paper of Aharonov and Susskind,5 that another 
property we might require of a physically reasonable 
space-time M is that M admit globally defined spinor 
fields. 6 Now, in order that spinors may be defined on 
M, it is necessary that M satisfy certain global 
conditions.4 In the case of space-times (but not, in 
general, for other signatures or dimensions), these 
conditions have the following consequence: Every 
noncom pact 7 space-time on which spinors may be 
defined carries a global field of orthonormal tetrads. 
This, our main result, is proved in Sec. II. 

In Sec. I we review the definition of a spinor field 
and the basic properties of space-times which admit 
such fields. 

The Appendix contains a proof that every space­
time is paracompact. 

* u.s. Air Force Office of Scientific Research postdoctoral 
fellow. 

1 By a space-time we understand a mathematical object: a 
4-manifold with a Coo metric of signature (+, -, -, -). 

2 See, for example, H. ReichenbaCh, The Philosophy of Space 
and Time (Dover Publications, Inc., New York, 1958), Sec. 21. 

3 See C. W. Misner, J. Math. Phys., 4, 924 (1963); R. Geroch, 
"What is a Singularity in General Relativity?," Ann. Phys. (N.Y.) 
(to be published). 

• R. Penrose, "The Structure of Space-Time" in Battelle Recontres 
in Mathematics and Physics: Seattle, 1967, C. DeWitt, Ed. (W. A. 
Benjamin, Inc., New York, 1968). 

5 Y. Aharonov and L. Susskind, Phys. Rev. 158, 1237 (1967). 
• Note that we are not concerned with the existence of spinor 

fields having special properties, but merely with whether or not the 
notion of a spinor field is well defined. 

, This assumption is quite reasonable from the physical point of 
view because every compact space-time is known to have closed 
timelike curves. "Compact" and "noncompact" refer, of course, 
to the entire 4-dimensional space-time manifold. 

I. SPIN OR STRUCTURE 

Let P be a point of a space-time M. A spinor8 at P 
consists, at least, of a rule which assigns to each9 

orthonormal tetrad w at P an array of complex 
numbers ~g::: £: ·.·.·.(w), this array given only up to an 
over-all sign. The individual numbers in each array 
are labeled by indices A,"', B', ... , C, ... , 
D', ... , whose range is 1,2. To complete the definition 
we must specify how such an array is to change under 
a change in the choice of tetrad. Let v and w be two 
tetrads at P, and suppose that the Lorentz transforma­
tion L which carries v to w preserves the time direction 
and the spatial parity, i.e., that L is in the restricted 
Lorentz group [0' Sinces the group SL(2, C) of uni­
modular complex 2 x 2 matrices is the universal 
covering space of the (doubly connected) group [0' 

there corresponds to the element L precisely two 
elements ± UAB of SL(2, C).lO We now require that the 
arrays associated with the tetrads v and w be related as 
follows: 

~~:::£::::(w) = ±UA
E •·· DB'F"" 

(U-1)G c' .. (U-l)H'D'~~::::;::: :(v). (1) 

A sign ambiguity still remains in Eq. (1). It is the 
condition that this "two-valuedness" can be con­
sistently eliminated over the entire space-time M that 
places some restrictions on the global structure of M. 

Let us first of all complete our definition of a spin or 
at the single point P. Fix a reference tetrad w at P. 
We now deal, not with the set 'Y of all tetrads at 
P, but rather with the collection'Y of all pairs (v, ex), 

8 See, for example, F. A. E. Pirani, in Lectures in General Rela­
tivity, Brandeis Summer Institute in Theoretical Physics, 1964 (Prent­
ice Hall, Inc., Englewood Cliffs, N.J., 1965). See also Ref. 4. 

• We shall be concerned only with those tetrads having a certain 
preassigned temporal and spatial orientation. 

10 This ambiguity in sign cannot be removed in a continuous way. 
The situation is similar to the sign ambiguity in choosing a normal 
vector field to a Mobius band embedded in Euclidean 3-space. 
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where v EO 'Y and (1. is a path in'Y from v to w.u The 
pairs (v, (1.) and (u, (3) are considered to represent the 
same point of qr if u = v and if the path (X can be 
continuously distorted into the path (3 while keeping 
its endpoints fixed. In other words, qr is the universal 
covering manifold of the six-dimerisional manifold 'Y. 
(Intuitively, we may think of qr as a collection of 
tetrads at P, but such that a tetrad is considered to be a 
different object on rotation through 360°, while it is 
left unchanged by a rotation through 720°.) The 
crucial property ofqr is that any two elements v and w 
of qr are transformed into each other by a unique 
element UAB of SL(2, C). We may now define a 
spinor at P as a rule which assigns to each element 
v of qr an array M::.1f: :(v) of complex numbers 
such that if v, w EO qr are related by UAB E SL(2, C), 
then 

M:::j5::::(w) = UA
E ··· DB'F"" 

(U-1)G c' .. (U-1)H'v,${5:: ::;: .... ·.(v). (2) 

This definition would serve also to define spinor fields 
over all of Minkowski space, since a tetrad at any 
point can be referred to the origin by means of 
parallel transport. 

Unfortunately, in a general space-time M, it is not 
possible to set up a continuous correspondence 
between the tangent space of each point of M and that 
of a single fixed point P EO M. What is required in 
order to define spinor fields on M is to do globally 
what we have just done locally at P. One must take the 
covering space of the 6-manifold of tetrads at each 
point of M and then piece together this 4-dimensional 
collection of 6-manifolds. The process of "piecing 
together" results in a fiber bundle. 

Let the space-time M have a given time and space 
orientation, and let B be the principal fiber bundle12 

of oriented orthonormal tetrads on M. That is, B is a 
10-manifold. Each point of B consists of a tetrad at a 
single point of M. The group of B is the restricted 
Lorentz group Lo, while the fiber over a point P E M 
is the collection'Y of tetrads at P having the prescribed 
temporal and spatial orientation. A spinor field 
on M could now be defined (up to sign) as a mapping, 
with the appropriate transformation properties, from 
B into arrays of complex numbers. To correct the sign 
ambiguity, we must have a fiber bundle whose fib~r 
is not 'Y, but rather the universal covering space 'Y 

11 Our 0/ is essentially the collection of spin frames at P. See E. T. 
Newman and R. Penrose, J. Math. Phys. 3, 566 (1962). 

,. See, for example, N. Steenrod, The Topology of Fibre Bundles 
(Princeton University Press, Princeton, N.J., 1951). 

of 'Y. A spinor structure13 on M is defined as a second 
principal fiber bundle E [with group SL(2, C)] over 
M, along with a 2-1 mapping cp:E -+ B, such that: 

(1) cp maps each fiber of E into a single fiber of B; 
(2) cp commutes with the group operations. That is, 

for each U EO SL(2, C), cp 0 U = A( U) 0 cp; where 
A: SL(2, C) -+ Lo is the covering mapping of the 
restricted Lorentz group.14 

A space-time M, if it has any spinor structure at all, 
does not have a unique one unless M is simply 
connected. 

Given a spinor structure E, a spinor field on M may 
be defined,15 just as before, as a mapping $ of E into 
arrays of complex numbers such that $ transforms 
as in Eq. (2). 

The mere fact that a spinor formalism is useful in 
some calculations is a rather unsatisfactory reason to 
include the existence of a spinor structure among the 
"reasonable physical conditions" on space-times. 
However, an argument due to Penrose,4 based on a 
gedanken experiment of Aharonov and Susskind,5 
makes the assumption of a spinor structure somewhat 
more plausible. The Aharonov-Susskind apparatus 
consists of a box which may be separated into two 
halves. If we join the two halves together, a current 
flows from one half to the other. If we now separate 
the halves, rotate one through 360° while keeping the 
other fixed, and then rejoin the halves, the direction 
of current flow is reversed. Thus the Aharonov­
Susskind boxes behave somewhat like a spin or in that 
they are capable of keeping track of a relative rotation 
through 360°. This experiment demonstrates that the 

13 See Ref. 4. Essentially because of the way that the Lorentz 
group is embedded in the general linear group GL(4, R), there is a 
one-to-one correspondence between the spinor structures on a 
(space- and time-oriented) space-time M and the spin structures on 
the tangent bundle of the underlying manifold of M. See J. Milnor, 
L'enseignement math., 9, 198 (1963); also "Remarks Concerning 
Spin Manifolds," in Differential and Combinatorial Topology, 
S. S. Cairns, Ed. (Princeton University Press, Princeton, N.J., 1965), 
p.55. 

14 It is well known that a necessary and sufficient condition that 
a space- and time-oriented space-time M have spinor structure is 
that the second Stiefel-Whitney class of M vanish. See Ref. 13. 

15 Penrose (Ref. 4) has introduced a generalization of this definition 
which may be more convenient when conformal transformations 
are contemplated. Define an orthotetrad at P as a collection of four 
vectors k'fn ' i = I, 2, 3, 4, at P which satisfy 

k~)k~)grx{J = ).,'YJii, 

where)" is a positive number and where 'YJii is the matrix diagonal 
(+ I, - I, -I, -I). Now define a spinor as a rule which assigns to 
each orthotetrad k at P an array of complex numbers ;~ : : :~: :: : (k) 
such that (a) under a Lorentz transformation the array behaves as 
in Eq. (2), and (b) under the transformation k{o -- p.k'fo the array 
transforms as follows: 

;~:::~::::(ftk) = p.-nl';~:::~::::(k). 

Here n is the conformal weight of the spinor. 
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two-valuedness of spinors can be realized physically 
by macroscopic systems. If such Aharonov-Susskind 
boxes could be moved throughout space-time (i.e., 
along curved world lines and over regions of non­
vanishing curvature) and be intercompared with one 
another-all without their loosing track of the 
"spin-orientation" information-we would, in princ­
iple, have an experimental means to measure the 
spinor structure of our own universe. 

Two conditions, each necessary and sufficient for the 
existence of a spinor structure, can be obtained fairly 
easily from the definitions.I6 These conditions provide 
some insight into the global implications for a space­
time of our requirement that it carry spinor fields. 

Let B be the bundle of oriented frames of the space­
time M. Then M has a spinor structure if and only if 
the fundamental groupsI7 of Band M are related as 
follows: 

(3) 

[Recall that 7TI('y) = Z2'] To see the implications of 
this equation, assume for the moment that Eq. (3) 
holds. We may then take a (double) covering space of 
B, this space obtained by "unwrapping 'Y," i.e., by 
annihilating 7TI('Y) while leaving 7TI(M) unchanged. 
Such a covering space turns out to be just a spinor 
structure jj on M. Thus the existence of a spin or 
structure is equivalent to the statement that we may 
"unwrap each of the fibers on the bundle of frames 
without at the same time unwrapping any of the 
underlying manifold M." 

Consider next a closed curve 'Y in B which lies 
entirely in the fiber over one point P of M. Suppose 'Y 
is so chosen that it cannot be contracted to a point 
while remaining in the fiber (i.e., y corresponds to a 
rotation of a tetrad at P through 360°). We now permit 
'Y to be distorted throughout the entire bundle B. 
That it still be impossible to contract y to a point is a 
necessary and sufficient condition that M admit a 
spinor structure (assuming, once again, that M is 
space- and time-oriented). This is just the result we 
should have expected intuitively. Consider a (one­
index) spinor attachedI8 to a frame at P EO M. When 
the frame is rotated through 360° at P, the spinor 
reverses its sign. This rotation of the frame defines a 
curve in the fiber of B over the point P. Suppose now 
that this curve can be contracted, in B, to a point. 
We then arrive at a contradiction because a "sign 
change" (which occurs when the curve is in the fiber 

16 See Refs. 4 and 13. 
17 See, for example, A. H. Wallace, Introduction to Algebraic 

Topology (Pergamon Press, Inc., New York, 1957). 
18 That is, ;, by definition, changes as the frame w is changed, 

so that the components of; relative to ware constant. 

over P) has been continuously distorted to "no sign 
change" (which occurs when the curve has finally 
been contracted to a point). 

We mention one further property of spinor struc­
tures: A space- and time-oriented space-time has a 
spinor structure if and only if each of its covering 
manifolds does.l9 It is of interest to compare spinor 
structure and other global properties of space-times 
with respect to behavior under taking a covering 
manifold. It is known,2o for example, that (1) the 
experimental evidence on nonconservation of C, P, 
and CP in elementary-particle reactions, (2) the CPT 
theorem, and (3) the strong principle of equivalence21 

together imply that our universe must be orientable. 
However, from one point of view this result places no 
restrictions whatever on the underlying manifold of 
our universe: any space-time (whether orientable or 
not) has a covering manifold which, while representing 
exactly the same physical universe, is necessarily 
orientable. We see that the question of the existence 
of spinor fields is very different from the question of 
the existence of an orientation in that we cannot 
"create" spinor structure merely by taking a covering 
manifold. 

We conclude Sec. I with an example of a space-time 
which has no spinor structure. In fact, we may just as 
easily display what is, in a sense, to be clarified 
shortly-the "generic" example. Let Al and A2 each 
be a copy of the cross product of the closed unit 2-
disc (polar coordinates () i and , i ~ 1, i = 1, 2) with 
the 2-dimensional plane (polar coordinates lPi and Pi)' 
We now identify the boundaries (each diffeomorph­
ically Sl x R2) of Al and A2 as follows: the point 
«()1, '1, lPl' PI) of Al is identified with the point 
«()2' '2' lP2' P2) of A2 if 

()1 = ()2' lPl = lPz + mlPl' 

'1='2=1, PI=P2' 

where m is a fixed nonnegative integer. That is, for 
each m we define a 4-manifold (without boundary) 
Mm. (In fact,22 the M m are precisely the collection of 
all R2 bundles over S2. In particular, M2 = tangent 

,. This is so essentially because the spinor structure involves the 
second homotopy group of M, while the operation of taking a 
covering space acts only on the first homotopy group. 

20 R. Geroch, "Singularities in the Spacetime of General Rela­
tivity," Ph.D. thesis, Dept. of Physics, Princeton University, 1967 
(unpublished). The same type of argument has been used by 
Ya. B. Zeldovich and I. D. Novikov ("The Topology of the Universe: 
Restrictions from Elementary Particle Physics," submitted to Zh. 
Eksp. Teor. Fiz. Pis'ma Redaktsiya. English transl.: JETP Letters) 
to obtain a slightly different result. ' 

.1 R. H. Dicke, Science 129,621 (1951). 
•• See Ref. 12, p. 96. 
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bundle of SZ.) We remark that each Mm may be given 
a metric of Lorentz signature.23 

If m is odd, then, no matter what Lorentz metric 
is placed on Mm, Mm has no spinor structure. To 
verify this, choose a closed curve y which lies entirely 
in the fiber over the point PI = 0, r1 = 0, of M m , and 
which is not homotopicaIIy zero in the fiber. Observe 
that if m is odd, then y may be distorted to a point in 
the bundle of frames of M m by sliding it over the 
2-sphere PI = 0, P2 = O. 

Our example is the generic one in the following 
sense. Let M be a space-time which cannot be given a 
spin or structure. Then there must be some closed 
curved y lying in the fiber over a pointP E M such that, 
while y is not homotopicaIIy zero in the fiber, it can be 
contracted to a point in the entire bundle of frames. 
Contract y to a point, while at the same time project­
ing its path into M. We thus obtain the image Sin M 
of a 2-sphere. Suppose24 that S can be so chosen that 
it is smooth and does not intersect itself. Then we may 
select a neighborhood V of S which is topologically a 
2-dimensional vector bundle over S2. Since it contains 
S as a subset, Vitself does not admit a spinor structure, 
and must therefore be just one of the M m for m odd. 
That is, the space-time M contains an open subset 
which is diffeomorphic to one of the M m' m odd. 

n. GLOBAL SYSTEMS OF TETRADS 

Our main result reexpresses the existence of a 
spinor structure in more familiar terms. 

Theorem: Let M be a noncompact7 space-time. 1 

Then M has a spinor structure if and only if there 
exists on M a global system of (orthonormal) tetrads.2• 

Proof Suppose first of all that M has a spinor 
structure Ii. Since M is a space-time, it is paracompact 
(see the Appendix). Therefore26 M may be triangu­
lated. 27 (Since Mis noncompact, there will necessarily 

23 See L. Markus, Ann. Math. 62, 411 (1955). In fact, this result 
of Markus has been strengthened slightly (Ref. 4): Every noncom­
pact 4-manifold may be given a time-oriented Lorentz metric which 
has, in addition, no closed timelike curves . 

• 4 In fact, we need only require for this argument that there be 
some 2-submanifold 8 of M such that 8 is diffeomorphically an 8 2, 

and such that S, considered as an element of 7T.(M), is not in the 
kernel of the homomorphism Ll in the (exact) homotopy sequence 
of the bundle B (Ref. 12, p. 91): 

~ 
••• --+ 7T2(B) --+1r.(M) ~ 7Tl ('1') -- .... 

Can such an S always be found? 
•• We actually prove slightly m<;lre than this. If M has spinor 

structure B, then the global system of tetrads (considered .now as a 
cross section T of B) can be so chosen that T may be lifted to a 
cross section of B. 

•• See J. H. C. Whitehead, Ann. Math., 41, 809 (1940). 
'7 s. ·S. Cairns, Introductory Topology (Ronald Press, New York, 

1961), p. 76. 

be an infinite number of simplices.) Choose28 a se­
quence M1 , M 2 , ••• of subcomplexes of M such that: 

(1) Each M; is, as a topological space, a compact 
4-manifold with boundary. (It follows that each M j 

must consist of only a finite number of simplices.) 
(2) M; :::> M i - 1 , i = 2, 3, ... ; and U M j = M. 

i 

(3) Each connected component of M. - M i - 1 

contains at least one boundary 3-simplex, i = 2,3, .. " 
The underlying group of the bundle Ii is SL(2, e). 

But SL(2, e) is topologically R3 x S3, and so its 
homotopy groups are easily calculated: 

TriSL(2, e» ~ TriR3) 8:> Tr/S3) ~ Trq(SS). 

It is convenient to list these groups here for later 
reference: 

Trl(SL(2, e» = 0, Tr2(SL(2, C» = 0, 

Tr3(SL(2, C» = Z, 

The proof consists of constructing a cross section 
of the principal fiber bundle Ii. We proceed induc­
tively, extending a cross section from one Mi to the 
next. Let us suppose, therefore, that we are given a 
cross section of Ii over J == M i - 1 , and that we wish 
to extend this cross section to K == Mi (in cal'>e i = 1, 
set J == 1». Denote by K; (j = 0, 1,2,3,4) the j­
skeleton of K (i.e., the union of all simplices of K of 
dimension less than or equal to j). 

It follows29 from the vanishing of the first two 
homotopy groups of SL(2, e) that our given cross 
section over J can be extended uniquely (up to homo­
topy) to a cross section Cover J U K2, and further 
that C can be extended (though not, in general, 
uniquely) to a cross section over J U K3. Since 
Tr3(SL(2, C» -:F- 0, however, a given cross section over 
J U K3 cannot, in general, be extended over J U K4 = 
K. One would like to use the freedom available in 
selecting an extension of Cover J U K3 to find one 
such extension C' having the property that C' can be 
further extended over J U K4. However, such a e' 
does not in general exist. In fact, the cross section C 
determines30 an element ex of the cohomology group 
H4(K, J; Z) (a "characteristic class"). The vanishing 

28 Subcomplexes M; which satisfy these conditions may be 
constructed in the following way. Let a l , a. , ... denote the 4-
simplices of M. Define 

where 

Mo=</>, 
Mi == U iik ) i = 1,2)'·', 

k.r; 

r; = {positive integers k such that there exists a ~ompact 
set C with aCE (M;-l U c1;) and with ak C C} . 

.9 Ref. 12, p. 149. 
30 Ref. 12, p. 174. 
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of IX is a necessary and sufficient condition for the 
existence of a C' which can be further extended over 
J U K4 = K. 

Our three conditions on the Mi have as a conse­
quence, however, that H4(K, J; Z) vanishes identi­
cally.31 We conclude that IX = 0, and therefore that a 
cross section over K exists. 

We have shown that any cross section of B over J 
can be extended to a cross section over K. Setting 
K = MI and J = 4>, we obtain a cross section over MI' 
Setting K = M2 and J = M I , we extend this cross 
section from MI to M2 ::::> MI' Continuing in this way, 
we obtain finally a cross section of B over all of M. 
The projection of our cross section from B to B 
yields the required global system of tetrads. 

The converse-if M has a global system of tetrads, 
then it has a spinor structure-is an immediate 
consequence of the definition of spinor structure. 

This theorem depends critically on the vanishing of 
homotopy groups of the spinor group 8L(2, C). The 
first homotopy group vanishes essentially because a 
spinor structure is defined by the property that its 
fiber is the universal covering space of the fiber of the 
bundle of frames. (Taking the universal covering 
space automatically annihilates the first homotopy 
group.) The second homotopy group vanishes for all 
the spin groups (in fact, for all Lie groups). The third 
homotopy group fails to vanish, but at this point we 
are sufficiently close to the dimension of the manifold 
that the obstruction to extending a cross section can 
be made to vanish. Thus the dimension of the manifold 
enters in an essential way. In fact, the theorem is true 
in four dimensions, uninteresting in lower dimensions 
(in this case, every orientable manifold is paralleliz­
able32), and false in higher dimensions. 

We remark on one application of our theorem, an 
applicration to the problem of classifying space-times 
according to their global structure. The homotopy 
classes33 of metrics of Lorentz signature on a given 

31 That is, each 4-simplex 1: of K - J can be represented as the 
coboundary of some 3-chain e lying entirely in K - J. To see this, 
let y be a curve from 1: to the boundary of K - J, so chosen that 
y (\ (KO U J) = ",. Then define e to be the (properly counted) 
sum of the 3-simplices which intersect y. 

30 E. Stiefel, Comm. Math. Helv., 8, 3 (1936). 
33 The idea of looking at homotopy classes of metrics was considered 

by D. Finkelstein and C. W. Misner [Ann. Phys. (N.Y.) 6,230(1959)]. 
Their approach differs from the one contemplated here, however, 
in the following way. Finkelstein and Misner consider space-times 
which are topologically R4. Consequently, it is necessary to impose a 
boundary condition (asymptotic flatness) to prevent the "twists" 
in the metric from being lost to infinity. We impose no boundary 
conditions, but as a result we must require that the manifold have 
non-Euclidean topology (an "O-geon" in the Finkelstein-Misner 
terminology) if there is to be even the possibility of more than one 
homotopy class of Lorentz metrics. In addition, our homotopy 
classes do not have a group structure, as do those of Finkelstein­
Misner. 

manifold M are in one-to-one correspondence with 
homotopy classes of nowhere-vanishing vector fields 
on M. Let us agree that a space-time, to be of 
physical interest, must admit a spinor structure. Then 
we may, according to the theorem, take M to be 
parallelizable, and so its tangent bundle is the cross 
product M X R4. Therefore the homotopy classes of 
Lorentz metrics on M are in one-to-one correspond­
ence with the collection A of homotopy classes of 
maps J...: M --+ 83. It might be interesting to see if, 
given M, the homotopy classes A may be characterized 
in some fairly simple way. Such a characterization 
would be a start toward a classification of the "homo­
topy classes of space-times": Which global properties 
of space-times are invariants of the homotopy class? 
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APPENDIX 

The following theorem makes it possible to simplify 
the statement of many other theorems. In dealing 
with a manifold M which carries a metric of Lorentz 
signature, it is not necessary to specify that, in 
addition, M have a countable basis (or, equivalently, 
that M be paracompact). 

Theorem: Let M be a (connected, Hausdorff) 4-
manifold with a Coo metric of signature (+, -, -, -). 
Then the topology of M has a countable basis.34 

Proof: Fix once and for all a countable basis 
0i (i = 1,2,"') for the open sets of R4 and, for each 
i, a point qi E 0i' 

Let P be a point of M. The exponential map35 
"exp" is a continuous function from a subset of T p, 

the tangent space at P, into M. Let t p denote the union 
of all open subsets of T p on which "exp" is defined 
and is an open map.36 We first show that "exp" is an 

34 The theorem actually proved here is somewhat stronger: 
Every n-manifold with a CI connection has a countable basis. 
Surprisingly enough, it is not true that every manifold with a con­
formal Lorentz metric (i.e., a Lorentz metric given at each point only 
up to an arbitrary nonzero factor) has a countable basis. A counter­
example is the 2-manifold defined as the Cartesian product of two 
"long lines" [J. G. Hocking and G. S. Young, Topology (Addison­
Wesley Publishing Company, Inc., Reading, Mass., 1961), p. 55]. 
The null directions (which define the conformal metric) are specified 
as lying along the coordinate axes at each point. 

3. See, for example, N. J. Hicks, Notes on Differential Geometry 
(D. Van Nostrand, Inc., Princeton, N.J., 1965), p. 131. 

36 A mapping is said to be open if the image of each open set is 
again an open set. 
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open map on tp . Let V be an arbitrary open subset 
of t 1" and let Va be a covering of t I' by open sets on 
each of which "exp" is an open map. For each IX, 

V n Va is open in Va' and therefore exp (V n Va) 
is open in M. It follows that 

exp (V) = U exp (V n Va) 

is open in M. Since V is arbitrary, "exp" is an open 
map on tp . Define Sp == exp (t p) C M. 

Now let v be a tetrad at P. The tetrad v determines a 
natural diffeomorphism ffJ,,: Tp -- R4, where, for each 
vector ~ E T p, ffJ,,(~) is defined as the 4-tuple of 
components of ~ relative to v. We define the composi­
tion () == exp 0 ffJ;;\ a continuous map from a subset of 
R4 into M. 

Whenever the integer i is such that qi E e-I(Sp), 
we define 

Pi = ()(q;) EM, 

Vi == e(Oi n ()-I(Sp» C M. 

At each of the points Pi we define a tetrad Vi by parallel 
transport of the tetrad v along the geodesic37 from 
P to Pi' 

We now show that the Vi are a basis for the open 
sets of S p. Since the 0 i cover R4, the Vi cover S p . 
Since e is an open map on ()-l(S 1'), each Vi is an open 
subset of M. Let V be any open subset of S p. Then 
e-I(V) is open in R4. Since the 0i are a basis for R4, 

37 In case there are several geodesics from P to Pi' let us select, 
for definiteness, that one which has been used (in the exponential 
map) to define Pi' 

we may select a collection r of integers such that 
U 0 i = e-l

( V). Therefore, U Vi = V. Since V is 
iEr iEr 

arbitrary, the Vi are a basis for S p. 

To summarize, given any pair (P, v), where v is a 
tetrad at the point P, we have defined an open neigh­
borhood Sp of Pin M, a countable basis Vi for Sp, 
a countable dense set Pi in S p, and a tetrad Vi at each 
Pi' We now repeat our construction for each pair 
(Pi' V,). That is, we define an open neighborhood S p 

of Pi' a basis Vii for S Pi' a dense set Pij in S Pi' and ~ 
tetrad Vii at each Pij (i fixed, j = 1, 2, .. '). Applying 
the same construction to the pairs (Pij , Vii)' and so on, 
we obtain finally a countable collection Va == {Vi' 
Vii' Vijk' ... } of open sets of M and a countable 
collection Pa == {Pi' Pij, Piik , ... } of points of M. 

Since the Va form a basis for each of the S p , they 
p 

also form a basis for S == U SPa' We must finally show 
that S = M. eX 

Let Q be any point in the closure of S. There is some 
neighborhood V of Q such that no geodesic segment 
in V has a pair of conjugate points in V. Since Q is in 
the closure of S, V n S ~ cpo Therefore, since the Pa 

are dense in S, there must be some P{J E V. But no 
geodesic segment has a pair of conjugate points in V, 
and so Sp =.:> V. We have shown that Q EVe p 
S p pes, i.e., that S contains each point of its closure. 
But S is also open in M, because it is the union of the 
open sets S p . Since M is connected, it follows that 

a 

S = M. This completes the proof. 
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We outline a method, suitable for use on a wide 
class of metrics, by which one can derive theorems 
which in turn can be used to obtain new solutions of 

the Einstein-Maxwell equations from old. In Sec. 
1, we find the form of the Einstein-Maxwell equations 
for the assumed class of metrics; in Sec. 2 we show 
how to derive these theorems. Section 3 presents 
examples of theorems, including one (Theorem 2) 
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which is a generalization of and combination of 
previously derived theorems, one by Ehlers! and one 
by the present author,2 Bonner,3 Papapetrou,4 
Synge,S and Misra and Radhakrishna.6 Section 4 gives 
examples of applications of these theorems to special 
metrics, and Sec. 5 discusses interpretations and 
uses. 

We choose sign and other conventions as in 
Landau and Lifshitz.7 The assumed form of the metric 
is as follows: 

-ds2 = E[e2U(dxk + afa dX·)2 + a2e-2UYaP dxa dxP], 

(1) 
where 

E = ±1 = sgn (gkk); (2) 

a is an arbitrarily chosen constant scale factor; k is 
some particular one of 0, 1, 2, 3; Greek letters take 
all values of 0, I, 2, 3, except k; and all metric 
coefficients are independent of Xk. Latin letters 
(except k) take on all values 0, I, 2, 3. This metric 
thus admits a Killing vector ~! = 15k, but defines a 
congruence orthogonal to the hypersurfaces Xk = 
const if fa = 0. 

We now define yaP as the inverse of the 3-dimen­
sional metric Ya", 

yaPya" = 151, (3) 

and 2py and PaP as the Christoffel symbols and Ricci 
tensor, respectively, obtained from the Yap' We also 
define 

(4) 

where the comma denotes ordinary differentiation, 
and we define the differential parameters of first and 
second order,s 

!l!(F) = yaP F,aF,p, (5) 

!l1(F, G) = yaPF.aG,/i' (6) 

!llF) = yaPF;a/i = y.P(F,a/i - 2~/i F.y), (7) 

• Part of this work was performed during the tenure of NSF 
Grant No. GP-4902; another part was performed while the author 
was a consultant at Jet Propulsion Laboratory, Pasadena, California. 

t Current (temporary) address: Jet Propulsion Laboratory, 
4800 Oak Grove Drive, Pasadena, California 91103. 

1 J. Ehlers, "Konstruktionen and Charakterisierungen von 
Losungen der Einsteinschen Gravitationsfeldgleichungen" (disserta­
tion, Hamburg, 1957). 

2 B. Kent Harrison, Phys. Rev. 138, B488 (1965); Report given at 
the London Conference on General Relativity, 1965. 

3 W. B. Bonner, Z. Physik 161,439 (196\). 
• A. Papapetrou, Proc. Roy. Irish Acad. ASl, 191 (1947). 
5 J. L. Synge, Relativity: The General Theory (North-Holland 

Publishing Company, Amsterdam, 1960), pp. 367-71. 
6 M. Misra and L. Radhakrishna, Proc. Nat. Inst. Sci. India 

A28, 632 (1962). 
'L. Landau and E. Lifshitz, The Classical Theory of Fields 

(Addison-Wesley Publishing Company, Inc., Reading, Mass., 1962), 
2nd ed., Chaps. 10 and 11. 

8 L. P. Eisenhart, Riemannian Geometry (Princeton University 
Press, Princeton, N.J., 1949), p. 41. 

where F and G are any functions of the coordinates. 
The semicolon always represents covariant differentia­
tion with respect to the Y.p. 

It is now a straightforward matter to calculate the 
components of the 4-dimensional Ricci tensor for 
metric (1). One obtains 

Rkk = a-2
[ _ew !l2(U) + leBu yaPyY"hayhp,,], (8) 

Rka = afaRkk + la-Ie4u lY( - hay,,, + 2~y haE 

+ 2~y h,,, + 4h",u), (9) 

RaP = afaRkP + afpRka - a
2
fJpRkk + PaP 

- 2U,aU,/i + Yap!l2(U) - leW yY"hayhp,,' (10) 

We note from Eq. (4) that 

(11) 

We thus may replace -hay." in Eq. (9) by h"a,y (hy",a 
drops out because hy" is antisymmetric and y"y is 
symmetric). Eq. (9) may then be written 

Rka = afaRkk + la-leW yOY(h"a,y + 4h"aU,y)' (9') 

We choose units in the Einstein equations so that 
G = c4

• They thus may be written (for the vacuum or 
electromagnetic cases) 

R i; = 81T Ti; , (12) 

where Ti ; is the energy-momentum tensor, since 
T = 0. Ti ; is defined by 

T;; = (41T)-I(FuF/ - lFlmFlmgi;)' (13) 

Maxwell's equations are, for no sources, 

F i ;.! + F li .; + Fil.i = 0. 

(14) 

(15) 

We assume that the F i ;, also, are independent of 
Xk. The four Eqs. (14) then yield 

[( - g)! Fkala = 0, 

[( - g)! F/iala = 0. 

Equations (15) may be written 

Fak,/i + FkP,a = 0, 

a/iYF - ° E aP.y - , 

(16) 

(17) 

(18) 

(19) 

where Ea/iy is the alternating 3-index symbol (E"fiY = + 1 
if IX, f3, and yare in natural order). Equations (17) 
and (18) may be satisfied by choosing potentials A 
and B: 

Fka = B,a' 

(20) 

(21) 

Raising and lowering indices with the metric [Eq. (I)] 
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now gives, after some algebra, 

Fka = a-2yaPB + a(_g)-!eapu A ,p Jp ,Y' (22) 

F ap = a( B,pfa - B,Jp) + a4( - g)-! e-4 U eYOfYayYPoA ,f' 

(23) 

Substitution into Eqs. (16) and (19) yields the two 
remaining Maxwell equations: 

d 2(A) - 2d l ( U, A) + H _y)-!e2U eaPYhapB,y = 0, 

d 2(B) - 2dl(U, B) -l( _y)-!e2U eaPYhapA,y = 0, (25) 

where we have used Eq. (4) and 

g = a6ye-W • (26) 

We can now obtain the components of Ti ;. We get 

Tkk = e(87Ta2)-le2U[dl(A) + dl(B)], (27) 

Tka = afaTkk + e(47Ta)-I(-y)-!epyoYapA,oB,y, (28) 

TaP = afa TkP + afp Tka - a'1afp Tkk 

+ e(87T)-le-2U {2(A,aA,p + B,aB,p) 

- Yap[dl(A) + dl(B)]}. (29) 

Equations (12) now become, with Eqs. (8)-(10) and 
(27)-(29) and judicious algebraic combination, 

d 2(U) - lew yaPyYOhayhpo = -ee-2u[dl(A) + dl(B)], 

(30) 

yOY(hoa;y + 4h6aU,y) = 4e( _yr!e-4U ePyoYapA,oB,y, 

(31) 

Pap - 2U aU,p + le4u yYO(Yapyf~hYfh6~ - 2hayhP6) 

= 2ee-2U(A,aA,p + B,aB,p)' (32) 

The equations we wish to solve are now Eqs. (4), (24), 
(25), (30), (31), and (32). 

The quantities hap form a 3-dimensional antisym­
metric tensor and can thus be expressed in terms of an 
axial vector. We write 

haP = fa,P - fp,a = eaPyYYOzo( -y)!. (33) 

The integrability condition [Eq. (11)] becomes 

yapza;p = yaP(za,p - zY I:p) = 0. (34) 

Equations (24) and (25) become 

d 2(A) - 2dtCU, A) + e2UyaPB.azp = 0, (35) 

d 2(B) - 2dl(U, B) - e2UyaPA.azp = 0, (36) 

and Eqs. (30)-(32) become 

d 2(U) + lew yapzazp = -ee-2u[dl(A) + dl(B)], 

(37) 

eyap(za,p + 4zaU,p + 4ee-w B,aA,p) = 0, (38) 

PaP - 2U,aU,p - leW ZaZp = 2ee-2U(A,aA ,p + B,aB,p)' 

(39) 

We now note that Eq. (38) may be satisfied identi­
cally by choosing a "twist" potential cp in the following 
way: 

Za = e-4U [CP,a + 2e(BA,a - AB,a)]' (40) 

Eqs. (34), (35), (36), (38), (39) now become, respec­
tively, 

- 2eA[d2(B) - 4dl(U, B)] = 0, (41) 

d 2(A) - 2dl(U, A) 

+ e-2u[dtCcp, B) + 2eBdl(A, B) - 2eAdl(B)] = 0, 

(42) 
d 2(B) - 2dl(U, B) 

- e-2u[dl( cP, A) + 2eBdl(A) - 2eAdl(A, B)] = 0, 

(43) 
d 2(U) + ee-2u[d l (A) + dl(B)] 

+ ie-W[dl(cp) + 4eBdl(cp, A) - 4eAdl(cp, B) 

+ 4B2d l(A) - 8ABdl(A, B) + 4A2d l(B)] = 0, 

(44) 
Pap = 2U,aU,p + 2ee-2U(A,aA,p + B,aB,p) 

+ le-4U [cp,a + 2e(BA,a - AB,a)] 

X [cp,p + 2e(BA,p - AB,p)J. (45) 

The symmetrical occurrence of A and B suggests the 
introduction of "polar potentials" Rand 0: 

A = R cos 0, 

B = R sin O. 

(46) 

(47) 

Equations (40)-(45) now become, after suitable com­
bination of Eq. (41), (42), and (43): 

Za = e-w(cp,a - 2eR20,a), (48) 

d 2(cp) - 4dl(U, cp) + 4eR2.6.I(U, 0) 

+ 2Re-2U [2R2.6. I(R, 0) - ed1( cp, R)] = 0, (49) 

d 2(R) - Rdl(O) - 2dl(U, R) 

+ Re-2U[d l (cp, 0) - 2eR2d l(O)] = 0, (50) 

Rd2(O) + 2d1(R, 0) - 2Rdl(U, 0) 

- e-2u[dlcp, R) - 2eR2.6.1(R, 0)] = 0, (51) 

d 2(U) + ee-2u[dl(R) + R2.6.I(O)] 

+ le-w[dl( cp) - 4eR2d l( cP, 0) + 4R4d l(O)] = 0, 

(52) 
PaP = 2U,aU,p + 2ee-2U(R,aR,p + R20,aO,p) 

+ le-4U( CP,a - 2eR20,a)( CP.P - 2eR20,p)' (53) 

If now we have a solution of Eqs. (49)-(53) for the 
Yap and the four functions U, cP, R, 0, then Eq. (48) 
gives Za and Eq. (33) can then be solved for the h. 
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It will be noted that since Eq. (33) is an equation for 
curl f, there will exist an arbitrary function of inte­
gration ~, with f = V ~ + other terms. From the 
form of the metric (1) we see immediately that ~ can 
be absorbed into Xk by redefinition of Xk, so that we 
will usually drop ~. In certain situations it may be 
useful to use ~ to change the form of the remaining 
terms in f~ d~. 

2. METHOD OF DERIVATION OF THEOREMS 
FOR GENERATING NEW SOLUTIONS OF 
THE EINSTEIN-MAXWELL EQUATIONS 

FROM OLD 

We assume first that a solution of Eqs. (49)-(53) 
is already known. The majority of known solutions of 
the Einstein-Maxwell equations fall into the class of 
metrics of form (1) and hence provide known solutions 
of the equations. 

After a known solution has been selected, we 
identify the quantities Y~p, U, /~, E, and a (usually 
set = 1) by inspection. The electromagnetic po­
tentials A and B may be identified by integrating a 
subset of the Eqs. (20)-(23). z~ may be found from 
Eq. (33), and then 1> may be found from Eq. (40). 
Equations (46) and (47) give Rand e if desired. 

One sees that vacuum solutions yield A = B = 0, 
or R = 0; solutions admitting a hypersurface-orthog­
onal congruence have z~ = 0; solutions with constant 
gkk have V = const. Thus in many cases, one or more 
of the function U, 1>, R, and e are constant. We 
assume that at least one of these four functions is not 
constant. 

To obtain new solutions of the Einstein-Maxwell 
equations, we assume the metric to have the form (1), 
with new V, a, and/a-denoted by a bar-but with the 
same Yap: 

-ds2 = E[e2rJ(dxk + iiia dX~)2 + ii2e-2rJy"p dx~ dxP]. 

(54) 

We also assume new electromagnetic potentials A 
and B-or Rand e. The ia are related to a new twist 
potential q; by Eqs. (33) and (40) with bars. We now 
assume that 0, q;, R, and e are functions of those 
among U, 1>, R, and e which are not constant and of 
no other quantities. 

It is easily shown that, with this assumption, the 
differential parameters of the barred quantities are 
linear functions of the differential parameters of the 
unbarred ones. For example, if 0 = O(V, 1», then 

al(O) = O&al(V) + 20u O",aiU, 1» + O;al(1)), 

where subscripts denote differentiations. We now 
write Eqs. (49)-(52), barred, and use the assumed 
functional dependence to express them in terms of the 

differential parameters of the unbarred functions; 
substitute for the a2's from the original Eqs. (49)­
(52); then equate the coefficients of each of the aI'S in 
each equation to zero. We do this last step because we 
wish to avoid restricting the original solution 
by imposing restrictions on V, 1>, R, and e. In some 
cases, the aI'S of the original solution may satisfy 
relations among themselves; if this happens, these 
relations can be imposed on the Eqs. (49)-(52) before 
setting coefficients equal to zero, provided that the 
relations involve only functions of the U, ~, R, and O. 

When the coefficients are set equal to zero, we 
obtain a set of differential equations for the 0, etc., 
as functions of the V, etc. We obtain further equations 
by treating Eq. (53) in a similar manner. Since the 
Yap are the same in both metrics, the p.P are also, and 
one may set the right-hand sides of the old and new 
Eqs. (53) equal. One then substitutes 0 = O( V· .. ), 
etc., into one side and equates coefficients of the 
V. a u,p , etc., terms. 

There are four barred functions. If the number of 
nonconstant unbarred functions is n, one sees easily 
that, in general, there are ~n(n + 1) differential 
equations for the four dependent variables as functions 
of the n independent variables. There always exists 
one solution-the identity. Whether or not there 
exist solutions which are not equivalent to the identity 
is not at present known in general, although such do 
exist in many situations. We expect some redundancy 
in these partial differential equations, by the nature of 
the general-relativity equations themselves. 

If solutions are obtained which are not equivalent 
to the identity, then these functions 0, etc., provide 
a new solution of the Einstein-Maxwell equations. 
It is, of course, desirable to include in it all arbitrary 
constants in order to provide greatest generality. 

One can approach this treatment from a slightly 
different direction. In this, one assumes that certain 
of the unbarred functions are nonconstant-without 
specifying the particular metric satisfying this con­
dition-and then finds the 0, etc. Then, if a metric is 
provided which satisfies the given condition on the 
unbarred functions, one already has the form of the 
0, etc., and can immediately write down the new 
metric. This approach is clearly a powerful way of 
generating theorems describing how to generate new 
solutions from old. There are thus 15 possible theorems 
(15 equals the total number of combinations of four 
functions in all groupings) although not all may 
produce new inequivalent solutions. 

Another variation in approach is obtained by 
assuming, for the original metric, that some of the 
U, ~, R, and (j are functions of other nonconstant 
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ones. This clearly places a restriction on the original 
metric; but if it is satisfied, then the number of 
differential equations for the 0, etc., is reduced. This 
approach is probably equivalent to assuming that 
there exist relations between the LlI'S of the original 
solution (possibility mentioned above). There are a 
large number of possible theorems derivable in this 
manner. 

3. EXAMPLES OF THEOREMS 

A simple beginning example is provided by con­
sidering a vacuum space with gkk = E. In this case 
we have U = 0, R = 0. Rewrite 1> as "P. Examination 
of Eqs. (49)-(53) soon shows that 

Ll2("P) = 0, (55) 

(56) 

PaP = l"P.a"P.p· (57) 

We find a new metric by writing 0, ~, R, and (j as 
functions of "P' For simplicity we now drop the bars. 
Since Ll1(F) and Ll2(F) (where F is any of U, rP, R, and 
0) are linear functions of ~1("P) and ~2("P)' we see 
immediately by Eqs. (55) and (56) that the ~l(F) and 
~2(F) are all zero, and that Eqs. (49)-(52) are satisfied 
identically. When we equate the new Eq. (53) to the old, 
and divide by "P.a"P.p, we get 

t = 2U,2 + 2Ee-w (R,2 + R20,2) 

+ ie-4U(rP' - 2ER2f)')2, (58) 

where a prime denotes d/d"P' The identity transforma­
tion is the case U = 0, R = 0, and rP = "P. 

Solving for rP' gives 

rP' = 2ER20' ± e2u [1 - 4U,2 - 2Ee-2U(R,2 + R 2()'2)]!. 

(59) 

Thus, using the forms of the metrics (1) and (54) 
and Eqs. (33) and (48), we can write the following 
theorem: 

Theorem J: For every vacuum metric which is a 
solution of the Einstein equations, and of the form 
(with oloxk = 0) 

-ds2 = E[(dxk + fa dXa)2 + YaP dxa dxP], (60) 

we define "P by the equations 

ia,p - ip,a = EapyYY0"P,{)( -y)! (61) 

(we assume "P nonconstant). Then there exists a 
generalized solution, including electromagnetic fields, 
of the form 

and with electromagnetic potentials R, () such that 
U, R, () are arbitrary functions of "P, and with 

-, yo ! 
fa,p - ip,a = E(%pyY 1p,o( -y) G(1p) 

= G( "P)(fa,p - ip,a)' 
where 

(63a) 

(63b) 

G(1p) = ±e-2u [1 - 4U,2 _ 2Ee-2U(R,2 + R2()'2)]!. 

(64) 

The expression R'2 + R2()'2 may be replaced by 
A'2 + B'2. 

For our second theorem, we work with the "rec­
tangular" potentials A and B. We first assume that rP, 
A, and B are functions of U; this constitutes a 
restriction on the original metric chosen. (These 
restrictions are satisfied automatically for a vacuum 
metric admitting trajectories orthogonal to hyper­
surfaces xk = const.) 

We first find the form of the equations under this 
restriction. Equation (40) gives 

z(% = e-4U [1>' + 2E(BA' - AB')]U.(%, 

which we write for simplicity as 

Za = H(U)U,a' 

and we have 
A = A(U), 

B = B(U). 

(65) 

(66a) 

(66b) 

It is simplest to work with Eqs. (34)-(39); they be-
come 

H~2(U) + H'~l(U) = 0, (67) 

A'~2(U) + (A" - 2A' + HB'e2U)~1(U) = 0, (68) 

B'~2(U) + (B" - 2B' - HA'e2U)~1(U) = 0, (69) 

~lU) + [te4uH2 + Ee-2U(A,2 + B'2»)~1(U) = 0, 

(70) 

where a prime denotes d/dU. We use Eq. (70) to 
eliminate ~2( U) and assume ~l( U) :;r!: 0; Eqs. (67)­
(69) become 

H'=GH, 

A" - (G + 2)A' + HB'e2U = 0, 

B" - (G + 2)B' - HA'e2U = 0, 

(72) 

(73) 

(74) 

-ds2 = E[e2U(dxk + aladxlZ)2 + a2e-2UYaP dxadx fl ), where 
(62) (75) 
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If we put 

we find 

H = Le-2U, 

A' = Qe u cos T, 

B' = Qe u sin T, 

(76) 

(77) 

(78) 

(79) 

We now assume a second solution of the same form 
as the first and denote all quantities by bars, as before. 
We now assume 0 = O( U). Equation (88), old and 
new, yields 

P,p = 2(1 - Ae2U 
- fJ,e4Ur1U"U,p 

= 2(1 - J:e2U - i1e4U)-lO 0 r ,a .p, Q(T' - L) = 0, 

L' = L(G + 2), 

Q' = Q(G + 1), 

G =~L2 + EQ2. 

(80) which gives, since 0 = O( U), 

(81) (dOjdU)2 = (1 - J:e2U - ,ue4U)(1 - Ae2U _ fle4L)-1. 

(82) (94) 
Also 

Equation (71) becomes 

P,p = (2 + lL2 + 2EQ 2)U"U,p. (83) and 

Solution of Eqs. (79)-(82) gives 

Q2 = de2U(1 _ Ae2U - fl e4U)-\ (84) 

13 = 4fle4U (1 - Ae2U - W w )-\ (85) 

T = J L dU + 'V (vacuous if A = 0), (86) 

where A, fl, and 'V are arbitrary constants. If we con­
sider separately the cases with A = ° and A =/= 0, and 
those with fl = ° and fJ, =/= 0, and if we perform the 
integrations indicated in Eqs. (77), (78), and (86), 
we find a general form of the remaining equations as 
follows [including Eq. (33)]: 

f"p - !p" 
= 2WE,PyyY6[fl(1 - Ae2U - fJ,e4Url]!( -y)!U,6' (87) 

P,p = 2(1 - Ae2U - fleW)-lU"U,p, (88) 

~2(U) = -(Ae2U + 2flew )(1 - Ae2U 
- fle4Url~1(U), 

A = (~fl)!e2U cos (J. 

(89) 

+ o[~(1 - Ae2U - wW)]! sin (J. + A o , (90) 

B = (~fl)!e2U sin (J. 

- O[~(1 - Ae2U - fleW)]! cos (J. + Bo, (91) 

where (J., Ao, Bo are constants, W = ± 1, 0 = ± 1, 
and ~ = d(A2 + 4fl)-1. If both A and fJ, = 0, A and 
B are to be taken as constants. Constants Ao and Bo 
are trivial, since they do not appear in the electro­
magnetic fields; the constant (J. signifies a duality 
rotation. It will be noted that Eqs. (84) and (85) 
require 

(92) 
and 

(93) 

These conditions insure that the quantities under the 
square roots above will be positive or zero. 

giving 

_(J:e2U + 2,ue 4U)(1 _ J:e2U - ,ue4C)-lO'2~1(U) 

= O"~l(U) - O'(Ae2U + 2fle4L) 

X (1 - Ae2U - fle4U)-1~1(U), (95) 

We divide by ~l( U) and obtain a second-order 
differential equation for O( U). Equation (94) is a 
first integral of Eq. (95), so we consider only Eq. (94). 

To integrate Eq. (94), we write 

x = e-2U 
- lA, 

X - e-2U _ 1.; - 2'~' 

/32 = fl + tA2
, 

P2 = ,u + tJ:2. 

Equation (94) then becomes 

(96a) 

(96b) 

(97a) 

(97b) 

(d%jdXP = (%2 - P2)(X2 - {J2)-1. (98) 

The solutions of Eq. (98) fall into a number of cases, 
depending on the values of fJ and p. We note, by 
Eq. (93), that if fJ = 0, 2fle2U + A = 0, yielding 
fl = A = 0. 

If fJ, = 0, we have a metric with a congruence 
orthogonal to the hypersurfaces Xk = const; such 
metrics will be denoted by the letter O. If A = 0, then 
~ = 0, and A and B reduce to constants, so that we 
have a vacuum space; we denote these spaces by V. 
If A =/= 0, we have electromagnetic fields present­
denoted by E. Thus we may classify solutions as in 
Table I. 

TABLE I. Classification of solutions of the metric. 

Type OV 

=0 

=0 

OE 

~o 

=0 

v 

=0 

~O 

E 
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TABLE II. Solutions of Equation (98), listing the conditions which apply, and the classifications of the old and new solutions. 

Case Conditions X(X) Old solution New solution 

1 {l=fJ=O X=kX OV OV 
2 {l=fJ=O X= kX~' OV OV 
3 {l oF- 0, {1 = 0 X = k{l~'(X ± vi X' - (l') OE, V,E OV 
4 {l = 0, fl oF- 0 X = {1(2kX)-'(X' + k') OV OE,V,E 
5 {l{1 oF- 0, X' > {l' X = {1{l-'(X cosh k + vi X' - (l' sinh k) OE,V,E OE, V,E 
6 {lP oF- 0, X' < {l' X = P{l-'(X cos k + vi (l' - X' sin k) OE, V,E OE, V,E 

We now (Table II) list the various kinds of solutions 
of Eq. (98), listing the conditions which apply and the 
classifications of the old and new solutions. In all 
cases, k is the constant of integration. 

Case 1 is trivial; Case 2 very nearly so. Case 4, with 
X = 0, is the case treated by Ehlersl ; Case 4, with 
ji = 0, is the one treated by the author and others.2-s 

As noted before, OV metrics satisfy restrictions (65) 
and (66) automatically and thus can be used via 
Cases (2) and (4) above to generate new metrics. 
Metrics which are OE, V, or E need to be checked via 
Eqs. (65), (66) to see if they can be used to generate 
new metrics. 

Thus Theorem 2 can be stated as follows: lfwe have 
a metric ofform (1), satisfying Eqs. (65) and (66), then 
we can write down new metrics of the same form by 
using one or more of the cases of Table II. As a 
practical procedure, we identify 10, U, fa, Yap, A, B 
from the form (1) and the known electromagnetic 
fields [Eqs. (20)-(23)]. We then find Z6 from Eq. (33) 
and check Eqs. (65) and (66). If they are satisfied, we 
identify w, ~, ft, and A from Eqs. (87), (90), and (91). 
Equations (96a) and (97a) give X and {J; then Table 
II can guide us to a selection of cases and functions 
X. We then reverse the procedure, using Eqs. (96b), 
(87), (90), and (91) to get U,J:., A, and E. Equations 
(65) and (66) are now automatically satisfied. k, X, 
ji are to be considered as arbitrary constants of 
integration. 

4. APPLICATIONS OF THEOREMS 

Three examples of the uses of these theorems are 
presented here. They are not discussed in detail since 
that is beyond the scope of this paper. 

Example 1: We generalize the Ozsvath-Schiicking 
metric9 by using Theorem 1. It is given by 

-ds2 = (dXI)2 - 4v dxl dx3 + 2 dx2 dx3 

+ 2v2(dx3)2 + (dv)2, (99) 

where v = X4. We choose Xk = Xl and then identify the 

• I. Ozsvath and E. Schiicking, Recent Developments in General 
Relativity (Pergamon Press, New York, 1962), p. 339. 

following quantities: 10 = 1, a = 1, U = 0, A = 
B = 0, fo = f2 = 0, f3 = -2v, Yoo = 1, Y23 = 1, 
Y33 = -2v2, Y22 = Y02 = Y03 = 0, g = Y = -1. Equa­
tion (33) gives Zo = Z2 = 0, Z3 = -2, so that Eq. 
(40) (with 4> --+ 'If) gives 

(100) 

Integration ofEq. (63), dropping of arbitrary functions 
of integration, yields 

.10 =,h = 0, /3 = -2vG('If). (101) 

We use Eq. (100) to express everything in terms of 
x3• By Eq. (62) we get, finally, that 

-ds2 = e2U[dxl - 2avF(x3) dX3]2 

+ a2e-2U [2 dx2 dx3 - 2v\dx3)2 + (dV)2] (102) 

is a solution of the Einstein-Maxwell equations, 
where a is an arbitrary constant, U, A, and Bare 
arbitrary functions of x3 , 

F(x3) = e-2U[1 - U~ - te-2U(A~3 + B~3)]!' (103) 

and the subscript 3 indicates d/dx3• A and B occur as 
electromagnetic potentials and yield the following 
electromagnetic fields: 

F02 = a-3e2U A,3' Fl3 = B,3' 

Fl2 = a-2B,3' F03 = ae-2U A,3' (104) 

To obtain the locally observable electromagnetic 
fields E and H, we write the metric in terms of 
differential 1 forms: 

where 
WO = ae-u [J2 v dx3 - (J2 V)-l dx2], (106a) 

WI = eU(dxl - 2avF dx3), (106b) 

w2 = ae-u(J'i V)-l dx2, (106c) 

(106d) 

and write the electromagnetic field 2-form 

4> = tFii dxi A dXi = (EIWI + E2W2 + E3W3) A WO 

+ HIW2 A w3 + H2w3 A WI + H3Wl A w2. (107) 
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We obtain, by using Eqs. (104), (106), and (107), 

E3 = -HI = (vi va)-IA.3, 

El = H3 = (vi va)-IB.3, 

E2 = H2 = O. 

(108a) 

(l08b) 

(108c) 

This is clearly a plane wave, since E· H = 0 and 
E2 - H2 = 0 everywhere. Its direction of propagation 
is in the x 2 direction. This result is satisfying, since 
the original Oszvath-Schucking metric (and also, 
apparently, this new one) represents a gravitational 
plane wave traveling in the x 2 direction. 

The above comments are somewhat faulty, since 
they are based on a tetrad [components of Eqs. (106)] 
which is singular at v = X4 = O. One can define a 
nonsingular tetrad for the above metric, in the manner 
of Oszvath-Schucking,9 but its form is quite com­
plicated and it will not be given here. One does find 
that non singularity is preserved only if (Fe2V)2 > i, 
which yields 

1 > 2U;3 + e-2U(A~a + B~a). (109) 

This expression bears some resemblance to terms in the 
energy-momentum tensor and tempts one to surmise 
that if the energy density gets too large, a singularity 
develops and gravitational collapse takes place, but 
t~is point rema~ns to be investigated elsewhere, along 
wIth more detaIled studies of the metric (102). 

Example 2: We begin with a flat metric in cylindrical 
coordinates 

-ds2 = -dT2 + dr2 + r2 d02 + dz2 (110) 

and use Theorem 2, Case 4. We choose Xk = 0 (= x 2) 

and note that 1:=1, a=l, f«=O, U=lnr, 
-Yoo = Yll = Y33 = r2, YOI = Yoa = Yl3 = 0, Y = 
-:-r6

• Thus A = ft = 0, fJ = O. If we put fJ = 2kl2, 
A = 4ck12 , we find 

e-2 f' = /2r-2(k 2r4 + 2ckr2 -\- 1), (111) 

/1 = /a = 0, /0 = 4ke2VI - e2 z, (I 12) 
and 

C = 1-lvke(1 - e2) r2(k 2r4 + 2ekr2 + 1)-1, (l13) 

D = ±(21)-IVck-1 (1 - k 2r4)(Pr4 + 2ckr2 + It\ 
(114) 

where 
A = C cos IX + D sin IX, 

R = C sin ()( - D cos ()( 

(IX represents a duality rotation). 

(lISa) 

(lISb) 

The locally observed electromagnetic fields are both 
in the z direction and are given by 

with 

E = ~ cos IX + Y sin IX, 

H = - ~ sin IX + Y cos IX, 

~ = (ar)-1 dC/dr, 

Y = (ar)-1 dD/dr. 

(1l6a) 

(II6b) 

(117) 

(118) 

Inspection shows that this is a "twisted" Melvin 
magnetic universe. The twist is given by /0' which 
plays .the role of an. ang~lar velocity in a rotating 
coord mate system. Smce 10 is proportional to z, we 
see that this angular velocity increases as z increases 
and is of opposite signs on the two sides of z = O. 
One envisions a universe twisting upon itself (or 
untwisting!) as time goes on. 

The case c = ± I yields the usual Melvin universe,lO 
with no twist. The case c = 0 gives maximum twist, 
but no electromagnetic field. Thus the twist and the 
electromagnetic field are complementary in some 
sense. 

It is easily shown that a twisted Melvin universe 
singular at r = 0 and reducing to the ordinary singula; 
Melvin universe10 for c = ± I as above can be 
obtained from the Weyl-Levi-Civita metric 'for a line 
mass. 

Example 3: We use Theorem 2, Part 4 again, to 
generate a generalization of the Schwarzschild solu­
tion. We choose Xk = X O = T, with a = 1, I: = -I, 
f« = 0, U = i In (I - 2M/R), YRR = -1, Yoo = 
-R2(I- 2M(R),_y",,,, = _R2(~ - 2M/R)sin2 0, Yap = 
o (IX ¥= fJ). WIth fJ = 2kl2 and A = 4ckl2 as before, we 
get 

e-20 = 12[(1 - 2M/R)-1 + k\1 - 2M/R) + 2ek], 

(119) 

fl = f2 = 0, f3 = 4k/2(1 - c2)t M cos 0, (120) 

C = 1-1 [ -ek(l - e2)]t[(1 - 2M/R)-1 

+ k 2(1 - 2M/R) + 2ck]-1, (121) 

D = ±(2kl)-I[-ek]t[-k2(1 - 2M/R) 

+ (1 - 2M/R)-I] . [(1 - 2M/R)-1 

+ k 2(1 - 2M/R) + 2ek]-I, (122) 

where C and D are defined as before, in Eqs. (115). 
If we put 

R = at" + b, (l23a) 

T = h1p, (123b) 

where a, b, and h are constants, we can show after 

10 M. A. Melvin, Phys. Letters 8, 65 (1964). 
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some calculation that this is equivalent to Brill 
spacell (electrified NUT space). There are just enough 
arbitrary constants in this generated solution to 
reproduce the constants of Brill space. In particular, 
we note that c = -I yields the Reissner-Nordstrom 
solution and c = 0 yields NUT space.12 Again we see 
the complementarity between twist and electro­
magnetic field. 

Equation (l23a) is both interesting and puzzling. 
It shows that in general the origin is shifted by this 
solution generation. b is usually ¥= 0 (b = 0 only 
when k = -c) and is proportional to M. 

5. DISCUSSION AND INTERPRETATION OR 
RESULTS 

An obvious question is: What is the physical and/or 
mathematical significance of the theorems provable 
by this method? There is no good answer to this 
question. One sees in Theorem 2 that the change from 
old to new metrics amounts to a conformal trans­
formation on the space of the x"'; but the Xk term 
experiences the inverse of that conformal transforma­
tion and may acquire nondiagonal components besides. 
The relationships of Petrov types, and such physical 
quantities as stress and shear of the old and new 
solutions, are also yet to be investigated. At present 
the method seems primarily to be a way of generalizing 
known solutions of the equations, while retaining 
some of the symmetry. It is hoped that this approach 
may be useful in throwing light on some fundamental 
properties of the Einstein-Maxwell system of equa­
tions. An ideal hope for the approach lies in the 
possibility of finding ways of combining solutions in 
arbitrary amounts to get new solutions, analogous to 
superposition in linear equations. 

The method depends heavily on the existence of one 
Killing vector so that one can define a function U. 
(It should be noted that this Killing vector must be 
timelike or spacelike; no method exists at present for 
treating the null Killing-vector case.) One now 
wonders how closely such theorems as discussed in this 
paper are tied to the symmetries of the metric. Are 
there other theorems for metrics with higher sym­
metries? 

One approach, in the case in which there exist two 
Killing vectors, is to apply the above theorems twice­
once with respect to one variable and once with respect 
to another variable. Clearly, the metric must be of a 
rather special form to do this, 'and the first application 
of a theorem must not destroy the symmetry necessary 
for the second. We expect that repeated applications of 

11 D. R. Brill, Phys. Rev. 133, B845 (1964). 
12 E. Newman, L. Tamburino, and T. Unti, J. Math. Phys. 4, 

915 (1963). 

the same theorem with respect to the same coordinate 
will merely produce another application of the same 
family-i.e., the generating transformations of the 
same type should form a group. This may be checked 
for the types of transformations in Theorem 2. 

Another approach involves setting up a metric of 
higher symmetry and attempting to prove theorems in 
ways similar to before. So far, there is only one 
result available, given here: 

Theorem 3: If the following metric is a vacuum 
solution: 

- ds2 = €['t]e"'+/l( dX!)2 + e"'-/l( dxki + W AB dxA dxB ], 

(124) 

and capital Latin letters take 0, I, 2, 3, except k and 
I, with € = ±I, 't] = ±I, %xk = a/ox! = 0, then 

-ds2 = €[o't]eH/l-Il"'(dx,zl + r5e",-/l+Il"'(dx,k)2 

+ a2 exp Cl.u2CX - .u(3)wAH dxA dxB
] (125) 

is also a solution, where 15 = ± 1 (used only if 'fj = 
-1), a and .u are constants, and X'k and x'! are linear 
combinations of Xk and Xl. 

The proof is somewhat involved and will not be 
given here. 

The method is not currently applicable to perfect 
fluids. Attempts to apply it to fluids have led to the 
equation of state P = c2p, which occurs only if the 
matter has sound speed equal to the speed of light. 
This occurrence suggests that perhaps these theorems 
are derivable only for the presence of fields with 
fundamental velocity c. Indeed, one can derive similar 
theorems for a neutrino energy-momentum tensor. 
Of course, it is to be hoped-at least for solution­
generation purposes !-that fluids will eventually be 
incorporated into the scheme. A small investigation 
has been made of the derivability of theorems in the 
Brans-Dicke theoryl3; it appears to be possible, 
although the mathematics is more involved. 

It is anticipated that this method and similar 
methods will be very useful in general relativity-not 
only for generating new solutions of the equations, ?ut 
also for examining more fundamental concepts relatmg 
the structure of the equations. 
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The radiative-transfer equations are solved for an electron-scattering stellar atmosphere as formulated 
by Chandrasekhar. The solution employs a transformation of the integro-differential form of the transfer 
equations into singular integral equations for the angular intensities of the radiation field. The Milne 
problem is solved to illustrate the method. In addition, the relationship is found between the above 
method of solution and Case's normal-mode expansion method. This leads to an alternate procedure for 
finding the normal-mode expansion coefficients. As an example of the method, the constant distributed 
source problem is solved for a half-space medium. 

1. INTRODUCTION 

During the past few years, several methods have 
been used to obtain exact results for linear transport 
problems in slab geometry, in which the theory of 
singular integral equationsl plays a central role. 
Recently, Siewert and Fraley2 have extended one of 
these methods, viz., Case's3 singular normal-mode 
expansion method, to obtain solutions to the equations 
of radiative transfer for an electron-scattering atmos­
phere as formulated by Chandrasekhar. 4 In the normal­
mode expansion method, the independent variables 
of the transfer equations are separated and the general 
solution is expressed as an expansion over the spectrum 
of the separation parameter. Application of boundary 
conditions leads to singular integral equations whose 
solutions are the expansion coefficients. By using 
orthogonality relations, the actual solution of these 
singular integral equations can be bypassed. In this 
paper we extend a method developed by Bowden, 
McCrosson, and Rhodes5 for the one-velocity neutron 
transport equation with anisotropic scattering to the 
radiative-transfer equation. Our method of solution 
employs a transformation of the integro-differential 
equations of radiative transfer into singular integral 
equations for the angular intensity, in which the 
spatial variable enters only as a parameter. These 
equations can then be solved by standard methods. 
To illustrate this procedure, we solve Milne's problem. 
In addition, the relationship between our method and 
the normal-mode formulation follows readily from 
the orthogonality of the normal-mode eigenfunctions. 

* Supported in part by u.s. Atomic Energy Cominission. 
t Present address: Department of Physics, University of Florida. 
1 N. I. Muskhelishvili, Singular Integral Equations (P. Noordhoff 

Ltd., Groningen, The Netherlands, 1953). 
• C. E. Siewert and S. K. Fraley, Ann. Phys. (N.Y.) 43,338 (1967). 
3 K. M. Case, Ann. Phys. (N.Y.) 9, 1 (1960). 
4 S. Chandrasekhar, Radiative Transfer (Oxford University Press, 

London, 1950; also Dover Publications, Inc., New York, 1960). 
• R. L. Bowden, F. J. McCrosson, and E. A. Rhodes, J. Math. 

Phys. 9, 753 (1968). 

This leads to an alternate method for determining 
the normal-mode expansion coefficients. As an 
example of this procedure, we solve the problem for a 
semi-infinite medium, containing a constant dis­
tributed source. 

2. SINGULAR INTEGRAL EQUATIONS 

A formulation of the transfer equation for scatter­
ing of radiation by free electrons in plane-parallel 
atmospheres is given by Chandrasekhar4 : 

(p ~ + l)'I'(X, p) =fl R(v, p)'I'(x, v) dv == T(x, p), ox -1 

(2.1) 

where the intensity vector'l'(x, p) has two components 
'Pl(X, p) and 'P2(X, p), corresponding to two states of 
polarization having electric vectors vibrating in a 
plane perpendicular to and along the plane of strati­
fication of the medium, respectively. In the above 
equations the spatial variable x is the optical distance 
taken normal to the plane of stratification, in units of 
the Thompson scattering coefficient, p is the direction 
cosine measured from the inward normal, and the 
phase matrix R(v, p) for azimuthally symmetric, 
plane-parallel geometry is given by the 2 x 2 matrix 

R(y, p) = - . 3 [2(1 - v2)(1 - p2) + V2p2 p2] 
8 y2 1 

(2.2) 

In this section we present our method of solving the 
integro-differential equation (2.1) by transforming it 
into a singular integral equation for the angular 
intensities in which the spatial variable enters only as a 
parameter. As an example of the method, we solve the 
classical Milne problem for a semi-infinite half-space 
with no incident radiation. The exact expression for 
the law of darkening, i.e., the emergent intensity at 
the vacuum interface, is found. We begin by noting the 

1753 
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following identity: 

(fl ~ + 1) v'I'(x, v) 

= fl (v ~ + 1 )'I'(X, v) + (v - fl)'I'(X, v) 

= flT(x, v) + (v - fl)'I'(x, v). (2.3) 

We next define the vector 'I'o(x, fl) as 

'I'o(x, fl) = ii: G(v, fl)[v'I'(x, v) 

dv 
- flH(v, fl)'I'(X, fl)] --, (2.4) 

v-fl 
where 

Using Eqs. (2.3), we find 

(fl :x + 1) 'I' o(x, fl) 

= t f~(V' fl}(.uT(x, v} + (v - fl}'I'(X, v) 

dv 
- flH(v, fl}T(x, fl}J --. (2.7) 

V-fl 
If we define the moments 

we can write 

3 [20 - fle)p~o)(x) - (2 - 3fl2)p;2)(X) ] 
T(x, fl} = 8" + fl2 p~o)(x) . 

p~2)(X} + p~o)(x) 
(2.9) 

Using Eqs. (2.5), (2.6), (2.8), and (2.9), we find that 
the right-hand side of Eq. (2.7) reduces to T(x, fl). A 
comparison of this result with the equations of transfer 
Eq. (2.1) implies that 'I'o(x, fl) is a particular solution 
to Eq. (2.1). To obtain the general solution to Eq. 
(2.1), we must add to 'I'o(x, fl) a solution to the 
homogeneous equation 

viz., 

(fl :x + 1 )'I'l(X, fl) = 0, 

'I'l(X, fl) = -tF{ft)e-""", 

(2.10) 

(2.11) 

where F(fl) is a column vector with elements !l(fl) 
and .h(fl) which are arbitrary functions of fl and 
whose forms are to be determined by appropriate 
boundary conditions. The general solution is then 
written as 

'I'(x, fl) = 'I'o(x, fl} + 'I'l(X, fl), (2.12) 
i.e., 

'I'(x, fl) = t Lll G(v, fl)[v'l'(X, v) - flH(V, fl)'I'(X, fl)J 

x ~ - tF(fl)e-""". (2.13) 
v-fl 

Interpreting each part of the above integrals as 
Cauchy principal-valued integrals, we note that the 
second term on the right-hand side of Eq. (2.13) can 
be integrated explicitly, and we obtain the singular 
integral equations 

J
l vdv 

A(fl)'I'(X, fl) - P G(v, fl)'I'(x, v) --
-I V - fl 

= -F(fl}e-""", (2.14) 

(2.15) 

with 

A1(fl) = -1 + 3(1 - fl2)(1 - fl tanh-l fl), (2.16) 

and 
(2.17) 

We are now concerned with the solution of the 
singular integral equations (2.14). If the function 
F(fl) is known, these singular integral equations can 
be solved by standard methods. l However, before 
presenting this method for solving for 'I'(x, fl), we 
illustrate how F(fl) is obtained by considering Milne's 
problem for a semi-infinite half-space medium. We 
measure x positive into the medium with x = 0 at the 
vacuum boundary. The boundary conditions for the 
problem are that there be no radiation incident on 
the boundary and that the solution be of exponential 
order at infinity, i.e., 

'I'm(O, fl) = 0, fl > 0, (2.18) 
and 

lim e-"":I'm(x, fl} -- O. (2.19) 

We shall also assume a constant net flux of radiation 
flowing through the atmosphere normal to the plane 
of stratification, this constant net flux being provided 
by the radiation coming from the "deep interior." 

Applying the boundary condition (2.19), we find 

F(fl) = 0, fl < O. (2.20) 
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When boundary condition (2.18) is applied, we 
obtain an expression for F(ft): 

F({t) = f\G(1', ft)'¥ m(O, -v) ~, ft > 0, (2.21) 
)0 v + ft 

where we have used the evenness of G(1', ft) in both v 
and ft. We now analytically continue F to the complex 
plane of z and write 

F(z) = f\G(1', z)'¥ m(O, -v) ~, Re z > 0. 
)0 1'+ z 

(2.22) 

We likewise extend '¥ to the complex plane and write 
the functional equation 

II 1'd1' 
Q(z),¥ m(X, z) - -1 G(1', ft)'¥ m(X, v) v _ z 

__ {-F(Z)e-"'IZ, Re z > 0, 

0, Re z < 0. 
(2.23) 

where 

(2.24) 

with 

~-Mz) = -1 + 3(1 - z2)[1 - z tanh-l O/z)], (2.25) 

and 
(2.26) 

It is apparent from Eq. (2.21) that, if '¥ m(O, - ft), 
the emergent intensity, were known, then we could 
solve for F(ft) [and hence '¥ m(x, ft)], i.e., the intensity 
at any point in the system is given by its behavior at 
the boundary. A singular integral equation for 
'¥ m(O, -ft) can be obtained from Eq. (2.14) by 
setting x = ° and restricting ft < 0. After using the 
boundary condition (2.18) and the evenness of 
A({t) in ft, we find the singular integral equation for 
'¥ m(O, -ft): 

A(ft)'¥ m(O, -ft) - P G(1', ft)'¥ m(O, -v) -- = 0, JI v d1' 

o 1'-ft 

ft > 0. (2.27) 

The last equation can be solved by standard 
methods (as described by Muskhelishvili l ) by con­
sidering the behavior of a certain sectionally analytic 
function on the complex plane of z cut along (0, 1) on 
the real axis 

1 II v d1' D(z) = -. G(1', ft)'¥ m(O, -v) --. (2.28) 
21T1 0 1'- z 

Applying the Plemelj formulas l to D(z), we obtain 

+ - 1 II V d1' D (ft) + D (ft) = -: P G(1', ft)'¥ m(O, -v) -- , 
1T1 0 V - ft 

(2.29) 

and 

D+(ft) - D-(ft) = *ft(1 - ftZ),¥ m(O, - ft), (2.30) 

where D+(ft) and D-(ft) are. the limits of D(z) as z 
approaches the cut (0, 1) from the upper and lower 
half-planes, respectively. Using the last two equations, 
we can write Eq. (2.27) as 

Q-(ft)D+(ft) - Q+(ft)D-(ft) = 0, (2.31) 
where 

(2.32) 

with 
(2.33) 

and 

(2.34) 

as the limits of o.l(Z) and 02(Z) as z approaches the 
cut (-1, 1) from the upper and lower half-planes, 
respectively. Our singular integral equation (2.27) 
has been reduced to a homogeneous Hilbert problem: 
to find the nonvanishing sectionally analytic vector 
cut along (0, 1) with boundary values given by Eq. 
(2.31). The solution of this problem can be written 

D(z) = K(z)X(z), (2.35) 

where X(z) is a column vector with components 
X l (z) and X 2(z) given byZ 

xtCz) = _1_ exp {l eln (O!(ft»)~} (2.36) 
1 - z 1TJO D.l (ft) ft - z 

and 

XZ(z) = exp {..! r\n (D.~(ft»)~}, (2.37) 
1T Jo Oz(ft) ft - z 

and the matrix K(z) is given by 

K(z) - _1 [a ° ] (2.38) 
- 21Ti ° b + cz ' 

where a, b, and c are constants to be determined 
as follows. Since the net flux in the half-space IS 

constant, we choose 

where M is constant. This last equation can be used in 
obtaining the constants a, b, and c. Two additional 
equations for the constants are obtained by equating 
the right-hand sides of Eqs. (2.28) and (2.35) for 
D z(±I): 

(b ± c)Xz(±l) = i{,u(ft ± l)1J'ml(O, -ft) d,u. 

(2.40) 



                                                                                                                                    

1756 R. L. BOWDEN AND N. R. RICHARDSON 

From Eqs. (2.30) and (2.3S) we note that 

1flO - fl2)'J! m(O, - fl) 

= K(fl)[X+(fl) - X-(fl)], fl > 0, (2.41) 

which, when substituted into Eqs. (2.39) and (2.40), 
yields a set of simultaneous equations for the constants 
a, b, and c, which, in turn, yield 

and 

a = 3MA/4, 

b = 3M/4, 

c = -3M/4Q, 

(2.42a) 

(2.42b) 

(2.42c) 
where we define 

and 

A = Xl+1)Xl-1) + X 2(-1)X1(+1). (2.44) 
X 2( -1)X1( +1) - X 2( +l)Xl(-1) 

Some of the integrals involved in the above determina­
tion were evaluated by noting the following identities 
which can be shown quickly by use of Cauchy's 
integral formula: 

Xb) = Xloo) +~. e XiCfl) - Xi(p) dfl, 
27T1 Jo fl - Z 

i = 1, 2, (2.4S) 

where X 1(oo) = ° and X 2(oo) = 1. Now, by compar­
ing Eqs. (2.22) and (2.28), we get 

F(z) = 3M[ -X1( -z)/Q ], (2.46) 
4 (A-z)X2(-z) 

which determines F(p) by letting z tend to p E (0, 1). 
For the law of darkening from Eq. (2.41) we also 
obtain 

'J!m(O, -fl) = 3M[ -S/QX1(-fl)], (2.47) 
8 (fl + A)/X2(-fl) 

which is in agreement with the result found by Siewert 
and Fraley2 and by Chandrasekhar.4 In this last 
determination we have used the identities2 

XI (Z)Xl ( -z) = So.1(z)/2 (2.48) 
and 

X2(Z)X2 ( -z) = o.2(z)/2. (2.49) 

We now obtain the solution to Eq. (2.14), assuming 
that F(fl) is known, by considering the sectionally 
analytic function cut along the line (-1, 1): 

E(x, z) = -. G(v, fl)'J! m(x, v) --, (2.S0) 1 Jl V dv 
27T1 -1 v - Z 

where x appears only as a parameter. We apply the 
Plemelj formula to the above equations and use the 

resulting boundary values to write Eq. (2.14) as 

0.+( ) 
~ E-:-(x 11.) - ET(x 11.) 
o.i(fl) • q- t' r' 

= {3fl(1 - fl2)!lfl)e-x
/

Jl/2o. i(fl), 
0, 

fl > 0, (2.S1) 
fl < 0, 

which are inhomogeneous Hilbert problems with 
cuts along (-1, 1). The solutions X Oi(z), i = 1,2, 
to the homogeneous Hilbert problems with boundary 
values along the line (-1, 1) 

X(J;(fl) = Qt(fl) (2.S2) 
XQi(p) Qi(fl) 

are2 

X 01(z) = --2 exp - arg o.t(fl) _fl_ 1 {I II d } 
1 - z 7T -1 fl - Z 

= X 1(Z)X1( -z) (2.S3) 
and 

X 02(z) = exp {I Jl arg ot(p)~} 
7T -1 fl - Z 

= Xb)X2( -z). 

With Eq. (2.S2) we rewrite Eq. (2.S2) as 

+ _ {3fl(1-fl
2
)flfl)e-

X
/

Jl 

Ei (x, fl) _ Ei (x, fl) = 20.:-( )X+() , 
X+( ) X--C ) • fl o. fl 

fufl fufl ° , 
We now consider the function 

K .(x z) = E;(x, z) 
0., XOi(z) 

(2.S4) 

fl > 0, 

fl < 0. 

(2.SS) 

1 11 3fl(1 - fl2)flfl)e-X
/

Jl dfl +- --, 
27Ti 0 2o.i{fl)X(J;(fl) fl - Z 

(2.S6) 

which is analytic in the finite complex plane of z, 
except perhaps for a cut along (-1, 1). Using the 
Plemelj formulas, we find Kt;(x, fl) - Kiii(x, fl) = 0, 
fl E ( -1, 1). By examining the z dependence at infinity 
of E(x, z) from Eq. (2.S0), and XOi(z) from Eqs. (2.S2) 
and (2.S3), we find 

Kolx, z) = ~ [oix) + wi(x)z], i = 1,2, (2.S7) 
27T1 

where O'i(X) and wlx) are coefficients dependent on x 
to be determined below. We now solve for Ei(x, z) 
from Eqs. (2.S6) and (2.S7) to obtain 

Elx, z) = XOi(~)[O'lX) + wlx)z 
27T1 

_II3v(1 - v2)jb)e-X
/

V d'l'], 
o 2o.i(v)X;;;(v)(v - z) 

i = 1,2. 

(2.58) 
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The conditioo of constant flux throughout the medium 
requires 

-M = 2 ft[V'miX, f-t) + V'm2(X, f-t)] df-t, (2.59) 

where the constant M is the same as that used in 
Eq. (2.39). We apply the Plemelj formulas to Eq. 
(2.50) to obtain 

f-tV'mlx, f-t) = 2[Ei(x, f-t) - E;(x, f-t)]/3(1 - f-t2), 

i = 1,2. (2.60) 

With the limits E[l:(x, f-t) determined from Eq. (2.58) 
we substitute the last equation into our normalization 
condition (2.59) to obtain one equation for the 
coefficient 

where 

n1(x) = -*M + r\1'{fzCv) - N1')}e-x/ v d1', (2.62) - Jo YzCv) Yb) 
with 

1';(1') = 0t(1')O;(1') 

= [11-;(1')]2 + [317'1'(1 - 1'2)j2t (2.63) 

We next examine the z dependence at infinity of 
E2(x, z) in Eqs. (2.50) and (2.58) to find 

w2(x) = i f/[V'miX, v) + V'm2(X, v)] d1', (2.64) 

which, from Eq. (2.59), yields 

w2(x) = -3M/4. (2.65) 

The coefficient w 1(x) is then completely determined 
by Eq. (2.61). Now, noting that, from Eq. (2.50), 
D 2(x, I) = -D1(x, I), from Eq. (2.59) we obtain 

5<1ix) - <12(X) = n2(x), (2.66) 
where 

n2(x) = e 31'(1' + 1){ fzCv) - fb) }e-x / v d1' (2.67) 
Jo Yz<v) Yb) 

and Eqs. (2.61) and (2.65) have been used. Sub­
stituting V'm2(X, -f-t), f-t > 0, from Eq. (2.60) into 
the original integro-differential equation (2.1) for 
V'm2(X, f-t), we find the following differential equation 
for <12(X): 

d<12(x)/dx = 3M/4, (2.68) 

which has the solution 

<12(x) = 3Mx/4 + <12(0). (2.69) 

The integration constant 9'2(0) can be found by 
evaluating V'm2(0, -f-t) from Eq. (2.60) and comparing 
it with Eq. (2.47). We find 

With <12 (X) so determined, Eq. (2.66) completely 
determines <11 (X). This completes the evaluation of the 
coefficients <1i(X) and wi(x). 

From the functional equation (2.23) and E(x, z) 
given by Eq. (2.58) we can write 

V'mi(X, z) 

= f {27riElx, z) - h(z)e-xiz}/Oi(Z), Re z > 0, 

l21TiE;(x, z)/O;(z), Re z < O. 

The angular intensities V'mi(x, f-t), i = I, 2, are 
obtained from the last equation by letting z tend to 
f-t E (-I, I). 

3. COMPARISON WITH THE NORMAL. 
MODE EXPANSION METHOD 

Although the method of Sec. II can be regarded as a 
completely independent method of solution, it is 
intimately related to the normal-mode expansion 
method as presented by Siewert and Fraley2 and 
Smith and Siewert.6 Following Case's method,3 
Siewert and Fraley separated the variables of Eq. 
(2.1) with a solution of the form 

':I'(x, f-t) = 4>(1], f-t)e- x
/
q

, 

where 4>(1], f-t) is a solution to the equation 

(3.1 ) 

and the spectrum of the separation parameter 1] is as 
follows: 

Discrete solutions : For 1] ¢: ( -I, I) Siewert and 
Fraley found that 1] must be a zero of the function 
0 1(1]) as defined by Eq. (2.25). However, 0 1 has a 
double root at infinity, and they write the discrete 
solution as 

(3.3) 

and, because of the degeneracy due to the double 
root at infinity, a second linear-independent discrete 
eigenvector 

':I'_(x, f-t) = (x - f-t{~l (3.4) 

which is a solution to Eq. (2.1). 
Continuous Solutions: For 1] E (-1, 1) Siewert and 

Fraley write the continuous eigensolutions of Eq. 
(3.2) : 

[

p 31](1 - f-t2)/2 + ).1(1])(5(1] - f-t)] 
4>1(1], f-t) = 1] - f-t 0 ' (3.Sa) 

6 O. J. Smith and C. E. Siewert, J. Math. Phys. 8, 2467 (\967). 
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and 

[ 

-31](1] + ft)/2 ] 

iPly}, ft) = p 31'}(l - 1'}2)/2 + A2(1'})b(1'} - ft) , (3.5b) 

1]-ft 

with Ai(1]) defined by Eqs. (2.16) and (2.17); b(1] - ft) 
is the Dirac delta function, and the symbol P denotes 
that the Cauchy principal value is to be taken in any 
integration involving the following term. Smith and 
Siewert6 have shown that the eigensolutions iP-I-' 
iP1(1], ft), iP2(1], ft), and '1'_(0, ft) are complete on the 
range ft E (-1, 1) such that an arbitrary two-com­
ponent vector r(ft) defined on -1 ::;; ft ::;; 1 can be 
expanded as 

r(ft) = A+ iP -I- + A_ '1'_(0, ft) + L: OC(1])iPl(1], ft) d1] 

+ f/(1])iP2(1], ft) d1]. (3.6) 

A consequence of this completeness relationship is 
that the general solution of Eq. (2.1) can be 

'I'(x,ft) = A-I-iP-I- + A_'I'_(x'ft) 

+ flOC(1])iP1(1], ft)e-"'Iq d1] 

+ L: P(1])iP2(1], ft)e-"'Iq d1], (3.7) 

where A-I-' A_, oc(1]), and P(1]) are arbitrary expansion 
coefficients to be evaluated by boundary conditions. 
In addition, Siewert and Fraley have shown that 
iP -1-' iPl (1], ft), and iP2( 1], ft) are complete on the range 
ft E (0, 1), in the sense that an arbitrary two-compo­
nent vector 9(ft) defined on the range ° ::;; ft ::;; 1 can 
be expanded as 

9(ft) = A+iP-I- + f OC(1])iP1(1], ft) d1] 

+ Llp(1])iP2(1] , ft) d1]. (3.8) 

They use the completeness property (3.8) to solve the 
Milne problem. 

Full-range orthogonality and normalization inte­
grals are given by Smith and Siewert.6 They showed 
that 

f/cI;(1]', ft)iP(1], ft) dft = 0, 1] -:/= 1]', (3.9) 

where the tilde superscript indicates the transpose of 
the vector. They defined the full-range scalar product 

i,j = +,1,2, 

(3.10) 

and find 

(i 1 j) = 0, i,j = +,1,2, i -:/=j, (3.11) 

and 

(i 1 i) = 1]o.;(1])o./(1])b(1] - 1]'), i = 1, 2, (3.12) 

where o.t(1]) are defined by Eqs. (2.33) and (2.34). By 
replacing iPi (1], ft) in Eq. (3.10) with '1'_(0, ft), an 
additional orthogonality relation is 

(il-)=o, i=-,1,2. (3.13) 

We can determine the relationship between our 
singular integral-equation method and the normal­
mode expansion technique by evaluating the integrals 

If first we substitute the explicit forms of iPi from Eqs. 
(3.5), after rearranging in matrix form we obtain 

= ft A(ft)'I'(x,ft) - p G(v,ft)'I'(x, v) --, (3.15) { Jl V dv } 
-1 v - ft 

where G(v, ft) and A(ft) are defined by Eqs. (2.5) and 
(2.15). The integrals (3.14) can also be evaluated by 
using the general expression for 'I'(x, v) given by the 
normal-mode expansion (3.7). The integration involv­
ing the two discrete terms in 'I'(x, v) vanishes due to 
orthogonality relations (3.11) and (3.13) found by 
Smith and Siewert. 6 After changing the order of 
integration of the two continuum terms, we perform 
the v integration using Eqs. (3.12) and obtain 

(3.16) 

Equating the right-hand sides of Eqs. (3.15) and 
(3.16) and comparing the result with Eq. (2.14), we 
obtain the relationship between our method and the 
normal-mode expansion method: 

(3.17) 
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Eq uation (3.17) indicates that solving for Feu) in 
the singular integral equation provides an alternate 
means for obtaining the normal-mode expansion 
coefficients. To iIIustrate, we consider the Milne 
problem for a half-space with a constant, distributed 
source S with components SI and S2' The boundary 
conditions, similar to those of Eqs. (2.18) and (2.19), 
are 

'l's(O, fl) = 0, fl > 0, (3.18) 
and 

where the angular intensity vector 'l's(x, fl) represents 
two perpendicularly polarized intensities in the med­
ium with sources. 

The integro-differential equation for the problem 
with sources [cf. Eq. (2.1)] is 

( fl ~ + 1)'1' sex, fl) =fl R(v, fl)'I's(x, v) dv + S ox -1 

and has a solution 

'l's(X,fl) = 'I'",,(x,fl) + As+cI»+ + As_'I'_(X,fl) 

+ flOCS(1])cI»l(1], fl)e-x/~ d1] 

(3.20) 

+ fls(1])cI»2(1]'fl)e-X/~ d1], (3.21) 

where 'I' ",,(x, fl) is the particular solution to the 
constant source problem. We find the following 
particular solution to Eq. (3.20): 

_ [ - 1(SI + S2)(X
2 

- 2Xfl) - 5S1fl
2 1 

'I' ",,(x, fl) - 2 
-1(SI + S2)(X - 2Xfl) . 

- !(SI + S2)fl2 
- lSI + ~S2 

(3.22) 

We now proceed as in Eq. (3.16) and substitute 
'l's(x, fl) into the integrals (3.14) and obtain 

+ [ 2~ ] 
fl 2 ' 4S2 - 3fl (SI + S2) 

(3.23) 

from which we write [cf. Eq. (2.14)] 

II v dv 
A(fl)'I's(x, fl) - p G(v, fl)'I's(x, v) --

-I V - fl 

= -FsCfl)e-x//l + N(fl) , (3.24) 

where 

and 

Fs(fl) = - [ocs(fl)Qi(fl)Ql(fl)]. (3.26) 
{J s(fl ) Qt(fl )Q2(fl) 

We now determine Fs(fl) in a procedure similar 
to that used in Sec. II. We proceed to solve Eq. (3.24) 
subject to the boundary conditions (3.18) and (3.19). 
In order that our solution be of exponential order as x 
approaches infinity [Eq. (3.19)], we must have 

Fs(fl) = 0, fl < 0. (3.27) 

From the condition of no incident radiation on the 
interface from the vacuum [Eq. (3.18)], we obtain 

II v dv 
Fs(fl) = G(V,fl)'I's(O, -v) -- + N(fl) , fl > 0, 

o v + fl 
(3.28) 

where we have used the fact that N(fl) is an even 
function of ft. When we extend F s to the complex 
plane of z, we obtain 

Fs(z) = G(v, z)'I's(O, -v) -- + N(z), J
l v dv 

o v + Z 

Re z > 0. (3.29) 

Using Eq. (3.18) and restricting the direction cosine 
to values less than zero, we obtain a singular integral 
equation for 'l's(O, - fl): 

J
l l'dv 

A(ft)'I's(O, -p)- P G(v,ft)'I's(O, -v) -- = N(ft), 
o v - ft 

ft > 0. (3.30) 

We define a sectionally analytic function E(z), cut 
along the line (0, 1), as 

E(z) = _1_. [IG(V, z)'I's(O, -v) vdv . (3.31) 
27Tl Jo v -'z 

Applying the Plemelj formulas,4 we obtain, in com­
ponent form, 

E+(") - Qt(ft) E-:-( ) = ,3 (1 _ 2) Nlft) . 1 2 
, \fA' Qj(ft) , ft 2fl fl Qj(ft) , I = , , 

(3.32) 

which is an inhomogeneous vector Hilbert problem, 
i.e., we wish to find the sectionally analytic vector 
E(z) whose boundary values satisfy Eqs. (3.32). Using 
standard techniques,4 we can write the solution as 

Eb) = Xb)[Rii(Z) + _1 e 3ft(1- ft2)Ni(ft) ~], 
hi Jo 2Xi(ft)Qj(ft) ft - z 

'(3.33) 
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where R;; are the diagonal elements of the matrix 

R(z) = _1 [d1 ° ] (3.34) 
27Ti ° d2 + daz ' 

with the d; constants determined below and X;(z) 
are defined by Eqs. (3.36) and (3.37). 

The integrals in Eqs. (3.33) can be evaluated by 
noting the following identities, which can be proved by 
use of Cauchy's integral formula 

and 

(3.36) 

where 

Un = -. [XiCu) - X1(,u)],un d,u 1 11 
2m 0 

(3.37) 

and 

Vn = -. [X;(,u) - X 2(,u)],un d,u. 1 11 
27Tt 0 

(3.38) 

We finally get the components of E(z): 

( 
1 2~ 

El z) = -. [d1 + 2s1(UI - z)]X1(z) - -. 
2m 2m 

and 
1 

E2(z) = - [d2 + daz + 4s2 
2iri 

(3.39a) 

- 3(SI + S2)(Z2 + ZVo + v~ + V1)]X2(Z) 

1 2 
- -. [4s2 - 3(SI + S2)Z ]. 

2m 
(3.39b) 

From Eqs. (3.29) and (3.31) we find 

Fs(z) = 27TiE(-z) + N(z), (3.40) 

which, from Eqs. (3.25) and (3.37), can be written as 

f S l(Z) = [d1 + 2s1(UI + z)]X1(z) (3.41a) 
and 

!S2(Z) = [d2 - daz + 4s2 
- 3(SI + S2)(Z2 - VoZ + v~ + vJ]X2( -z). 

(3.41 b) 

Using Eqs. (3.26) and (3.41), we obtain the normal­
mode expansion coefficients for the constant source 
problem 

IX ( ) = _ [d1 + 2s1(U I + ,u)]Xl-,u) 
S\,u nU,u)n1(,u) (3.42) 

and 

R ( ) = _ [d2 - da,u + 4s2 - 3(SI + S2)(,u2 - vo,u + v~ + V1)]X2( -,u) . 
f's,u n;(,u)Q2(,u) 

(3.43) 

We have found the expansion coefficients to within 
the thrt)e constants d1 , d2 , and da . The procedure for 
finding the constants parallels that for the source-free 
problem of Sec. II. As before, we normalize the exit 
current at the vacuum interface: 

(3.31) and using Eqs. (3.39), we obtain 

¥,u(1 - ,u2)'I'S(0, -,u) 

= R(,u)[X+(,u) - X-(,u)] - N(,u), (3.46) 

which, when substituted into Eqs. (3.44) and (3.45), 
yields a set of simultaneous equations for the con-

J = 2 f,u[1/iSl(O, -,u) + 1/iS2(0, -,u)] d,u, (3.44) stants di · These equations then yield 

d1 = {-rl + [I - X2( + l)][r2X2( -I) 

where use has been made of boundary condition 
(3.18). This last equation can be used in obtaining 
the constants di • Two additional equations for the 
constants are obtained by equating the right-hand 
sides of Eqs. (3.31) and (3.39) for E2(±I): 

X 2(±l)[d2 ± d3 + 4s2 

- 3(SI + s2)(1 ± Vo ± v~ + VI)] - S2 + 3s1 

= IfV[V ± l]1/iSl(O, -v) dv. (3.45) 

We note that, by applying Plemelj's formulas to Eq. 

+ raX2( +I)]}/Q, (3.47a) 

d2 = {rlW+ Hr3X1(+I) - r2X(-I)] 

+ iW(r2 - ra)}/Q, (3.47b) 
and 

(3.47c) 

where Q is defined by Eq. (2.43), 

W= X2(+I)X1(-I) + X2(-I)X1(+I), (3.47d) 

r1 = 1J - 3s1u1 r a + 2s1r S - 4S2r 1 

+ 3(S1 + S2)[r2 - r6 + VOr2 + (v~ + V1)r1], 

(3.48a) 
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r2 = 2sil - U1)X1( +1) + 2s1u O - 4X2( +1)S2 + S2 

- 3s1 + 3(SI + S2)X 2( + 1)(1 + Vo + v~ + VI)' 

(3.48b) 
and 

r3 = 2s1(1 - Ul)X1(-1) 

+ 2s1uO - 4X2(-1)s2 - S2 + 3s1 

+ 3(SI + S2)X 2( -1)(1 - Vo + v~ + VI), (3.48c) 

with 
r 1 = (X2(-1) - X2(+I)]/2, (3.49a) 

r 2 = (2 - X2(+I) - X2(-I)]/2, (3.49b) 

r3 = (Xl(-1) - X1(+I)]/2, (3.49c) 

r 4 = -X1( + 1), (3.49d) 

r5 = -Xl(-1), (3.4ge) 
and 

rs = 1 + Vo - X2(-1). (3.49f) 

With these di we have completely determined the 
expansion coefficients ocs(p) and (3s(p). The discrete 
expansion coefficients As- and As+ are determined 
from the integrals (3.14) with 4>+ and '1'_(0, -p) given 
by Eqs. (3.3) and (3.4) replacing ~i(X, p). Substituting 
for the normal-mode expansion 'I's(x, p) from Eq. 
(3.21), we find, using the orthogonality relations, that 

flP~ +'1' sex, p) dp = -4As-f3. (3.50) 

If instead we substitute for til +, we obtain our nor­
malization condition [cf. Eq. (3.44)]: 

~ L:pG J'I's(X, p) = -J. 

From Eqs. (3.50) and (3.51) we see that 

As- = 3J18. 

(3.51) 

(3.52) 

In the same fashion as in Eq. (3.50), we find, when we 
substitute the expansion (3,21), that 

ftW _(0, p)'I's(x, p) dp 

= -~As+ +2l s1 - HS2' (3,53) 

If in Eq. (3.53) we apply the boundary condition 
(3.18) and use the explicit form of 'I' _(0, p), we obtain 

fl P2GJ'I'S(O, -p) dp 

= L>2(1{JSl(0, -p) + 1{J82(O, -p)] dp. (3.54) 

We now use the form of '1'8(0, -p) from Eq. (3.46) 
in (3.54) and we combine it with Eq. (3.53) to obtain 

As+ = tdl(ra + r 5) + ld2r 2 + td3(r2 - rs) 
+ ~i-Sl - t S2Ul(r 3 + r 5) - Sl(r 3 - f 5) 

+ 2s2f 2 - l(sl + S2) 

X [f2 - VI + (V~ + V1)r2 + VO(r2 - fs)]' 

(3.55) 
4. SUMMARY 

In summary, we have presented a method for 
obtaining exact solutions for the perpendicularly 
polarized intensities in an electron-scattering stellar 
atmosphere. The solutions are obtained by trans­
forming the integro-differential form of the radiative 
transfer equations for the angular intensities. As an 
example of this procedure, we have solved the Milne 
problem and the law of darkening. The connection 
between our singular integral equation and the 
normal-mode expansion method was obtained by use 
of orthogonality relations. We found that this led to 
an alternate procedure for obtaining the normal mode 
expansion coefficients. We have illustrated that 
procedure by solving the constant distributed source 
problem for a semi-infinite medium for which we 
found the discrete and continuum coefficients. It 
appears for the problems considered that neither 
method presents an appreciable advantage over the 
other. However, it does seem that in the analogous 
mUltigroup neutron transport equation, where the 
system has absorption and the cross sections are not 
the same for each group, this method may present a 
distinct advantage. This will be the subject of a 
future paper. 
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Connection between Spin, Statistics, and Kinks 
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Sufficiently nonlinear classical fields admit modes called kinks, whose number is strictly conserved in 
virtue of boundary conditions and continuity of the field as a function of space and time. In a quantum 
theory of such fields, with canonical commutation (not anticommutation) relations, kinks and their 
conservation still persist, and even if the intrinsic angular momentum is an integer, a rotating kink can 
have half-odd angular momentum, if double-valued state functionals are admitted. We formulate a 
natural concept of exchange appropriate for kinks. The principal result is that for fields with integer-valued 
intrinsic angular momentum, the observed relation between spin and (exchange) statistics follows from 
con!in.uity a~one, paras~atistics being ex.c1uded. It is Iikelx that in the theories with even (odd) exchange 
statistics, SUItable creatIOn operators will commute (antlcommute). We show that, while the rotational 
spectrum of a kink will in general possess both integer and half-odd spin states, in fields with integer­
valued intrinsic angular momentum only one of these two possibilities will ever be observed for each kind 
of kink, and that there is a nonzero "particle number" (strictly conserved, additive, scalar quantum 
number) attached to half-odd-spin kinks of each kind. It then follows that a boson and a fermion kink will 
always differ in at least one particle number, as well as in spin, and that, in particular, every fermion 
kink will have some nonzero particle number. These results are consistent with the hypothesis that the 
spinor fields usually employed to describe half-odd-spin quanta are not fundamental, but are useful 
"point-limit" approximations to operators creating or annihilating excitations in a nonlinear field of 
particular kinds of kinks in particular internal states. 

INTRODUCTION 

Quanta of integer spin are described by fields 
obeying canonical commutation relations, ramifica­
tions of the basic relation 

pq - qp = Ii/i, 
while since the work of Jordan and Wigner,l quanta of 
half-odd spin have been described by fields obeying 
anticommutation relations like 

pq + qp = Ii/i. 
For brevity, let us call these canonical and anti­
canonical quantizations, respectively. We have been 
exploring2•3 a single kind of field quantization which 
appears to embrace both the canonical and anti­
canonical, and to reduce to them in appropriate 
circumstances. In this kind of quantization, for which 
we employ the term multivalued quantization, all the 
fundamental fields are supposed to obey commutation 
relations, as in canonical quantization, but the state­
functionals on which they act are permitted to be 
multivalued. More succinctly, a multivalued quantiza­
tion of a classical system S is a canonical quantization 
of the "covering system" S, and the definition of the 
covering system S is formulated in close analogy to 
that of the (universal) covering space in topology. 

• Supported by the National Science Foundation (Grant No. 
GP 6137). 

t Young Men's Philanthropic League Professor of Physics. 
:j: Supported by the U.S. Atomic Energy Commission. Present 

address: Dept. of Physics, University of Saskatchewan. 
1 P. Jordan and E. P. Wigner, Z. Physik 47, 631 (1928). 
• T. l;l. R. Skyrme, Nucl. Phys. 31, 556 (1962). 
3 D. Finkelstein, J. Math. Phys. 7, 1218 (1966). 

It is well known that half-odd spin is related to a 
"quantum-mechanical double valuedness" under rota­
tion. Here we show that Fermi-Dirac statistics can be 
related to a "quantum-mechanical double valued ness" 
under a different process which we call field exchange. 

The most significant results are the following two: 

1. In the framework of the usual two quantizations, 
it is well known that the spin and statistics of quanta 
are independent per se and further considerations 
(analyticity, Lorentz invariance, etc.) are necessary to 
account for the observed correlation. In multivalued 
quantized field theories, continuity arguments suffice 
to show that among theories with integer-valued 
intrinsic spin, the cases that admit half-odd spin states 
at all are the same as the cases that admit odd sta­
tistics. The correlation found in nature appears to 
follow purely from continuity considerations. More-
over, since there are only two "kinds" of spin, integer 
and half-odd integer, it follows that in this framework 
there are only two kinds of statistics and "para­
statistics" is impossible. 

2. In muItivalued quantization, there is always a 
conserved additive integer attached to structures 
possessing half-odd spin. This coupling between the 
values of rotational and nonrotational quantum 
numbers corresponds well with the empirical fact that 
there exists a conserved "particle number" (strictly 
conserved, additive, scalar quantum number) that is 
nonzero for every fermion, e.g., NB + Ne + Nil' 
where NJl is the baryon number, Ne the electron 
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number, and Nil the muon number (Nil + Np. is a 
"lepton number"). In brief, there are no truly neutral 
fermions. No boson and fermion can have exactly the 
same set of values for their conserved "particle 
numbers." 

We may summarize our methods as follows: 
Nonlinearity is crucial for our development. Loosely 

speaking, when a field is nonlinear enou~h, there are 
shapes it can assume which cannot be wIped out by 
any continuous ~rocess w.hatever: We "h~ve ,~alled 
these classically mdestructIble objects kmks and 
proven their possibility and conservation in quantum 
theory as well, by primitive considerations of con­
tinuity which ultimately reduce to homotopy calcula­
tions recourse to detailed dynamical calculations 
bein~ unnecessary.2.3 Equally primitive is the disti~c­
tion between multivalued quantized systems WhICh 
can possess state functions double-valued under 27T 
rotation, and those which cannot: briefly, theories 
with half-odd spin vs integer spin theories. For 
example, the rigid rotator with 3 degrees of freedo~ is 
a theory with half-odd spin, but the dipole rotator wIth 
2 degrees offreedom is not. This distinction also re~uces 
to a homotopy calculation. Again, suitably nonhne~r 
field theories are found to belong to the half-odd-spm 
type.3 Indeed, that part of the total angular .momentum 
of a field which is generally called the orbItal angular 
momentum is itself found to possess half-odd-integer 
eigenvalues, an attribute usually supposed to be 
reserved for the other part of the angular momen­
tum, the intrinsic. It is for this reason that we 
have refined the usual terminology, slightly reserving 
the words half-odd spin merely for the phenomenon 
of a sign change under 27T rotation, and calling the two 
parts of the total angular momentum J of a field 
intrinsic and extrinsic: J = Ji + Je. 

lt is possible to study the exchange of two field 
structures by the same methods that were used to 
study the 27T rotation of one structure. We ask whether 
a field theory admits states which are odd under 
exchange just as under 27T rotation, setting up an 
odd/even classification of field theories that parallels 
the previous halJ-odd-spin/integer-spin classification. 
We show that the existence of kinks is necessary (but 
not sufficient) for a multivalued quantized field with 
integer-valued intrinsic angular momentum to be of 
the half-odd-spin type or of the odd (Fermi-Dirac)­
statistics type. 

FIG. I. The first rubber-band lemma. This relates a rotation and an 
exchange. See text. 

1 2. 3 

*1h~ 
1 .2 3 

FIG. 2. The second rubber-band lemma. This relates two exchanges. 
See text. 

Sometimes we call our work "rubber-band physics." 
In the first place, the simplest model of a kink is a 27T 
twist in a rubber band. In the second place, the 
topological calculations leading to the spin-statistics 
result are not completely transparent, and a heurism 
that we found indispensable is the following rubber­
band lemma: 

If a rubber band is wrapped twice about a rod, it 
exhibits at least two deformities.' a self-crossing and a 
27T twist. 

We suggest the reader perform the experiment. If 
one uses a finger or two for the rod, with a little work 
he can get the self-crossing on the palm side, and the 
27T twist concentrated in one of the two parallel 
strands on the back side (see Fig. I). The crossing 
serves as a graph of an exchange process in which the 
contents of two regions of space are interchanged by a 
continuous deformation. (The angle around the rod 
is the deformation parameter.) The twist is a graph 
of a kind of 27T rotation of one of the two regions. 
The triviality of the rubber band convinced us that 
these two processes are homotopic, and a complete 
formalization and proof of this result makes up much 
of this paper. 

The general relation proven is not between the 
total J and exchange, but between 1" and exchange. 
Just in the case of integer p, this coincides with the 
observed spin-statistics relation. 

The nonexistence of parastatistics in multivalued 
quantized theories became clear from a second rubber­
band lemma: 

A rubber band can be wrapped three times around a 
rod with no twists and two crossings. 

As graphs of exchanges among three regions I, 2, 3 
(see Fig. 2), this demonstrates that the exchange 1-2 
and the exchange 2-3 are homotopic. Since para­
statistics is characterized by the existence of non­
equivalent exchanges, we inferred that parastatistics 
would be excluded. The rigorous proof given of this 
fact is not based on the second rubber-band lemma, 
however, for a simpler proof was found. But we found 
the second rubber-band lemma heuristically useful in 
another connection (see Fig. 11). 

The paper is organized as follows. In Sec. r, the 
theory of kinks is presented. Since this is not the first 
exposition, the presentation is compressed and formal 
In Sec. II, a similar presentation is given of the idea of 
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muItivalued quantization of field theories in general, 
and field theories with kinks in particular. In Sec. III, 
the spin concept is defined and the topological criterion 
for half-odd spin is formulated. Section IV deals with 
exchange, and the main feature is that there is a close 
step-for-step correspondence between the spin treat­
ment of Sec. III and the exchange treatment of Sec. IV. 
Then the connection between spin, exchange, and 
kinks is formulated and proven in Sec. V and in the 
Appendices, to which some useful but noxious lemmas 
are relegated. 

The results described here stilI permit us to entertain 
the hypothesis that the stable elementary particles are 
kinks in a nonlinear field, in the sense that their 
"particle numbers" are the numbers of kinks present 
in the quantum. According to this hypothesis, the 
linear or almost linear spinor fields usually employed 
to describe half-odd-spin quanta are not fundamental, 
but are useful "point-limit" approximations to 
operators creating or annihilating excitations in a 
nonlinear field of particular internal states. It is 
regrettable that the dynamical calculations required 
to try this hypothesis more severely are so difficult 
and so likely to diverge, but we are not abandoning the 
question yet. We suspect in particular that the present 
methods can be used to construct, from the underlying 
commutative-field creation, operators that anticom­
mute or commute appropriately, linking our exchange 
statistics to the usual field-theoretic concept of 
statistics. When quantum mechanics was discovered, 
the obstinate dualism of matter and field, particle and 
wave, at last dissolved into the unity of the quantum, 
only to be reincarnated subsequently in the distinction 
between Bose-Einstein and Fermi-Dirac quanta with 
their two different quantization recipes. The present 
work suggests that it is finally possible to unify these 
two into one nonlinear field, possessing two kinds of 
statistics,as a direct consequence of the topology of 
the rotation group in three dimensions. 

I. CLASSICAL FIELDS 

1. A classical field qy(x) on a flat (Minkowskian) 
space-time {x} is a continuous mapping of {x} into 
some topological space <1>. We shall assume <1> to be a 
connected4 manifold, so that the value cP can be 
locally represented by n real numbers cP~, and any 
two points CPo, CPl in <1> can be joined by a path in <1>, 
i.e., a continuous mappingj: 1-+ <1> of the unit interval 
into <1> with/CO) = CPo,J(l) = CPl' 

2. Let X = {x} = {x II = const} be ordinary 3-
dimensional space and let <1>x be the set of all contin-

4 By "connected" we shall mean what is usually known as 
"arcwise connected" or "path connected"; except for this, we 
follow the standard terminology of topology. 

uous mappings cP: X - ID, and IDx (CPo) the subset of 
IDx with cp(x) - CPo as Ixl - 00, CPo an arbitrary fixed 
point of <1>. The field cp(x)/t=const == cp(x, 1)/ 
is supposed to belong to IDx (CPo) at any time its 
continuous evolution being determined by classical 
field equations and appropriate initial conditions. 

3. We suppose that cp(x, I) has a single-valued law 
of transformation under the Poincare group. This 
characteristic will be retained when we quantize the 
field, making our approach basically different from 
the usual ones, in which spin-t particles are represented 
by double-valued fields. 

4. Two fields CPl (x), CP2(X) in IDx (CPo) are said to be 
homotopic to each other, CPl(X) "'" CP2(X), if there is a 
continuous mapping cp(x, u): X (8) I -ID such that 
A(X, u) is in IDX(cpo) for any given u in I, and 

cp(x,O) = CPl(X), 

cp(x, 1) = CP2(X); 

cp(x, u) is called a homotopy between CPl(X) and cplx); 
",,-," is an equivalence relation, and its equivalence 
classes are called the homotopy classes of IDx (CPo). 

5. Let us denote <1>x (CPo) by Q, and a general 
element cp(x) in Q by q. We shall make of Q a topo­
logical space by introducing in it the compact-open 
topology (Ref. 5, p. 73), which coincides with the 
metric topology on Q, d(q, q') = max d[cp(x) -

XEX 

cp'(x)] , when X is compact and ID metric (Ref. 5, 
p. 102). Q mayor may not be connected, and its 
connected components Qn are just the homotopy 
classes defined in Sec. I, part 4; a homotopy is a path 
q(u) within some Qn' and so is, by Sec. I, part 4, a 
time evolution cp(x) = cp(x, I), showing that dynam­
ical variables that depend only on the homotopy class 
of cp(x) are constants of motion. If there is more than 
one component Q" we say that the field admits kinks. 

6. Kinks form a group, in the following sense. The 
components Qn are the elements of the group. We 
shall denote by 7T3 (1D, CPo) the set of all the Qn. 
Starting from any CPl(X) in Ql and CP2(X) in Q2 we may 
construct, through homotopies if necessary, repre­
sentatives cP~ (x) in Ql and qy~(x) in Q2 such that 

we define 

cp{(x) = CPo, X3 ~ 0, 

cp~(x) = CPo, X3 ~ 0; 

Q3 = Ql + Q2 

as the homotopy class of 

cpaCx) = cp~(x), Xa S 0 

= cp~(x), Xa ~ O. 

(1) 

(2) 

5 S. T. Hu, Homotopy Theory (Academic Press Inc., New York, 
1959). 
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Under the operation (I) 173($, tpo) is an Abelian group 
(Ref. 5, p. 109), the third homotopy of the pair 
($, tp EO $). It can be shown (Ref. 5, p. 126) that for 
any tpo, tp~ in <1> (connected), 173(<1>, tpo) R::! 173(<1>, tp~). 
Accordingly, when concerned with only the group 
structure of 173(<1>, tpo), we shall denote this group by 
173(<1». tpo(x) = tpo, for all x belongs to the iderttity of 
173(<1>, tpo), and if tp(x) is in Qn' then tp( -x) is in 
Q~l (or -Qn' in the additive notation). 

7. Since 173(<1» is Abelian, if it is finitely generated 
(Ref. 5, X, Corollary 8.3) its elements can be labeled 
by a set of numbers 

(nl' ... , nk , nk+l' ... , nz) == n, (3) 

such that nl ,"', nk range over the integers and 
nk +1 , ••• , nl range over the integers modulo 

ri (i = k + 1, ... , I), 

r i being a factor of rHl' The 1 components of n are 
conserved (Sec. 1.5) and additive, in the following 
sense: if a field tpl(X) in Qn(1) is juxtaposed to tp2(X) 
in Qn(2) [see (2)], the resulting field tp3(X) belongs to 
the class Qn(3) , with 

n(3) = (nil) + ni2),"', n:l) + n:2) == n(l) + n(2); (4) 

the ni (i = 1, ... , I) can then be considered as particle 
numbers or "charges." The possibility of having 
"modulo" conservations (the n/s for i > k) has 
arisen also in different context,6 but is not supported 
by experimental evidence so far. From now on we 
shall discuss only <1>'s for which 1 = k in (3), but in 
general our results are valid. We shall say that tp(x) 
is one "kink of type i" if tp(x) is in Q-v

i
, where 

Ni = (0,0, ... , 1, ... ,0), (5) 

1 being in the ith place; then tp( -x) is in Q_y and 
will be called an antikink of type i. Any field ~(x) in 
Qn with n given by (3) can be considered as composed 
of a certain number of kinks or antikinks of the 
various types N i • 

8. In the literature the nth homotopy group of <1> 
is variously defined as the set of homotopy classes of 
mappings (sn, Po) --)0 (<1>, tpo) of an n sphere sn into <1>, 
with Po(€S") --)0 CPo, of mappings (I", 01") --)0 (<1>, tpo) 
of an n cube JU into <1>, with its boundary oIn going into 
tpo, etc. All those definitions are equivalent among 
themselves (this is proven by showing that after 
proper identifications the domains of the mappings 
are homeomorphic) and to ours for n = 3: we can, 
for instance, deform X into a 3-ball: x --)0 x/I + lxi, 
which is homeomorphic to a 3-sphere upon identifica­
tion of its boundary Ixl = 1 into one point Po. Notice 
that this is allowed by the boundary conditions 
introduced in Sec. 1.2. 

• See, for instance, M. Gell-Man, Phys. Letters 8, 214 (1964). 

TABLE I. Homotopy groups for the underlying manifolds of clas-
sical Lie groups. 

SO. S04 S05 S06 SOn?" SU2 SUn?,a Spn?,! 

7T, Z. Z2 Z2 Z2 Z2 0 0 0 

7T2 0 0 0 0 0 0 0 0 

7Ta Z Z+Z Z Z Z Z Z Z 

7T4 Z2 Z2 + Z2 Z2 0 0 Z2 0 Z2 

7T5 Z2 Z2 + Z2 Z2 Z 0 Z2 Z Z2 

9. Any Abelian group 173 that may be dictated by 
phenomenological considerations can be realized as 
the third homotopy group of some space <1>. Moreover, 
it can be shown (Ref. 5, p. 169) that given a sequence 
of groups 

such that all except possibly the first are Abelian and 
171 is a group of automorphisms of all the others, there 
exists a connected space <1> such that 

17 n($) R::! 17n for all n. 

In particular, there are C = 2ND nonhomeomorphic 
spaces with the same 173! 

10. Some homotopy groups of spheres are tabulated 
in Ref. 3, Table I , and many more are given by 
Toda.7 Table I shows the first five homotopy groups 
for the underlying manifolds of classical Lie groups; it 
has been compiled from several sources. 7 

The relation 17n (<1> ® \}!') = 17n (<1» ffi 17n (\}!') is a 
useful tool for the construction of ad hoc spaces 
(Sec. 1.9). 

II. QUANTIZATION 

1. When a classical field theory is quantized, the 
statement "the measurement of the field at time t 
will give the values tp(x, t)" is replaced by "the 
probability amplitude for getting the result tp(x) 
when measuring the field at time t is \}!'[tp(x)](t)," 
\}!' being a complex-valued time-dependent functional 
of tp(x), continuous in t and tp. Notice that in this 
picture (Schrodinger) and representation [diagonal in 
tp(x)], the argument of the functional is a c-number 
field, an element of the function-set <1>x of Sec. 1.2. 

2. We shall assume that, at any time, 

\}!'[tp(x)](t) = 0 if tp(x) ¢=<1>x(tpo) == Q, (6) 

so we can use Q = <1> x (tpo) instead of <1>x as our 
configuration space; this implies restrictions on the 
dynamics of the system, but we shall not elaborate 

, H. Toda, Composition Methods ill Homotopy Groups of Spheres 
(Princeton University Press, Princeton, N.J., 1962); A. Borel, in 
Seminain~ H.. Cartan (2) (Ecole Normale Superieure, Paris, 1956). 
L.. PontrJagm, Topological Groups (Princeton University Press, 
Prmceton, N.J., 1946); V. G. Boltyanskii, Trans!. Am. Math. Soc. 7 
135 (1957). ' 
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this point in the present work. Since for rp in Q we can 
write 'Y[rp](t) = 'Y(q, t), a continuous complex-valued 
function on Q @ R (R = real number space spanned 
by t), another way of putting (6) is 

JQ1'Y(q, t)12 dq = 1, (7) 

provided that the concept of integral on Q can be 
defined; even if not, we shall use expressions of the 
type in (7) as symbols for expressions of the type in 
(6). We call 'Y the state function(ai). ' 

3. If we accept the Feynman scheme for quantiza­
tion, which uses integrals over continuous histories 
rp(x, t) (in our case paths in Q), it can be shown 
(Ref. 3, Sec. 111.2) that 

r 1'Y(q, 0)1 2 dq = 1 implies f 1'Y(q, tW dq = 1; 
JOn Qn 

(8) 

then, if the "charges" defined in (Sec. 1.7) are inter­
preted as nonlocal observables in the quantum 
theory, (8) telIs us that they are conserved in time. 
In the folIowing, whenever we talk about a homotopic 
conservation law it shall be understood in the quantum 
sense given by (8). In short, (6) and (8) allow us to 
extend the results of Sec. I to a quantum theory of 
rp in which rp(x) can stilI be treated as having a c­
number field of eigenvalues. We assume for simplicity 
that the particle numbers ni obey a superseiection 
rule,s i.e., that the support of any realizable physical 
state 'Y(q) is one of the Qn. 

4. In what follows we shalI be concerned with two 
kinds of discrete operations that leave physical 
systems unchanged but may multiply the state vectors 
by -1: a 27T rotation and the exchange of two 
identical subsystems. The 27T rotation can be realized 
continuously by a succession of infinitesimal trans­
formations in an obvious way, and we shall give in 
Sec. IVan analogous realization for an operation 
related to the exchange. 

Let q - Fsq represent a flow in Q, i.e., a one-param­
eter family of 1-1 mappings Fs satisfying the 
conditions 

(9) 

so that Fsq (0 :::;; s :::;; 1) is a path at q. Any such flow in 
Q induces a continuous one-parameter family of 
linear transformations of the state function 'Y(q): 

'Y(q) - 'Y(q, s) = 'Y(F;-lq) = 'Y(q.), 0:::;; s :::;; 1. 

(10) 
If 

(11) 

8 G. C. Wick, Phys. Rev. 88, 101 (1952). 

the flow is called closed. Its paths are then closed 
paths or loops. (11) is the mathematical expression 
of the "leaving the system unchanged" used above. 
Since' until now we have considered 'Y to be single­
valued, (9) and (II) imply 

'Y(Foq) = 'Y(F1q). (12) 

Now we wish to consider that the state function 'Y(q) 
might be multiple-valued; this point is elaborated 
upon in Sec. 11.5, and (12) no longer holds. 

5. Our first problem is to find whether the domain 
Qn of the state function 'Y(q) admits multiple-valued 
continuous functions. Intuitively speaking, these have 
more than one value at each q in Qn (the value set 
changing continuously with q), such that any two 
values 'Yo and 'Y1 at q can be connected by a contin­
uous succession of values 'Y[q(s)] by traveling some 
closed path q(s)[q(O) = q(l) = q]. It is evident that 
no simply connected Qn admits such functions. 9 

Moreover, since the value of a multivalued function 
depends on the point q and the way q is reached from 
some standard point, such a function on Qn can be 
defined as a (single-valued) function on CQn, the 
universal covering space of Q. 

We define CQn as folIows: 

We choose a base point qno in Qn and consider the 
paths q(s) in Qn (0 :::;; s :::;; 1) such that q(O) = qno; 
two paths q(s) and q'(s) are equivalent if q(l) = 
q'(1) = q (say) and there exists a homotopy relative 
to {O, I} between q(s) and q'(s), i.e., a continuous 
mapping q(s, u): ]2_ Qn (0:::;; 5:::;; 1, 0:::;; u:::;; 1) 
such that 

q(s,O) = q(s) , q(s, I) = q'(s), 

q(O, u) = qno' q(I, u) = q. 

The equivalence classes of paths q(s) are the points 
of CQn' if we introduce the following topology: 
given q(s) and an arcwise-connected open set U 
that contains q(I), the union over U of the equivalence 
classes of the q' (5) such that 

q'(s) = q(2s) (0:::;; 5 :::;; i), 
q'(s) c U (1:::;; 5 :::;; 1), 

is a set belonging to CQn; the collection of all such 
sets is taken to be a basis for the topology of CQn' 

We now define a multivalued function on a space Q 
to be a single-valued function on the covering space 
CQ. In what follows, such functions will further be 
required to be continuous unless otherwise mentioned. 

9 We remark that we are talking about state functions, i.e., 
complex-valued functions on Q. The statement is of course not 
true for the spinor wave function of ordinary quantum mechanics; 
indeed, its domain is simply connected, but its components do not 
satisfy the transformation law (10) when subject to rotations. 
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Qn admits multivalued functions if and only if CQn 
is not homeomorphic to Q n' which is equivalent to 
7Tl(Qn) :;6 0. 

6. For any connected space Y, we shall write 
y, y', ... for d£fferent points of CYassociated with the 
end points y E Y and yes) for a representative path of 
the class y. We also say that y, y', ... "cover" y, and 
denote by Cy the set of all the covering points of y; 
it is easy to see that the number of elements of Cy is 
constant over Y. In the following a multi valued 
function '¥ on Qn shall be written as a function on 
CQn: 

'¥ = '¥(q). (13) 

7. A group that acts on Q cannot in general be 
defined to act on CQ continuously. For example, the 
action of the rotation group on spinors is not uniquely 
definable. However, the action of a flow on Q 
uniquely defines its action on CQ. If Fsq is a flow on 
Q, then Fsq can be defined in a natural way for each 
s = So as the equivalence class of a path that consists 
of a path representing ij followed by the path Fsq, ° S s S so· Accordingly a flow on Q acts also on Q, 
and therefore on state-functions '¥(q) in such a way 
that the value of,¥ is invariant: 

in Sec. IV. These are in principle two independent 
problems, and it is one of the main purposes of this 
paper to prove that their solutions are interdependent, 
and that, in a sense specified in Sec. V, an affirmative 
(negative) answer for anyone of them implies an 
affirmative (negative) answer to the other. In this 
sense, the "spin" of a system determines its "statistics" 
and vice versa. As we shall see (Sec. V), our proofs 
require only continuity of the fields rp(x) and of the 
state functionals (13) with q = [rp(x)]. 

III. SPIN 

1. The angular momentum of a field theory is 
defined as the generator of infinitesimal rotations 

ox = 00 x x, 
where 00 gives the axis and angle of rotation. The 
change in the field resulting from this rotation may be 
written as 

orp = - . ox + - . 0 == b 0 + 0 0, orp orp I 0 e i 

ox 00 e~o 

where the first term gives the "extrinsic" change due 
to the spatial variation of the rp field, and the second 
term is due to the "intrinsic" law of transformation 

0: rp ---+ rp' = rp' (rp, 0) 

or 
(14) of the rp field under a rotation parametrized by a 

vector O. The corresponding decomposition of the 
generator of this rotation is written 

where qs = Fsq· 

8. Computation of 7Tl(Qn)' For Qo, the component 
of Q = <l>x (To) that contains the field To(x) == rpo, 
we have (Ref: 3, Sec. V.2) 

7Tl(QO) ~ 7T4(<l», (15) 

which formally solves the problem for Qo, or at least 
reduces it to a standard one. Once 7T4(<l» is known, the 
problem is completely solved because it can be shownlO 

that for any two connected components 

Qj' Qk of Q = <l>X(To), 7T1(Qj) ~ 7T1(Qk)' 
so 

(16) 

Our main interest in this result is that if 7T4(<l» -=;tf:. 0, 
all Qn admit multivalued functions; otherwise, none 
does. 

9. Assuming that (13) is properly multivalued, 

'¥(ij) -=;tf:. '¥(q'), (17) 

in order to have a theory of the type described in 
Sec. 11.4 we still have to show that the multivaluedness 
of '¥ (q) is realized by two special flows q s , namely, the 
27T rotation of a field rp(x) (Sec. III) and the "exchange" 
of two fields identical to rp(x), a concept to be defined 

10 G. W. Whitehead, Ann. Math. 47, 460, statement 2.6 (1946). 
We are indebted to Professor S. T. Hu for this reference. 

J = Je + Ji. 

The field theory exhibits half-odd-integer angular 
momentum if and only if the operator of a 27T rotation, 

W = e21TiJz, 
possesses eigenvalues -1 as well as + 1. 

For brevity, half-odd-integer angular momentum 
will be referred to as half-odd spin. If a component 
Qn of Q supports an eigenfunction '¥ of W = -1, 
we say Qn (and the theory) admits half-odd spin. 

2. In familiar field theories, J" has integer eigen­
values and does not contribute to W, 

we = exp (27TiJ~) = 1. 

Therefore half-odd angular momentum is usually 
attributed entirely to the transformation law of the 
field 

w ~ exp (27TiJ;). 

In quantum-field theory, the generators J may be 
defined in terms of the transformation of the state 
functional of the field, rather than the field itself. If 
multivalued state functionals are admitted, then we 
have shown there exist quantum-field theories for 
which Je contributes to W: While the field itself does 
not change sign under a 27T rotation, the quantum 
state of the field does. Heuristically, such a spin can 
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be thought to come from the actual rotation of very 
asymmetric field structures having some of the 
properties of a quasirigid rotator. In this kind of 
theory the familiar decomposition of the angular 
momentum of the electron, 

J = L + S, 
is a feature of a phenomenological model and does 
not correspond to the decomposition 

J = Je + Ji; 

S itself may result from "orbital" angular momentum 
Je of the kink representing the electron. 

3. We now specify the flow q -+ (we)sq of (10) for a 
continuous 217 extrinsic rotation of a field 91(x). 
Let we(s) be an extrinsic rotation through an angle 
27TS around some axis through x = 0, acting in the 
usual way on the argument x and leaving invariant 
the value 91, 

We(s)91 = 91 (for all s and any axis). (18) 

We then define the flow in Q, 

q -+ (We)sq == we(s). [tp(x)] == tpw(x, s) 

= 91[(we)-l(s) • x] (0:::;; s :::;; 1), (19) 

and (1) becomes, for rotations, 

'¥(q) -+ we(s) . '¥(q) == ,¥[(we)-l(s)' q] 

= '¥[(We)l_sq]. (20) 

The effect of a 217 rotation on a single-valued 
function '¥(q) is defined by Sec. 11.7. 

4. Since the We(s) (for all s and any axis) constitute 
the elements of SOa, the rotation group in 3 dimen­
sions, we can be represented as a loop in the SOa 
manifold. SOa has a well-known graphical representa­
tion as a 3-dimensional ball of radius 17 with opposite 
points of the surface identified. A maximum cross 
section of this construction, including a representative 
path We(s) of we, is shown in Fig. 3. 

Any deformation of a path described by the we(s) 
induces a deformation in the corresponding path 
described by the q's in Q, via (19); in particular, if a 
loop in SOa is homotopic relative to its end pointll 

to the trivial loop, so is its induced loop q(s) (but the 
reciprocal is not always true). A well-known example 
of such a loop is (we)2, a 417 rotation, i.e., 

(we)2 = 1. (21) 

The fact that we are dealing with a 3-dimensional 
theory is crucial for this. The result does not hold for 
the rotations in 2 dimensions, a I-dimensional sub­
group of SOa with the topology of Sl. 

11 By "relative to its end point" we mean that the two loops can 
be connected by a continuous family of loops with a common end 
point. Unless otherwise stated, whenever two loops (on X, Q, etc.) 
are said to be homotopic, it will mean homotopic relative to their 
end point. 

FIG. 3. Path ofa 21T rotation 
in SO(3, R). This path is not 
homotopic to the identity. 

b 

5. Notice that W = ± 1 holds only for W as 
operator on state functions, whereas for the fields 
(or rather for their coverings), Eq. (21) only means 
that 

Wq = I]' <=> WI]' = q. (22) 

For Qn to admit half-odd spin there must be a 
neighborhood in CQ whose points q obey 

W·q;.t:q; (23) 

this is a consequence of the following. 

6. Lemma: Eq. (23) holds or fails to hold, simulta­
neously for all ij E CQn' 

The proof of this lemma is given in Appendix A. 
The lemma implies that in order to see whether a given 
Qn admits half-odd spin, it is enough to check if (23) 
holds for anyone q E CQn. 

7. In what follows we give a few results helpful in 
finding whether or not a given Qn admits half-odd 
extrinsic spin 1". 

A necessary condition for Qn to admit half-odd 1" 
is that 7T1(Qn) contain at least one element of order 2. 
This is an immediate consequence of (21) and (23). 

A necessary condition for Qn to admit half-odd 1" 
is that no 91(x) in Qn be axisymmetric, since for such a 
field, W· ij = ij. In particular, Qo does not admit 
half-odd 1", because 91(x) = 910 is axisymmetric. 

In other words, kinks [7Ta(<I»;.t: 0] are necessary 
for half-odd extrinsic spin (Ref. 3, Sec. V.13). More 
strongly: kinks must be present in a state with half-odd 
extrinsic spin. 

IV. FIELD EXCHANGE 

1. In order to define an exchange operation on a 
field 91 (x) , we have to identify the objects to be 
exchanged. Since we have neither a procedure for 
locating particles in a general field tp(x) in Q nor the 
creation operators of the usual quantum-field theories, 
we shall at first restrict ourselves to "union" fields 
defined as follows. By the support sup tp of a field 
91(x), we mean the set of points x at which 91(x) ;.t: 910' 
91l(X) and 912(X) are fields of disjoint supports sup 911, 
sup 912' then their "union," 

(24) 
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a (D/=v-l!l ~.'.I.g.('J -, ------
- () I Y -e I , I I 

;a. ... ," , .. ---t----
FIG. 4. Path in X of the exchange carried out on two kinks at 

a 1 and a2 • 

is defined by 

<p(x) = <PI (x), X E sup <PI' 

= tp2(X) , x E sup tp2, (25) 
otherwise, 

= tpo· 
Now let tpn(x) be a kink of type n with sup tpn C 

{ixi < E}. We take 

tp(x) = tpn(x - a1) U tpn(x - a2), (26) 
with 

la1 - a21 ;;:: 2E. (27) 

The a i are finite, and (25) and (27) guarantee that (26) 
is well defined, i.e., that the supports of the kinks 
(of type n) tpn(x - a i ) do not overlap. 

We can now specify the q(s) of Sec. 11.4 for an 
exchange of the structures at a1 and a2 • Let 0 be unit 
vector perpendicular to a1 - a2, and (see Fig. 4) 

ai(s) = Hal + a2) - (_I)i exps1To x Hal - a2); 

(28) 

here 0 x is the linear operator on vectors v defined by 
(0 x)v = 0 x v. Then 

qn(s) = <Pn[x - a1 (s)] U tpn(x - a2(s», 0 ~ s ~ 1 

(29) 

has the desired property of being a loop starting and 
ending at tp(X) , with the structure originally at a1 
now at a2 , and vice versa (Fig. 4). 

2. We now define a closed flow (cf. Sec. 1I.4) Xm 
in the function space Q. Physically speaking, xm 
makes a clearing at infinity, creates there two kink­
anti kink pairs of type m, exchanges the two kinks, 
annihilates the kinks with their antikinks, and 
restores the clearing to its original form. 

Symbolically, we compose xm out of the following 
five flows Yi , in the order 

xm = Y5Y4Y3Y2Y1, (30) 

where Y1 is a shrinkage of the field to a support of 
radius E, Y z is a creation of two kink-antikink pairs 
outside the support, Y3 is the exchange of the two 

created kinks (see Fig. 5), Y4 is the annihilation of the 
two pairs, the inverse of Yz , and Y5 is an expansion 
of the field, the inverse of Y1 • Let 

tp_n(x) = tpn( -x, y, z), b = (b, 0, 0), 

E = (E, 0, 0), b > O. 

band E are vectors along the x axis of length band E, 

and let 0 now be a unit vector along the z axis. Let 
r = lxi, then the Yi are defined as follows: 

= tpo, 

r ~ ~E 
S 

r;;:: ~E 
8 

y;;::b 

= tp-m[ X - (b - 8: = :: E)} 
E<y~b 

= <P-m[X - (-b + ~E)l, 
82 - Sl 'J 

-b ~ y < -E 

= tpm[X - (-b - ~.!..E)l, 
82 - Sl J 

y ~-b 

= ({,(x, 81), -E ~ y ~ E 

Y3 : <p(X, S) 

[ ( 
S - S2 ) = <Pm X - exp 21T -- 0 X 

S3 - S2 

x (b + E)] 

U <Pm[X + exp (21T S -=- S2 0 x) 
S3 S2 

Y5Y4:<P(X, S) = <p(X' S2 1 - S)} S3 ~ S ~ 1. 
1 - S3 

Notice that <p(x, s) is continuous at s = S3 because 
tp(x, S2) = <p(x, S3); also, during Y3({'(x, s) is precisely 
the loop qm(s) of Eq. (29) performed upon the two 
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y 

FIG. 5. Exchange operator. The field rp(x) is shrunk into a finite 
sphere to leave "working space." Two kink-antikink pairs of the 
same kind are created in the working space. The two kinks are 
exchanged. The new pairs are allowed to annihilate, and the field 
rp(x) expands to refill the now empty working space. 

kinks f{Jm created in the step Y2' with a2 = b + € = 
-a1 • 

3. If the state f{J(x) already contains kinks of type m, 
as say a union field (Sec. IV. 1), the exchange of two 
of these kinks is homotopic to xmf{J(x). This is proven 
in Sec. V.3. 

4. A double exchange of two m kinks, i.e., (xm)2, 
is trivial: 

(31) 

Proof: Any deformation of a trajectory described 
by the a's induces a deformation (homotopy) in the 
corresponding path described by q via (29); in partic­
ular, if a set of trajectories of the a's is homotopic 
relative to its end points to the trivial trajectory 
[a;(s) = a i for all s], so is its induced loop q(s). 

In Fig. 6(a) we show, slightly displaced in order to 
distinguish them from one another, the trajectories 
a1(s) corresponding to the loop qm(s) given by (28) 
and (29) with s replaced by 2s in the exponent, i.e., a 
representative loop of (xm)2. 

Figure 6(b) is an intermediate stage of a deformation 
of the trajectories of Fig. 6(a) into the trivial trajec­
tories of Fig. 6(c). If at every stage of the deformation 
a1(s) and a2(s) move on their respective circum­
ferences with uniform speed, the distance between them 
is always la1 - a21. Since the supports of f{Jl[X - a1(s)] 
and f{J2[X - a2(s)] do not overlap initially, they do not 
overlap during the process. Figure 6 constitutes a proof 
of (31). In symbols, let 

net) = [(1 - t)n + t(a1 - a2)]/I [ ]1 (32) 

(the denominator is the magnitude of the numerator). 
Then 
a;(s, t) = Hal + a2) - (-1); 

X exp [27Tsn(t)x] Hal - a2) (33) 
satisfies 

ai(s,O) = a;(2s), a;(s, 1) = a i . Q.E.D. (34) 

Again, our proof of (31) is valid only in 3-dimen­
sional theories! In Appendix B we show that,in general, 
(xm)2 ¥= 1 in two dimensions. This, together with the 

other similarities between X and W, suggests the 
possibility of a relationship between Wand X; the 
existence and nature of such a relation is the subject 
matter of Sec. V. 

5. It is simple to prove that the homotopic triviality 
of the flow xmf{J(x) depends only on m and not on 
ip(x). 

6. When 
(35) 

is obtained for xm acting as defined in Secs. II.7 and 
IV.2, we say that the theory, and in particular Qm 
(the component of Q that contains the kink being 
exchanged), admit negative field exchange, or "odd 
statistics" for short. The reason for the term "negative" 
or "odd" is that (31) and (35) imply that Q admits 
state functions 'Y(q) with the property 

Xm'Y(q) = -'Y(q). (36) 

Notice that xm = ± 1 holds only as an eigenvalue 
equation for X'" as an operator on state functions, 
whereas for fields (or rather for their coverings), 
Eq. (31) means only that 

xmq = q' ¢> xmq' = q. (37) 
7. As in Sec. III, we can test whether Qm admits 

odd statistics by checking if 

xmq ¥= q (38) 

is obtained for anyone q E Q, as shown by the 
following. 

Lemma: Equation (38) holds or does not hold 

simultaneously for all q E Q. 
Proof' Exact analog of the proof of Lemma 3. 

In other words, this lemma says the parity of a 
structure under field exchange depends only on the 
component of Qm to which it belongs, and not on the 
surrounding structures. 

8. A single kink of type m will admit both odd and 
even exchange states if it admits odd exchange states. 

The conserved baryon and lepton numbers do not 
behave this way: for example, a single baryon can be a 
fermion but not a boson, in that there is a fermion 
but no boson with 

(39) 

Why? Or does the kink model lead us to e{l:pect an 

(a) (b) (c) 

FIG. 6. (a) Path in X of an iterated exchange and (b) its deformation 
to (c) the identity. 
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excited state of the nucleon with the quantum numbers 
(39) but with integer spin and Bose statistics? 

Our answer consists in two topological laws that 
combine to prevent kinks from ever exhibiting 
both of the statistics they may admit in principle: the 
invariance of statistics with respect to (a) the partition 
of the system into subsystems and (b) the passage of 
time. 

In a universe of kinks of type m, the measurement 
of the exchange operator for any pair may give the 
value + 1 or -1 in principle. However, if the result 
is -1, then an immediate measurement of the exchange 
operator for any other pair of kinks of type m will 
give the same result -1 by (a), and any subsequent 
measurement of this exchange will continue to give the 
result -1 by (b). Thus the statistics will appear to be a 
universal and permanent attribute of the type of 
kink. Let us now state more carefully and prove the 
topological laws mentioned here: 

(a) Consider an eigenstate 'Y such that rpop is a 
union field, 

rpop'Y = u rp~(x)'Y, 

with rpl, ... , rpN kinks of the same type m. Then the 
N(N - 1)/2 exchanges rpi <=> rpj' as continuous proces­
ses, are all homotopic to each other, and to the 
effect of the exchange operator xm (defined in Sec. 
IV.2). This is a consequence of Sec. IV.3. 

(b) The exchange operator xm is a constant of the 
motion. Indeed, the state functional 'Y[rp](t) is 
continuous in (ip, t) (Sec. 11.1), so when rp undergoes a 
continuous closed deformation rp -+ rp(s) (in our case 
an exchange of two type m kinks) we get a function 
'Y[rp(s)](t) of sand t, continuous in (s, t), with the 
restriction [for rp -+ xm(s)rp] that 

'Y[rp(O)](t) = ±'Y[rp(l)](t), all t. (40) 

But 'Y[rp(l)](t) is continuous in t, ergo the sign is + 
for all t or - for all t. 

9. Parastatistics. As our terminology suggests, we 
intend to interpret the operator xm as the "performer" 
of the exchange of certain real particles. Accepting 
provisionally this meaning of X m , the relation 

(xm)2 = 1 (31) 

implies that parastatistics are forbidden within the 
present theory. 

Ordinary quantum field theory does not exclude the 
possibility of parastatistics, and some recent work has 
been done on the subject. However, paraparticles 
seem to be absent from nature,12 and it is suggestive 
that they do not even arise as a possibility in theories 
of the kind defined here. 

12 H. s. Green, Phys. Rev. 90, 270 (1953); A. M. L. Messiah and 
O. W. Greenberg, Phys. Rev. 136, B248 (1964). 

V. CONNECTIONS BETWEEN 
"SPIN," "STATISTICS," AND 

NUMBER OF KINKS 

1. Theorem: Qm admits half-odd extrinsic spin if 
and only if it admits odd statistics. 

The proof involves some rather specialized topolog­
ical calculations and comprises Sec. V.2 and Appendix 
C. The reader willing to accept the theorem can pass 
on to Sec. V.3. 

2. Proof (a) Let 0 • rp(x) stand for the trivial loop 
in Q starting and ending at rp(x); our theorem then 
reads [see (19) and Sec. IV.2] 

xm(s)· [rp(x)] == rpx(x, s) (say) '"'-' o· ijJ(x), (41) 

if and only if 

We(s)· [rpl(X)] == rplW(X, s) (say) '"'-' O· rpl(X), 

rpl(X) E Qm. (42) 

(b) We may express (42) more explicitly. Let X 
stand for the Euclidean space spanned by x, and I 
for the unit interval. Then (42) means that there 
exists a continuous function rp(x, s, t) defined on 
X @ I @ I, such that 

rp(= ,s, t) = rpo, 

rp(x, s, 0) = rpx(x, s), 

rp(x, s, 1) = O· rp(x), 

ijJ(x, 0, t) = rp(x, I, t) = rp(x). 

(43) 

We can assume without loss of generality that the 
two structures exchanged by xm(s) are identical to 
rpl(X) and, for any s, lie completely within the 3-
dimensional unit cube or 3-cube 

13 = {x,y, z I 0 =:;;; x,Y, z =:;;; I}, (44) 

and that rp(x) contains no other structures, since by 
Secs. IV.3 and IV.S they are irrelevant for the 
statistics criterion; then (41) is equivalent to the 
existence of a function rp(x, s, t) on 13 @ I @ 1=15, 

such that (00 stands for the boundary of the region 
0): 

rp(013, s, t) = rpo, 

rp(x, s, 0) = rpx(x, s), 

rp(x, s, 1) = O· rp(x), 

rp(x, 0, t) = rp(x, 1, t) = rp(x). 

(45) 

Notice that (4S) completely specifies a continuous 
function on the boundary 015 of 15 = 13 @ I @ I, 
the unit 5-cube spanned by x, s, t; we shall denote that 
function by rpo[oI5]. 

(c) We can also apply the above considerations to 
the rotation loop (42), and state that (42) means that 
there exists a function rpl(X, s, t) on 15 with boundary 
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, I 

to: I / 

,(-"---..'_..;<1 _______ b~ __ 
I / /1 

FIG. 7. Boundary of the 
4-cube, or tesseract, 0 < 
(x, y, s, t) S I, where x,y 
are space coordinates, s is a 
loop parameter associated 
with the path of an ex­
change or a 217 rota tion, and 
t is a deformation parameter 
associated with the homo­
topy of one loop into an­
other. 

I // C //: 

---;4-..:------ // I 

/ I x Y 
/ I 

/ I 

values 
PI(OJ3, s, t) = Po, 

PI(X, s, 0) = PIW(X, s), 

PI(X, s, I) = O· PI(X), 

PI(X, 0, t) = PI(X, I, t) = PI(X). 

(46) 

We shall denote the function on 0[5 defined by (46) 
as PI [0[5]. 

The existence of a continuous function p(x, s, t) == 
P defined on [5 and with prescribed boundary values 
p[0[5], is by no means trivial, and is in fact an example 
of a "fundamental problem in topology, the extension 
problem" (Ref. 5, Sec. 1.1). P is called an extension of 
p[0[5] over [5 and (Ref. 5, Sec. 1.4) there are spaces <l> 
such that not every p[0[5] admits an extension over [5. 

(d) The following result is the basis for our proof13
: 

The homotopy-extension theorem: Let K be a finite 
simplicial complex, and L a closed subcomplex. Let 
fo: K --+ Y and gu: L --+ Y be such that go = foiL. 
Then fo admits a homotopy fu: K --+ Y such that 
fulL = gu (0 ~ u ~ 1). 

Since [5 is a finite simplicial complex and O[ 5 a 
closed ~ubcomplex, the theorem applies for K = [5 

and L = 0[5 (note that Y = <l> is not restricted at all). 
Suppose that we can find a homotopy gu[0[5], i.e., a 
family of functions on 0[5, such that go [0[5] = PO[0[5] 
and gIlO[5] = PI [0[5]; then, by the extension theorem, 
if PO[0[5] can be extended over [5, there exists a 
homotopy fu[[5] such that fu[[5]laI5 = gu[0[5] so, in 
particular, there exists a function h ([5) such that 

fIf[5]lu 5 = PI [0[5]. (47) 

This would prove the "only if" of the theorem in 
Sec. V.l, the "if" being proved by exchanging the 
subindices 0 and 1 in the above process. 

(e) It will be convenient to represent Po [0[5] 
graphically, but this is, of course, not possible since 

0[5 is a 4-dimensional manifold. However, for our 
proof we shall only need 2 dimensions of X, or [3, 

so we can represent each z = const (say) cross section 
of [5 and 0[5 independently: [5Iz=const is a 4-cube, [4, 

and oJ5/z=const is its boundary 0[4, a 3-dimensional 
manifold homomorphic to Sa, the 3 sphere. Thus, we 
cannot imbed 0[4 in X (so we cannot give a visualiza­
tion of it) but we can "open" it along some "edges" 
(here squares) and "flatten" it, in much the same way 
as the surface (boundary) of a 3-cube can be brought 
into a flat 2-dimensional figure; at this point our 0[4 

can be imbedded in X, so we can give a perspective 
visualization of it: Fig. 7. Some of the pairs of "edges" 
(squares) to be identified with each other are labeled 
with a common letter; each of the "faces" (3-cubes) is 
spanned by three of the variables (x, y, s, t), each 
going from 0 to 1 in such a way as to match, when we 
make the indicated identifications between the squares 
they span. 

(f) In Fig. 8 we show only the four "faces" in which 
po[0[5]lz=const == PO[0[4] ~ Po, two spanned by (x,y, s) 
and two by (x, y, t), and the "face" (0, y, s, t), which 
has common "edges" with the former four. The 
support (Sec. IV.l) of PI(x)lz=const is taken to be (see 

Sec. V.2b) the square Ixl < €j.Ji Iyl < €j/2.- In the 
(x, y, s, 0) 3-cube of Fig. 8 we show the exchange of 
two PI structures, for a given z and for n of (28) parallel 
to the -z axis, the exchange of two PI structures, not 
exactly as prescribed by (29) but in a way clearly 
homotopic to it; the "pipes" of Fig. 8 are generated 
by the supports of PI[X - al(s)]lz=const and 

PI[X - a2(s)]lz=const· 

Analogously the (x, y, s, I) 3 cube shows the trivial 

(xyll) 

( xysll 

( xyso) 

x 

Xk....-_-+_.Y 

( xyol) 

13 P. J. Hilton, An Introduction to Homotopy Theory (Cambridge FIG. 8. Boundary values on the 4-cube of Fig. 7 whose extendibility 
University Press, Cambridge, 1964). into the interior of the 4-cube expresses the triviality of an exchange. 
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loop O. (lPl(X - a1) U 1P1(X - a2)). The two remaining 
3-cubes with IP ¢ lPo represent the last line of (45). 
The "curved pipes" only indicate how to identify the 
structures contained in identical squares; they can 
also be thought of as generated by the supports of the 
structures contained in one of the squares in which 
they end, if that square is "flopped over" to make it 
coincide with the identical one. 

From now on we may speak of 14, 014
, /[14], 

g[oI4] instead of 15, 015, /[15], g[oI5], in the under­
standing that we always refer to the z = const cross 
sections of the latter. 

(g) We now construct a homotopy gu[oI4] with the 
required properties (Sec. V.2.d). In all of 014

, except 
the five 3-cubes shown in Fig. 8, g u [014] = lPo for all u, 
and go [015] = lPo[oI5] is given in Fig. 8. 

In going from Fig. 8 to Fig. 9 we just "pull" 
gu [014] towards the (Oyst) cube, in which gu is defined 
in such a way as to match the boundary conditions 
generated when the supports of g u in the surrounding 
cubes are cut by the common boundaries. 

Next the "inner handle" of Fig. 9 undergoes a 
rigid TT rotation around the IX axis, in the sense shown 
there, with the values of the gu rigidly carried along; 
the rest of gu in the (xyOt), (xylt), and (xysl) cubes is 
unchanged. The homotopy is more complicated (not 
rigid) in the (xysO) cube, where gu is defined in a way 
that matches the boundary values for all u; then, since 
the shaded regions undergo a TT rotation each, the two 
"pipes" in the (xysO) cube are subject to a TT twist each. 
By translating the content of the (Oyst) cube into the 
(xysO) cube, straightening the resulting (xysO) "pipe," 
and distributing uniformly along the s axis the two 
TT-twists concentrated at its lower and upper ends, we 

/ 
/ 

/ 5 
/ 

x 

FIG. 9. Intermediate step in the deformation of the boundary values 
of Fig. 8 into those of Fig. 10. 

5 

x 

I ----ii---

/ 

X / 

/ / I 
/ 

/ 
/ 

/ 

I 

'---/ 

/ 
/ 

/ 

y 

x 

5 

x 

FIG. 10. Boundary values on the 4-cube of Fig. 7 whose extend­
ability into the interior of the 4-cube expresses the triviality of a 211 
rotation. 

finally obtain, in Fig. 10, a graphical representation 
of 1P1[oI4] = (46), and thus, according to Sec. l.d, we 
have proven the theorem. The detailed analytical 
construction of gu(oI5) is given in Appendix C. 

3. Consistency of the definition of Xm. We shall 
now prove Sec. IV.3, i.e., that if IP is the union 
(Sec. IV.l) of more than one pair of identical fields 
IPm(x) E Qm' the exchange of the two kinks in one pair 
is homotopic relative to its end pointll to the exchange 
of the two kinks in any of the other pairs. The analytic 
proof is rather tedious, and similar to the one given in 
proving the theorem in Sec. V.l (Appendix C); we 
shall omit it, and give only the corresponding graphic 
constructions (see Sec. V.2 for meaning of figures). 

(a) We will first prove our statement for a particular 
case, i.e., when the two pairs have one kink in common. 
In Fig. 11 we show a field containing 3 identical 
kinks A, B, C. In (x, y, s, 0) we exchange A, B,and in 
(x, y, s, 1) we exchange B, C; in (x, y, 0, t) and 
(x,y, I, t) we1eave A, B, Cfixed. The go [015] of Fig. 11 
can be extended into 15. This can be seen by treating 
the "inner handle" as in Sec. V.2 (Figs. 8-10): it is 
clear that we will obtain the g[oI5] of Fig. 12; again, 
treating the inner handle of Fig. 12 as in Sec. V.2 weare 
finally left with the g[oJ5] of Fig. 13; since it can 
obviously be extended into 15, our go[oI5] can·too, so 
the exchange of A, B is homotopic to the exchange 
of B, C. 

In case we had performed the B, C exchange in the 
opposite direction, we would have ended up with 
a (we) loop in the (xysl) cube, instead of the trivial 
loop of Fig. 13. This would not invalidate our result, 
since (We)2........, 1 (Sec. 111.4). 
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5 

x 

, 
/ 

x"-' ____ -'Y 

FIG. 11. Boundary values for the homotopy of one exchange 
(AB) into another (BC). A, B, C are identical kinks. This is a 
formalization of the second rubber-band lemma. 

(b) In Fig. 14 we show only one space dimension 
(x) and two pairs of kinks, AB and CD, with 

f{JB(X + b) = f{J.ix + a) 
and 

f{JD(X + d) = f{Jc(x + c), 

and all of them belonging to Qm; to distinguish them 
we assume the support of f{JA(X) is very small and the 
support of f{JC<x) is small, but bigger than the support 
of f{JA(X), Our purpose will be accomplished by 
showing that the boundary conditions on the "cube" 

y 

s 

/ 
/ 

x 

/ , 

X "'-___ -Y y 

, 

5 

FIG. 12. Intermediate step in the deformation of Fig. 11 into Fig. 
13. Note the resemblance to the first rubber-band lemma. 

/i /JX 
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I 
I 
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, , 

V 
,/1 ______ - --71---- --- ------

/ /1 L: / 

, , / I 
/ X-X ./ 

I 
I 
I , , 

x 

//---- V, 
FIG. 13. Boundary values of the identity deformation on the iden­

tity loop. These values are obviously extendable into the interior. 

of Fig. 14 can be extended into its interior (the I 

scale has been taken larger than the s, x scales to 
facilitate the drawing) by some function f{J[O]5]. 

In going from I = 0 to 1= 11 we gradually transform 
the identity loop on C, D into the loop consisting in 
deforming C, D, into C', D' [with f{JD'(X + d) = 
f{Jc'(x + c) = f{JB(X + b) = f{JA(X + a)] forO ~ S ~ SI' 

C', D' remaining fixed for SI ~ S ~ S2, and C', D' 
becoming C, D for S2 ~ S ~ 1; also, the exchange of 
A, B is concentrated in the region Sl ~ S ~ S2' 

In tl ~ I ~ 12 we take f{J[]5] identical to its value at 
1= 11,forO ~ S ~ s1ands2 ~ S ~ 1. Fors1 ~ S ~ S2 

we have a situation to which we can apply the result 
just obtained: the loop at 11, in which A, Bare 
exchanged and C', D' remain fixed, is homotopic to a 
loop in which B, C' are exchanged and A, D' remain 
fixed, which in turn is homotopic to a loop in which 
C', D' are exchanged, whereas A, B remain fixed, at 
1=12 , 

/II 
/\ I' 

L' 
/1 ) 

LL' / 
/I) / 

FIG. 14. Proof that two exchanges are equivalent (uniformity of 
statistics). Here A, B, are identical kinks of type m, and C, Dare 
identical kinks of type m, but A and C need not be identical. At 
t = 0, the exchange AB is represented. At t = 1, the exchange CD 
is represented. The intermediate steps demonstrate their equivalence. 
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For 12 ~ 1 ~ 1, <p[[5] consists simply in distributing 
uniformly along s the exchange performed at t = 12 , 

and at the same time "unmaking" the transformation 
made on C, D in the step 0 ~ I ~ II' This completes 
the construction of an homotopy <p[O/5] between the 
exchange of A, B (at 1=0) and the exchange of 
C, D, at I = 1. ' Q.E.D. 

4. In Sec. V.3a we have obtained the boundary 
function of Fig. 12 as an intermediate step and then 
proved that it can always be extended into the interior 
of [5. This means that for a two-kink field, exchanging 
the kinks is homotopicll to leaving one of them fixed 
and rotating the other one through 27T. 

Without using the homotopy extension theorem 
the existence of an homotopy between the above men­
tioned loops is not quite evident, so it is interesting 
to know that we can actually construct the homotopy; 
its detailed exposition would be too lengthy (since 
the interest of the problem is rather academic) so we 
only give, in Fig. 15, a rough sketch of the method. 

s. A 2n-kink state does not admit half-odd spin: 
if in n = (ni , ... , nk ) all the n, are even, by Sec. 111.6 
we can check the statement using as a test field a 
union field 

<p(X) = <Pm(x) U <Pm(x - a), 

m = in; 
taking a and n along the x axis, after a trivial homotopy 
the above process can be symbolized by Fig. 16(a), a 
simplified diagram of the type used in Figs. 11-15. 
The homotopy (a) -+ (b) is obvious, and in (b) -+ (c) 
we use the result analyzed in Sec. V.4. Since (c) is 
simply (xm)2, (c)-+(d) is proven by (xm)2=1, 
Eq. (31). 

In conventional quantum-field theories, the corre­
sponding statement would follow from the laws of 
composition of angular momentum: an even number 
of half-odd-spin particles can only have integer spin. 

Soc 'lK 'tKSh[ , , , I I 

. ~,[, .:. ~ 
.. "11 Q. "JC Q ".. Cl b JI 

(a) (b) (c) (d) 

FIG. 15. Deformation of an exchange into a rotation. (a) The 
exchange of two kinks, originally at a and b, each represented by a 
dot; this is what we would see looking straight into the front face 
of the (xysl) cube of Fig. 8 if the support of the kinks were very small. 
(b) We create at a (after the "a kink" has left that place) a kink c 
and its anti kink c' (see Sec. 1.7); c' moves (dotted line) towards b 
and then returns to a to annihilate c. In b ->- c sa and SA' the values 
of s at which creation and annihilation take place approach 0 and 1 
respectively. (c) Part of the path of c' overlaps the path of the "a 
kink" and part of the path of the "b kink"; in the corresponding 
regions the field is equal to 'Po: (d) The rest of the homotopy (and the 
most involved part of it) consists of deforming the loop bdef of d into 
the rotation of a kink sitting at b, but at this point we would need 
more elaborate figures. 

(a) (b) (c) .(d) 

FIG. 16. Schematic of a deformation. The starting point (not 
shown) is a rigid rotation of two identical kinks about the line of 
centers. Then the axis of rotation of each kink is twined perpen­
dicular to the line of centers, giving the deformation Cal, where each 
kink is represented by a segment, whose endpoints traverse the 
intertwining helices shown. The intermediate step (b) is obtained in 
an obvious way from (a). In going from (b) to (e), the extendability 
of Fig. 12 into the 4-eube is applied to the upper and lower halves of 
(b) independently. Since (c) represents X', the deformation to the 
identity (d) has already been shown. 
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APPENDIX A: PROOF OF LEMMA 3 

Let q, qi EE Qm, q(s) be a path between q = q(O) 
and ql = q(l), we(s) a 27TS extrinsic rotation operator 
around some axis, and qI(S) = W(s)· q a homo­
topically trivial loop (so W· if 1 = if 1)' Then q(s, I) = 
we(S)' q, 

q(s, t) = we(S) . q, o ~ S < 1, t = 0, 

q, O~s~t \ 

wee-=-~) 
1 - 21 

. q, ''';''';I-'j 0< t < t, 
q, I-t~s~1 

q[(4t - 1)3s], O~s~t 

} we(3s - 1)· q(4t - 1), t~s~i t ~ t < i, 
q[(4t - 1)(3 - 3s)], i~s~1 

q(3s), O~s~t 

W e(3s - 1) . q(l) 

= W(3s - 1) . qi t = i, 
= ql(S), t~s~i 

q(3 - 3s), i~s~1 

q(3s), O~s~t 

} ql(S, t): ql(S, i) = ql(S), 
i ~ t ~ I, 

ql(S, i) = ql = q(I), t~s~i 

q(3 - 3s), i~s~1 

q[(4 - 4t)3s], O~s~t 

} q(4 - 4t), t~s~i i ~ t ~ 1, 
q[(4 - 4t)(3 - 3s)], i~s~1 

q(O) = q, o ~ s ~ 1, t = 1, 



                                                                                                                                    

1776 D. FINKELSTEIN AND J. RUBINSTEIN 

is a homotopy between We(s)' q and the trivial loop, 
for all q E Qm. 

APPENDIX B 

By composition law we mean a unique and contin­
uous prescription to define a union field cP = u cP; 
when the supports of the CPi overlap.a Then 

Theorem: If Q does not admit a composition law, 
(xm)2 = I is not true in 2 dimensions. 

Proof' Take al = (-a, 0), a2 = (a, 0) and rotate 
them around the origin of the (xy) plane. The tra­
jectories ai' a2 corresponding to (xm)2 [Fig. 6(a)] are 

ab(s) = -a cos 27TS, a2",(s) = a cos 27TS, 

aly(s) = -a sin 27TS, a2y{s) = a sin 27TS, (Bl) 

and admit the following homotopy in the xy plane 
[Fig. 17(a)]: 

ab(s, t) = -(1 - t)a cos 27TS - ta, 

a2is, t) = (1 + t)a cos 27TS - ta, 

alis, t) = -(1 - t)a sin 27TS, 

a.is, t) = a sin 27TS. 

(B2) 

At t = 0 (B2) gives (Bl) and, at t = 1, [Fig. 17(b)] 

alis, 1) = -a, a2x(s, 1) = -a(1 - 2 cos 27TS), 

alis, 1) = 0, a2is, 1) = a sin 27TS; 

at no (s, t) do al(s, t) and a2(s, t) coincide. For the 
trajectories at t = 1 to be deformed into the trivial 
trajectory, al has to be left still and a2(s, 1) shrunk into 
a2(0, 1). This is clearly impossible to do in the x, y 
plane without at some stage having a2 and al overlap 
[see Fig. 17(a)]. 

Should (Bl) be deformable into the trivial loop (in 
the x, y plane and without overlapping), the inverse 
of the homotopy (B2) followed by such a deformation 
would be a deformation of the trajectory of Fig. 

y 

f Q): 0 < t < 1 (b): t=l 

FIG. 17. A deformation of the (xm)2loop in the plane, showing that 
in two dimensions, in general, (xm)2 ~ I. 

17 (b) into the trivial one; since this is not possible, 
the theorem is proved. 

As a by-product, by means of motions out of the 
(x, y) plane, Fig. 17 provides an easy alternative 
proof of the relation (xm)2 = 1. 

APPENDIX C: ANALYTIC PROOF OF 
THE THEOREM IN SEC. 1 

The following conventions are used in the proof: 
(1) (x,y) stands for x = (x,y, z); z remains 

unaffected in all transformations. 
(2) x,y, s, t, U (but not z) range all between 0 and 1, 

if not otherwise indicated. 
(3) S ~ SI stands for 0 ~ S ~ SI and S ~ S2 for 

S2 ~ S ~ 1; analogously for the other variables. 
(4) Figures 8-10 represent part of cross sections 

z = const of a15 , i.e., a14 , by showing five of its 
eight sectors: (x, y, s, 0), (x, y, s, 1), etc. For fixed 
u, cp(x, y, s, t, u) is a function on a15 ; it is defined as 
equal to CPo at those points of al5 at which its formal 
expression given below is meaningless, and is equal to 
CPo on all the sectors not mentioned explicitly. 

(5) CPI(X) = CPo for Ixi > E; a < t - 2E is a fixed 
positive number, and 

b = 1 - a; 0 < UI < U2 < ... < Us < 1 

are eight real fixed numbers. 
(6) cp(x,y, s, t, u) is the g" [aI5 ] of the text, Sec. V.2. 

Let 

II(s) = (1 - a) - (1 - 2a)s, gl(S) = l - (1 - 2a)s, 

= a + (1 - 2a)(s - l), 

12(S) = a + (1 - 2a)s, g2(S) = t + (1 - 2a)s, s ~ t, 
= (1 - a) - (1 - 2a)(s - t), s ~ t. 

Then (Fig. 8) 

cp(x, y, s, 0, 0) = f{!1(X - ft(s), y - gtCs» U CPI(X - 12(S), y - gb», 
cp(x, y, S, 1,0) = cp(x, y, 0, t, 0) = cp(x, y, 1, t, 0) = CPl(X - a, Y - t) U CPl(X - b, y - i)· 

Let 

II(s, u) = ft(s), gl(S, u) = (1 - p)gtCs) + pa, ga(s, u) = (1 - p)t + Pft(S)} 
p = U/U I , 0 < U < Ul' 

12(S, u) = Ils), g2(S, u) = (1 - P)g2(S) + pb, gb, u) = (1 - p)t + PI2(S) - -

'4 For instance, when <I> is the manifold of a group, and rpo its identity element, a natural prescription is rp,(x) U rp.(x) = rp,(x) • rp.(x) , 
with "." indicating the product in <I> at each x. 
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Then 
cp(x, y', s, 0, u) = rp1(X - jis, U), Y - g1(S, U» U rp1(X - f2(S, U), Y - g2(S, U») 
rp(X, y, s, 1, u) = rp1(X - a, Y - g3(S, u» U rp1(X - b, y - g4(S, u» ° < < 

_ u _ u1 " 

cp(x, y, 0, t, u) = rp1(X - b, y - a) U rp1(X - a, Y - b) 

rp(x, y, 1, t, u) = rpix - a, y - a) U CP1(X - b, y - a) 

Let 

jis, u) = (1 - g)jis) + gf{(s), 

f2(S, u) = (1 - g)fb) + gf;(s), 

f{(s) = b - t - a - E S, S ~ t + a - E 

t+a-E 
= t + E - (s - (t + a - E», 

s;;:::t+a-E 
fb, u) = (1 - g)a + gf~(s), 
g~(s, u) = (1 - g)jis) + gg~(s), 

f;(s) = a + s, s ~ t - a + E 

1 _1+ + 2"-a-E 
- 2" E , 

(t + a - E)(S - g) 

Then 

Let 

1 - 2a 
= b - (s - (t - a + E» ., 

2(a - E) 

f{(s) = a + s, 
s;;:::t-a+E 
s~t-a+E 

= t + E, t - a + E ~ S ~ t + a - E 

= a, = t - (s - (t + a - E», s;;::: t + a - E 

U 1 ~ U ~ U 2 " 

rp(x, y, s, 0, u) = 1f1(X - f1(S, u), y - a) U CP1(X - f2(S, u), y - b) I 
rp(x, y, s, 1, u) = rp1(X - fs(s, u), y - gis, u» U CP1(X - b, y - f2(S» t 
rp(x, y, 0, t, u) = rp(x, y, 0, t, u1) 

rp(x, y, 1, t, u) = rp(x, y, 1, t, U1) 

rp(x, y, s, 0, u) = cp(x + r, y, s, 0, U2) 

rp(x, y, s, 1, u) = cp(x + r, y, s, 0, u2) 

rex, y, 0, t, u) = cp(x + r, y, 0, t, u2) 

rp(x, y, 1, t, u) = cp(x + r, y, 1, t, u2) 

cp(O, y, s, t, u) = rp(r, y, s, 0, u2) 

J 

w = y + is stand for (y, s) in rp(x, y, s, t, u); r:x. = t + ti and 1 
w1(0) = a + i(t + a) - iE = (31 - iE, W1(U) = h(U) + is1(u) = r:x. + eiV«(31 - r:x.) - iE 
w2(0) = (1 - a) + i(t ~ a) + iE = (32 + iE, w2(u) = Y2(U) + is2(u) = r:x. + eiV«(32 - r:x.) + iE 

2" - a - E a y (u) 
j~(s, u) = t - a - () s, gb, u) = a - - 1 S, S ~ S1(U) 

S1 u S1(U) 

= E - (s - S1(U», = h(U), s ;;::: S1(U) 

g2(S, u) = Y2(U), 
t-a-E = E + (s - S2(U», 
1 - S2(U) 

_ () Y2(U) - (1 - a) 
- Y2 U - , s;;::: S2(U) 

(1 - S2(U»(S - g) 
Ab, u) = SjS1(U), S ~ siu), A2(s, u) = 1, 

= 1, 1 - s 

1 - S2(U) , 

Q i = (x - fi(S, u» + iCy - g;(s, u» = (Xi + iY,)(x, y, s, u), 

s ;;::: S2(U) J 
i = 1,2 

u3 ~ U ~ U 4 " 

1177 
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Then 

Let 

Then 
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cp(x, y, s, 0, u) = CPl(iv).l(SlU).Ql(X, y, s, u» U Q\(e-iV).2(SlU).Q2(X, y, s, u» 

cp(x, y, s, 1, u) = cp(x, IX + e-iV(w - oc), 1, ua), x;5; 2E 

= cp(x, y, s, 1, ua), 

cp(x, y, 0, t, u) = cp(x, y, 0, t, ua) 

cp(x, y, 1, t, u) = cp(x, y, 1, t, ua) 

cp(O, y, s, t, u) = cp(O, oc + e-iV(w - IX), t, uJ 

cp(x, y, s, 0, u) = cp(x, y, s, 0, U4) 

cp(x, y, s, 1, u) = cp(x + w, y, s, 1, U4), 

= cp(x, y, s, 1, U4), 

cp(x, y, 0, t, u) = cp(x, y, 0, t, U4) 

cp(x, y, 1, t, u) = cp(x, y, 1, t, U4) 

cp(O, y, s, t, u) = cp(O, y, s, t, uJ, t ;5; 1 - w 

= cp(t + w - 1, y, s, 1, uJ, t > 1 - w 

cp(x, y, s, 0, u) = cp(x, y, s, 0, us) 

cp(x, y, s, 1, u) = cp(x, y, s, 1, us) 

cp(x, y, 0, t, u) = cp(x, y, 0, t, us) 

cp(x, y, 1, t, u) = cp(x, y, 1, t, us) 

u-u 
p = (1 - 2€) s us;5; u ;5; U6. 

u6 - Us 

cp(O, y, s, t, u) = cp(O, y, s, t + p, us) 

cp(x, y, s, 0, u) = cp(O, y, s, 'JI - x, U6), x < 'JI 

= cp(x - 'JI, y, S, 0, U6), x > 'JI 

cp(x, y, s, 1, u) = cp(x - 'JI, y, s, 1, U6) 

cp(x, y, 0, t, u) = cp(x - 'JI, y, 0, t, u6) 

cp(x, y, 1, t, u) = cp(x - 'JI, y, 1, t, U6) 

cp(O, y, s, t, u) = cp(O, y, s, t + 'JI, u6) 

f(s) = s, 
= t - a + E, 

= (t - a + E) - (s - (t + a - E», 

1 - 2a 
g(s) = s, t-a-E 

= 1 - 2a, 

° ;5; s ;5; t - a + E, 

t - a + E ;5; S ;5; t + a - E, 

t + a - E ;5; sl, 

° ;5; s ;5; t - a - E, 

t - a - E ;5; S ;5; t - a + E, 

1 - 2a = 1 - 2a - (s - (t - a - E», t - a + E ;5; S ;5; t + a - E, 
2(a - E) 

= 0, 

_1 _-_2_a_ (s - (t + a + E»~, 
t-a-E 

t + a - E ;5; S ;5; t + a + E, 

i+a+€;5;s;5;1. 

cp(x, y, S, 0, U) = cp(X - pf(s), y + pg(s), s, u, U7)} 

cp(x, y, s, 1, u) = cp(x, y + Pf2(S), S, 1, U7) 

cp(x, y, 0, t, u) = cp(x, y, 0, t, U7) 

cp(x, y, 1, t, u) = cp(x, y + p(1 - 2a), 1, t, u7) 



                                                                                                                                    

CONNECTION BETWEEN SPIN, STATISTICS, AND KINKS 

'P(x, y, s, 0, u) = 'P(x, y, as, 0, us), s ::;; t 
= 'P(x, y, a(s - 1) + 1, 0, us), s ~ t 

'P(x, y, s, 1, u) = 'P(x, y, s, 1, us) 

'P(x, y, 0, t, u) = 'P(x, y, 0, t, us) 

'P(x, y, 1, t, u) = 'P(x, y, 1, t, us) 

u - Us ( a = 1 - -- 2 a - E), us::;; u ::;; 1. 
1 - Us 
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Let (a + 2E, a, 0) = c and W(s) be a rotation operator around the z axis (Sec. III). Collecting the above 
expressions we get (Fig. 10) 

'P(x,y, s, 0, I) = 'Pl(W(S)' (x - c», 

'P(x,y, s, 1, 1) = 'Pl(X - c), 

'P(x,y, 0, t, 1) = 'Pl(X - c), 

'P(x,y, 1, t, 1) = 'Pl(X - c), Q.E.D. 
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The principle of compensation of dangerous diagrams (PCDD), used by Bogoliubov to determine the 
coefficients in the canonical transformation to quasiparticles in boson systems, is obtained by maximizing 
the overlap between the true ground-state vector and the quasiparticle vacuum state. The zero-momentum 
state is treated exactly, which implies that the sum of all diagrams leading from the vacuum to a one­
quasiparticle state must be zero, in addition to the diagrams leading from the vacuum to the two quasi­
particle state. Other criteria, such as the diagonalization of the quasiparticle reaction operator up to terms 
cubic in the operators, and the absence of one and two quasiparticle contributions to the true ground­
state wavefunction, are also shown to lead to the PCDD. A generalization of the Hartree procedure of 
minimizing the ground-state energy is obtained by replacing the bare quasiparticle interaction with the 
quasiparticle reaction operator, and is shown to be equivalent to the PCDD. Finally, a perturbation 
expansion of the PCDD is obtained, and the reducibility of diagrams is discussed. 

1. INTRODUCTION 

The canonical transformation to quasiparticles was 
first introduced by Bogoliubov in the theory of 
boson systems to obtain a model of superfluidity.l 
To choose the coefficients in the transformation, 
Bogoliubov diagonalized the quadratic part of the 
Hamiltonian. However, he later postulated the prin­
ciple of compensation of dangerous diagrams (PCDD) 
as the best method to use for determining the coeffi­
cients in the transformation.2 The PCDD states that 
the sum of all the diagrams leading from the vacuum 
to the two-quasiparticle state should be equated to 

• Present address: Department of Physics, North Texas State 
University, Denton, Texas, 76203. 

1 N. N. Bogoliubov. J. Phys. (USSR) 11, 23 (1947). 
• N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, A New 

Method in the Theory of Superconductivity (Academy of Sciences of 
the USSR Press, Moscow, 1958), Chap. 1 (English trans!.: Con­
sultants Bureau, New York, 1959); Fortshr. Physik 6, 605 (1958). 

zero. By so doing, divergent contributions to the 
perturbation expansion of the ground-state energy 
can be eliminated. The PCDD was taken over directly 
to fermion systems where it was used in the theory of 
superconductivity.2.3 

The quasi particles introduced by Bogoliubov will 
be called bogolons to avoid confusion with dressed 
particles which are also called quasiparticles. In the 
theory of superconductivity the bogolons are fermions, 
while in the theory of superfluidity they are bosons. 
In other words, the bogolons have the same statistics 
as the particles in the system. The canonical trans­
formation expresses the particle operators linearly in 
terms of the bogolon operators. This transformation 
can then be made on the Hamiltonian, which is 

3 N. N. BogoliuboY. Zh. Eksp. Teor. Fiz. 34, 58 (1958) [SOY. 
Phys.-JETP 7, 41 (1958»); Nuoyo Cimento 7, 794 (1958); Usp. Fiz. 
Nauk 67,549 (1959) [SOY. Phys.-Usp. 2, 236 (1959»). 
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3 N. N. BogoliuboY. Zh. Eksp. Teor. Fiz. 34, 58 (1958) [SOY. 
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normal-ordered in the bogolon operators to obtain the 
bogolon Hamiltonian. 

The diagonalization of the bogolon Hamiltonian, 
neglecting terms cubic and quartic in the operators, is 
the same as compensating the lowest-order dangerous 
diagrams, i.e., the first term in the PCDD. This pro­
cedure is equivalent to the Hartree procedure of 
minimizing the ground-state energy using the bogolon 
vacuum state as the trial wavefunction.4 Thus the 
compensation of the lowest-order dangerous diagrams 
(CLODD) is based firmly on a variational method. 
However, the second-order contribution to the 
PCDD has recently been shown to be important in 
the theory of the charged boson gas by Woo and Ma.5 

Thus the question arises as to whether the CLODD or 
the full PCDD should be used. After all, the elimina­
tion of a class of divergent diagrams from the per­
turbation expansion of the ground-state energy does 
not necessarily guarantee the convergence of the 
expansion. 

The same question arose in the theory of fermion 
systems since it was shown that in nuclear matter the 
second-order corrections to the PCDD gave different 
results than the CLODD.6 The PCDD in fermion 
systems was justified by obtaining it from several 
variation principles and other criteria.7- 9a In this 
paper the PCDD for boson systems is also justified by 
using these criteria. The extension is not trivial, since 
in addition to the dangerous diagrams describing the 
creation of a pair of bogolons from the vacuum, new 
dangerous diagrams describing the creation of a single 
bogolon of zero momentum from the vacuum arise 
because the zero-momentum state is treated exactly. 
These additional dangerous diagrams must also be 
compensated by setting the sum of all diagrams leading 
from the vacuum to the one-bogolon state equal to 
zero. 

In the theory of fermion systems, two slightly 
different forms of the PCDD were obtained, called 
F·B and II.9 Both of these forms satisfied the principle 
stated in terms of diagrams, but were obtained by 
different criteria and the diagrams were defined 
differently. The same situation arises in boson systems 
also, since the same general criteria can be applied. 
This paper will deal with the PCDD(I) and a sequel 
will deal with the PCDD(II).9b 

The most physically intuitive of the criteria used in 

, A. Coniglio and M. Marinaro, Nuovo Cimento 48, 249 (1967). 
• c. W. Woo and S. K. Ma, Phys. Rev. 159, 176 (1967). 
• E. M. Henley and L. Wilets, Phys. Rev. 133, BIIl8 (1964); 

Phys. Rev. Letters 11, 326 (1963). 
7 D. H. Kobe, Phys. Rev. 140, A825 (1965). 
8 D. H. Kobe, Ann. Phys. (N.Y.) 40, 395 (1966). 
96 D. H. Kobe, J. Math. Phys. 8, 1200 (1967). 
9b D. H. Kobe, J. Math. Phys. 9,1795 (1968) (following article). 

TABLE I. Criteria for the principle of compensation of 
dangerous diagrams (I). 

Section 

5 

6 

Criterion 

No divergent diagrams in the perturbation ex­
pansion of the ground-state energy. 

,Distance between the true ground state 10) and the 
bogolon vacuum state IIPo) is a minimum, 

1110) - IIPo> II = minimum. 

6 Maximum overlap between the true ground state 
10) and the bogolon vacuum state IIPo), 

(0 I IPo> = maximum. 

7 Transition density matrix equal to the bogolon one 

(01 atak IIPo> = (IPol a~ak IIPo>, 
and 

(01 ao IIPo> = (IPol ao IIPo>. 

8 No one- and two-bogolon contributions to the 
true ground-state vector, (0 I n bogolon> = 0, 
n = 1,2. 

9 Bose-Brillouin-Brueckner-BogoIiubov condition, 

(IPol tin bogolon> = 0, n = 1,2. 

10 Exact self-consistent-field theory (V -+ t in the 
energy variation principle). 

this paper is the criterion of maximum overlap 
between the true ground-state vector and the bogolon 
vacuum state. 7 This criterion is equivalent to minimiz­
ing the distance between the true ground-state vector 
and the bogolon vacuum state in Hilbert space. The 
PCDD(I) can also be obtained by eliminating the one 
and two bogolon excitations from the expansion of 
the true ground state in terms of bogolon states. The 
diagonalization of the reaction operator (t matrix) 
up to terms cubic in the bogolon operators leads to the 
boson form of the Brillouin-Brueckner-Bogoliubov 
condition7 obtained for fermion systems and which is 
also equivalent to the PCDD(I). The generalization 
of the Hartree minimization of the ground-state 
energy by replacing the potential with the reaction 
operator, which is called the exact self-consistent-field 
theory,8 also leads to the same result. The PCDD(I) 
can be formulated in terms of the transition density 
matrix and other transition amplitudes as well. The 
different criteria and the section of the paper where 
they are discussed is given in Table I. 

The next section defines the canonical tran~forma­
tion to bogolons and transforms the Hamiltonian 
to obtain the bogolon Hamiltonian. Section 3 gives 
the bogolon vacuum-state vector which is obtained in 
the Appendix. The unperturbed ground-state energy 
is minimized in Sec. 4 to obtain the compensation of 
the lowest-order dangerous diagrams (CLODD). 
After that, the next six sections are devoted to the 
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various criteria for the PCDD(l) shown in Table I. 
Section 11 calculates the PCDD(I) to second order 
and discusses the reducibility of diagrams. The 
penultimate section is a comparison of the PCDD(l) 
and the PCDD(ll), which will be obtained later.9b 

Finally, a comparison of the CLODD and the PCDD 
is made in the conclusion. 

2. CANONICAL TRANSFORMATION 

The Hamiltonian for a system of bosons inter­
acting with a two-body potential is10 

H = ~ (e1 - ,u)aia1 + t ~ (121 v 134) aiaJa3a4. (2.1) 
1 1234 

The kinetic energy is ek = k2j2m where m is the mass 
of a particle and ,u is the chemical potential. The 
matrix element of the two-body potential (121 v 134) 
where (1) = (k1), (2) = (k2), etc., is assumed to be 
symmetric in the interchange of 1 and 2, as well as 3 
and 4. The creation and annihilation operators at 
and ak , respectively, satisfy the boson commutation 
relations 

(2.2) 

The Bogoliubov quasiparticles, or bogolons, have 
the creation and annihilation operators yt and Yk' 
respectively. The canonical transformation which 
takes into account the correlations between particles 
of equal and opposite momentum as well as the 
zero-momentum condensate iS4,1l 

ak = <Poi5kO + UkYk + VkY!k' (2.3) 

where the numbers <Po, Uk' and Vk are taken to be real. 
The zero-momentum state is expected to be macro­
scopically occupied, so the <Po has been added, which 
is approximately the square root of the number of 
particles in the zero-momentum state. In order for the 
bogolons to be bosons also, it is necessary that their 
creation and annihilation operators satisfy the com­
mutation relations in Eq. (2.2). Then the coefficients 
in Eq. (2.3) must satisfy the following conditions: 

u~ - v~ = 1, 

Uk = u_k ' 

Vk = v-k • 

(2.4) 

If the canonical transformation in Eq. (2.3) is made 
on Eq. (2.1) and the Hamiltonian is normal-ordered 
in the bogolon operators, the resulting bogolon 
Hamiltonian can be written as 

(2.5) 

'0 See, e.g., D. H. Kobe, Am. J. Phys. 34, 1150 (1966) for a dis­
cussion of second quantization. 

11 D. H. Kobe, Ann. Phys. (N.Y.) 47, 15 (1968). 

TABLE II. The coefficients in the Bogolon Hamiltonian. 

Hoo = .-f1rp~ + ~ (e, - fl)V~ + ! (001 v 100) rp~ 

+ rp~ ~ (001 jJ 1-11) u,v, + 2rp~ ~ (011 v 110) v~ 

+ ! ~ (1 - 11 jJ 1-22) U,V,U2V2 

+ ~ (121 v 121) v~vi. 

ho, = [-fl + ~ (1 - 11 jJ 100)u,v, + 2~ (011 jJ 11O)v~ 

+ (001 v 100) rp~]rpo(uo + vo). 

h11(l, 1) = U,(ui + vD + ~,2u,v,. 
h20(l, -1) = HU,2u,v, + ~,(ui + vDJ, 

where 

and 
U, = e, - fl + 2 ~ (121 v 121)(v~ + b20rp~). 

2 

h30(l23) = (rpo/3)[(121 jJ 1-30) u,u2v. + (2-<=> 3) 

+ (I-<=> 3)] + (u -<=> v). 

h2,(123) = rpo{[(1 - 31 jJ 1-20) V,U2U. + (l-<=> 2)] 

+ (121 v 130) V,V2V3} + (u-<=>v). 

h22(1234) = !{(121 v 134) u,u2u.u. + [(1 - 31 v 1-24) U,V2V.U. 

+ (3 -<=> 4)]} + (u -<=> v). 

h3,(1234) = H(121 v 1-34) U,U2V.U. + (2 -<=> 3) + (l -<=> 3») 

+ (u -<=> v). 

2 
It.o(1234) = 4! [(121 jJ 1-3 - 4) U,U2V•V• + (2 -<=> 3) 

+ (2 -<=> 4)1 + (u -<=> v). 

where j, k = 0, 1, 2, 3, 4 and j + k = 0, 1, 2, 3, 4. 
The term Hjk has j creation operators and k anni­
hilation operators, and is of the forin 

Hik = ~ hik(1, 2, ... ,j + k) 
1,2, ... , i+k 

t t t 
X YIY2' .. YiYj+1 ... Yi+k' (2.6) 

The coefficients hjk , which are given in Table 11,12 

depend on the kinetic energy, the potential energy, 
and the coefficients in the canonical transformation. 

Since the Hamiltonian is Hermitian, 

(2.7) 

which implies that the coefficients hjk satisfy 

h j il, 2, ... ,j + k) = h:lj + k, ... , 2, 1). (2.8) 

Thus if one of the hjk is zero, the corresponding h kj is 
also zero. The function hik(1, 2, 3, ... ,j,j + 1, ... , 
j + k) is symmetric in the first j variables, and also in 
the last k variables. 

For the sake of later convenience Eq. (2.5) can be 
written as 

H= Ho+ V, (2.9) 

'2 For fermion systems the corresponding coefficients are given in 
Appendix A of D. H. Kobe and W. B. Cheston, Ann. Phys. (N.Y.) 
20,279 (1962). 
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where the unpetturbed Hamiltonian Ho is 

Ho = Hoo + Hu (2.10) 

and V is the sum of the other terms in Eq. (2.5). The 
operator V will be called the bogolon-interaction 
Hamiltonian. 

3. THE BOGOLON VACUUM STATE 

In order to discuss the bogolon theory of boson 
systems further, it is important to have an explicit 
expression for the bogolon vacuum state I <Po), i.e., 
the state of no bogolons.13 The bogolon vacuum state 
contains no bogolons, so 

(3.1) 

for all momentum k. It should also be normalized to 
unity. The bogolon vacuum state can be assumed to 
be generated by applying operators of the form a~ and 
ata~k to the state of no particles, Ivac). As shown in 
the Appendix, this state has the form14 

1"1'0) = C exp {<po(1 - so)a~ + t t ska!a~k} Ivac) 

(3.2) 
where 

(3.3) 

and the sum is over all states including the zero­
momentum state. The So occurs because we are 
treating the zero-momentum state exactly. The con­
stant C is a normalization factor which depends on the 
variables Sk and <Po, and is determined by the normali­
zation condition 

C-2 = (vacl exp {<po(1 - so)ao + t t skaka-k} 

X exp {<po(1 - so)a~ + t t skaZa~k} Ivac). (3.4) 

In the next section we will use Eq. (3.1) to calculate 
the ground-state energy. 

4. THE COMPENSATION OF THE LOWEST­
ORDER DANGEROUS DIAGRAMS 

In Bogoliubov's original theory,l the coefficients in 
the canonical transformation were determined by 
diagonalizing the quadratic part of the Hamiltonian. 
Bogoliubov only later postulated the PCDD,2 so that 
his original procedure was equivalent to the com-

13 For the fermion case, the bogolon vacuum state isjust the ground­
state vector used by J. Bardeen, L. N. Cooper, and J. R. Schrieffer, 
Phys. Rev. 108, 1175 (1957), in their theory of superconductivity. 

14 A state very similar to this one was used by E. P. Gross, Ann. 
Phys. (N.Y.) 9, 292 (I960~except that he had So = O. The projection 
of this vector on the N-particle subspace would be similar to the 
ground-state vector used by M. Girardeau and R. Arnowitt, Phys. 
Rev. 113, 755 (1959). The same state with So = 0 was also used by 
F. W. Cummings and J. R. Johnston, Phys. Rev. 151, 105 (1966). 

pensation of the lowest-order dangerous diagrams 
(CLODD). 

In the present theory the Hamiltonian in Eq. (2.5) 
can also be diagonalized up to terms cubic in the 
bogolon operators. The terms describing the creation 
or annihilation of a single bogolon from the vacuum 
can be set equal to zero, 

H IO = ° = HOI' (4.1) 
The terms describing the creation or annihilation of a 
pair of bogolons can also be set equal to zero, 

H 20 = 0 = H02 ' (4.2) 

Bogoliubov satisfied Eq. (4.1) by choosing Yo == 0, 
but in the present theory Yo has been retained in order 
to treat the zero-momentum state exactly. Thus the 
coefficient of Yo will have to be equated to zero, 
which will be shown to be equivalent to minimizing 
the unperturbed ground-state energy with respect to 
<PO·4.11 The condition' in Eq. (4.2) can be satisfied by 
setting the coefficient of the operator YkY-k equal to 
zero because of Eqs. (2.6) and (2.7). This coefficient 
contains terms resulting from normal-ordering the 
interaction, which Bogoliubov neglected. It will be 
shown later that Eq. (4.2) is equivalent to minimizing 
the unperturbed ground-state energy with respect to 
Uk and Vk , subject to the constraints in Eq. (2.4). 

If the expectation value of the Hamiltonian in Eq. 
(2.9) is taken with respect to the bogolon vacuum state 
in Eq. (3.2), the result is 

Hoo = ("1'01 (Ho + V) 1"1'0) (4.3) 

because of Eq. (3.1). The only term remaining in the 
sum of Eq. (2.5) is the one involving no creation or 
annihilation operators. The right side of Eq. (4.3) 
involves Sk and <Po only through the state vectors 1"1'0) 
since the total Hamiltonian is independent of them, 
while Hoo involves Uk' Vk , and <Po explicitly from the 
normal ordering, as can be seen from Table II. The 
extremization of Eq. (4.3) will be shown to be a 
minimum in the case that bogolon interactions can be 
neglected. 

It is convenient to use the right side of Eq. (4.3) 
when minimizing, since the full Hamiltonian H in 
Eq. (2.1) is independent of the coefficients in the 
canonical transformation of Eq. (2.3). The condition 
that the unperturbed ground-state energy be a mini­
mum with respect to <Po is 

0<"1'01 H l"I'o)/o<po = 2 <"1'01 H lo"P%<po) = 0, (4.4) 

since the derivative is real,l5 The differentiation of the 

15 If it is complex, then the real part must be taken. In general, all 
of the extremum conditions obtained will also be valid for complex 
matrix elements of the potential if the real part of the expressions is 
taken. 
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= 0 

(a) 

(b) 

FIG. I. Compensation of the lowest­
order dangerous diagrams (CLODD). 
(a) Single-bogolon-state-to-vacuum; (b) 
t wo-bogolon-state-to-vacuum. 

bogolon vacuum state 1V'0) in Eq. (3.2) with respect to 
To gives 

10V'%To) = (1 - so)(a~ - To) 1V'0), (4.5) 

where Eq. (3.4) has been used. Thus Eqs. (4.4) and 
(4.5) show that the minimum in the unperturbed 
ground-state energy is equivalent to 

(4.6) 

if Eqs. (2.3), (2.9), and (3.1) are used. Equation (4.6) 
states that the term describing the annihilation of a 
single bogolon is not present in the bogolon inter­
action V. By using Eqs. (2.5) and (2.9) it can be seen 
that Eq. (4.6) is equivalent to 

hOI = ° (4.7) 

since the other terms in V wiII give zero. Equation 
(4.7) is also equivalent to Eq. (4.1) by Eqs. (2.6) and 
(2.7). The diagram describing the annihilation of a 
single bogolon is shown in the next section to be 
"dangerous." The compensation of this lowest-order 
dangerous diagram (CLODD) in Eq. (4.7) is shown 
graphically in Fig. l(a). 

The minimization of the unperturbed ground-state 
energy with respect to Sk gives the condition 

o <V'ol H lV'o)/osk = 2 <V'ol H 10V'0/osk) = 0, (4.8) 

since it is also reaps The differentiation of the state 
vector in Eq. (3.2) with respect to Sk for k :F- ° gives 

10V'0/osk) = (a~a~k - UkVk) 1V'0) (4.9) 

if Eq. (3.4) is used. For k = 0 the result is somewhat 
different, 

10V'0/oso) = Ua~aJ - a~To + tT~ - tuovo) I V'o), 

(4.10) 

since So occurs in the coefficient of a~ in Eq; (3.2). If 
Eqs. (4.9) and (4.10) are used in Eq. (4.8), and the 
particle operators are transformed by Eq. (2.3), 
the minimum condition for all k is 

<V'ol VYZY~k 1V'0) = 0, (4.11) 

where V is the bogolon interaction defined in Eq. 
(2.9). 

Equation (4.11) is the analog of the Brillouin 
conditionI6 in Hartree-Fock theory for fermion 
orbitals, which states that the matrix element of the 
potential between the ground state and a singly­
excited configuration consisting of a particle and a 
hole is zero. This condition was generalized to fermion 
systems with pairing correlations by replacing the 
singly-excited configuration with a pair of bogolons 
and the potential with the bogolon interaction. The 
expression obtained was the same form as Eq. (4.11), 
and was called the Brillouin-Bogoliubov condition.s 
Equations (4.11) and (4.6) apply to boson bogolons, 
and will be called the Bose-Brillouin-Bogoliubov 
condition (B3 condition). In Eq. (4.6) the singly­
excited configuration is replaced with a single bogolon 
of zero momentum, which is the lowest excited 
state of the system. It would be degenerate with the 
ground state if there were no energy gap, but in that 
case, a source term could be added to provide a 
finite energy gap. The limit as the source term goes to 
zero could be made at the end of the calculation. In 
Eq. (4.11) the singly-excited configuration is replaced 
with a pair of bogolons of equal but opposite 
momenta, which is the next class of excited states. 

If Eqs. (2.5) and (2.9) are used in Eq. (4.11), the 
only term that will not vanish because of creation and 
annihilation operators will be H 02 ' Equation (4.11) 
is then equivalent to 

h02(k, -k) = 0 (4.12) 

for all k. This condition is completely equivalent to 
Eq. (4.2) because of Eqs. (2.6)-(2.8). Equation (4.12) 
states that the lowest-order dangerous diagram leading 
from the two bogolon state to the vacuum is equal to 
zero, which is shown graphically in Fig. l(b). Thus it 
has been shown that the extremum condition on the 
unperturbed ground-state implies the CLODD which 
diagonalizes the Hamiltonian up to cubic terms in the 
bogolon operatorsY 

In order to show that the extremum is indeed a 
minimum, it is necessary to calculate the second 
derivatives of the ground-state energy. Tne ground­
state energy Hoo has its extremum value at {s~} where 
we are choosing LI = To for convenience. The mean 
value theorem can be used at the extremum to obtain 
an exact expansion about the extremum 

(4.13) 

16 L. Brillouin, Actualities Sci. Ind., No. 71 (1933); No. 159 
(1934). See also C. Moller and M. S. Plesset Phys. Rev. 46 618 
(1934). " 

17 For fermion systems, J. G. Valatin, [Nuovo Cimento 7 843 
(I 958)] s~owed t.hat minimi~ing the unperturbed ground-state e~ergy 
resulted In the dlagonahzatlOn of the Hamiltonian up to terms quar­
tic in the bogolon operators. 
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TABLE III. The coefficients in the quadratic form for the 
ground-state energy expansion. 

Derivative 
operator 

on 
Element (1f'o I H 11f'0) Expression 

G-t.-l 0'10fJ!~ 2(uo - vo)'hll(O, 0) 

G-1•0 o'/0fJ!ooso u8(uo - vo)[2h1.(000) + 3! h03(000)] 

3G_1 •k o'/0fJ!oOSk 2uHuo - vo)[2h21(k, -k, 0) 

Goo 02/os8 
BG

Ok o'/osoos" 
B.b

Gkl 02/oskosl 

BG
kk 02/0S~ 

+ 3! h03(k, - k, 0)] 

M/2)[4h1lOO) + 4h.2(OOOO) + 4! ho.(OOOO)] 

u8u,[4h..{0, 0, k, -k) + 4! ho.(OOk, -k)] 

2u,uf[4h22 (k, -k, I, -I) 

+ 4! ho.(k, -k, I, -I)] 

2u~[hll(k, k) + hll ( - k, -k) 

+ 4h22(k, -k, k, -k) 

+ 4! ho.(k, -k, k, -k)] 

where H~g) is the value of the unperturbed ground­
state energy at the extremum, and the sum includes 
-1 as well as all momenta. The expansion variables 
Xk are the deviations from the extremum values 

Xk = Sk - s~ (4.14) 

and the coefficients in the expansion are 

Gkl = 02 ("1'01 H I 1pO)/OSkOSI , (4.15) 

evaluated at {s~ + eXk} where 0 :::;; e S 1. 
If the sum in Eq. (4.13) is positive, then the ground­

state energy is indeed a relative minimum. Thus it is 
necessary to show that the matrix G whose elements 
are given in Eq. (4.15) is a positive-definite matrix. 
The matrix elements defined in Eq. (4.15) are given in 
Table III. In order to show that the matrix G is 
positive-definite, it is necessary to show that all the 
determinants of the principal submatrices are positive. 
Since there are an infinite number of elements, this 
condition is extremely difficult to verify. 

If the bogolon interaction terms in Table III can 
be neglected, the matrix G will be diagonal with 
positive elements. Thus the sum in Eq. (4.13) will be 
positive and the extremum will be a true minimum. 
The bogolon interaction terms would be negligible if 
the potential were sufficiently weak, or if the bogolon 
vacuum state were sufficiently close to the true 
ground state. . . 

In order for the matrix element G_l._l to be pOSItIve, 
it is necessary that 

Eo == h11 (O, 0) > O. (4.16) 

The bogolon "kinetic" energy at zero momentum 
must be positive! Thus in order for the extremum 

to be a minimum, it is necessary to have a gap in the 
bogolon-energy spectrum at zero momentum. Just 
such a gap does occur in the bogolon spectrum, 
however.4.11.l8 If Eq. (4.16) is multiplied by (uo - VO)2 
and Eqs. (4.7) and (4.12) are used,19 the condition 
for a minimum is that the Fourier component of the 
two-body potential vCr) corresponding to zero 
momentum is positive, 

Vo = f drv(r) > O. (4.17) 

Therefore the integral of the interaction over all 
space is positive, so that it is predominantly repulsive. 
The condition in Eq. (4.17) is the same as for the 
stability of phonon modes in the original Bogoliubov 
theory.l 

The surprising feature is that an energy gap is 
needed in the bogolon spectrum to have a minimum 
in the energy with respect to variation of To. If the 
gap is eliminated, a minimum no longer exists. These 
conclusions can also be reached by differentiating 
the Hoo in Table II which is obtained by the normal 
ordering of the Hamiltonian for bogolons. 

5. PERTURBATION EXPANSION OF THE 
GROUND-STATE ENERGY 

The PCDD was postulated by Bogoliubov in order 
to remove divergences in the perturbation expansion 
of the ground-state energy.2 He stated that the sum 
of all the diagrams leading from the vacuum to the 
two-bogolon state should be set equal to zero.20 In 
order to understand better why these diagrams cause 
difficulty, the ground-state energy will be examined. 
In the process it will be discovered that there are 
other dangerous diagrams which can cause divergences 
in the ground-state energy perturbation expansion. 
These are the diagrams that lead from the vacuum to 
the one-bogolon state, which can also be set equal to 
zero. Thus the original PCDD will be supplemented 
with the statement that the sum of all the diagrams 
leading from the vacuum to the one-bogolon state 
also be set equal to zero. 

The true ground state 10) is the eigenstate of the 
full Hamiltonian H with the true ground-state energy 
eo as eigenvalue 

H 10) = eo 10). (5.1) 

If the inner product is taken with the bogolon 

18 The gap was first obtained by M. Girardeau and R. Arnowitt 
(Ref. 14) in a similar theory. 

19 For the explicit expressions, see, e.g., Sec. III o~ Ref. II. 
20 This statement is of course equivalent to the conjugate statement 

that the sum of all diagrams leading from the two-bogolon state to 
the vacuum should be set equal to zero. 



                                                                                                                                    

PRINCIPLE OF COMPENSATION OF DANGEROUS DIAGRAMS. I 1785 

E, + 
(0) 

cr 
I b) 

~ 
Id) 

+~ 
Ie) 

FIG. 2. Diagrammatic expansion of the ground-state energy. 

vacuum, we obtain 

using intermediate normalization 

(1p0 I 0) = 1. 

(5.2) 

(5.3) 

If Eq. (2.5) is substituted into Eq. (5.2) and Eq. (3.1) 
is used, the result 

bo = Hoo + (1pol HOI 10) + (1pol H02 10) 

+ (1po[ H03 [0) + (1po[ H04 [0) (5.4) 

is obtained. A more explicit equation for the ground­
state energy can be obtained by substituting Eq. (2.6) 
into Eq. (5.4). Then Eq. (5.4) can be expressed in the 
graphical form shown in Fig. 2, by making the one­
to-one correspondences shown in Fig. 3. In order to 
see why divergences develop, some of these per­
turbation diagrams will be examined. 

The original expression of the PCDD enunciated by 
Bogoliubov is that the sum of all the diagrams leading 
from the vacuum to the two-bogolon state should be 
set equal to zero. In order to justify this principle on 
the basis of the expansion of the ground-state energy, 
we wiIl consider the diagram in Fig. 4. In Fig. 4 a 
pair of bogolons is created and scatters n - 2 times 

[JI ~ 
• 3 

: i 

~~ 
J 

hoi (1,2", ',j) 

FIG. 3. Correspondence between the diagrams of Fig. 2 and 
mathematical quantities. 

before they annihilate. The contribution to the 
ground-state energy from Fig. 4 is21 

Ih02(k, -k)h~22(k, -k, k, -k)h20(k, -k)/( -2Ek)n-l. 
k 

(5.5) 

21 The same argument was used in Ref. 2. 

k k k. k 

<=XXX 
-k -k -k -k 

k k 

XJ 
-It -k 

FIG. 4. An 11th order contribution to the ground-state energy. 

If we convert the sum to an integral and make the 
special choice that t'k = 0 and Uk = 1, then Ek = 
huCk, k) = O(k2) and the integral will diverge like 
k-2n .;5 at the lower limit. In order to avoid this 
divergence, we can choose h20(k, -k) to be zero as in 
the CLODD of Eq. (4.12). 

However, Fig. 4 is just part of a larger class of 
diagrams shown in Fig. 2(c). Fig. 2(c) gives the 
contribution of the third term on the right in Eq. (5.4), 

(1pol H 02 10) = I h02(k, -k)(-!Pol YkY-k 10), (5.6) 
k 

which vanishes either if h02 is zero or the bogolon pair 
amplitude is zero. We will choose the condition 

(5.7) 

which is equivalent to setting the box in Fig. 2(c) 
equal to zero. By so doing, we can also compensate 

~ 
la) 

~ 
Ib) 

~ 
(e) 

FIG. 5. Other classes of dangerous contri­
butions to the ground-state energy. 

the diagrams shown in Fig. 5(a), (b), and (c), which 
are subclasses of the diagrams in Fig. 2(b), (d), and 
(e), respectively. Equation (5.7) is just the mathe­
matical statement of Bogoliubov's original formula­
tion of the PCDD. 

There are other diagrams in Fig. 2 that can cause 
divergences in the ground-state energy. One of the 
contributions from Fig. 2(b) is shown in Fig. 6. 
There is a factor hlO associated with the left vertex and 
a factor hOI associated with the right. The energy of a 
single bogolon with zero momentum is Eo = h l1 (O, 0), 
so the contribution of Fig. 6 to the ground-state 
energy IS 

(5.8) 

• • 
FIG. 6. A dangerous contribution to the ground-state energy. 
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~ 

FIG. 7. Other classes of dan­
gerous contributions to the 
ground-state energy. 

Equation (5.8) is clearly divergent if the energy of the 
bogolon with zero momentum is zero. However, 
Eo = hu(O, 0) depends on the choice of the coefficients 
in the transformation. If the numerator of Eq. (5.8) is 
taken equal to zero as in the CLODD of Eq. (4.7), 
the term can be eliminated altogether. 

However, Fig. 6 is just part of the larger class of 
diagrams shown in Fig. 2(b). Fig. 2(b) gives the con­
tribution of the second term on the right in Eq. (5.4), 

(1JIol HOllO) = hOI (1JI01 Yo 10), (5.9) 

which vanishes if either hOI is zero or the bogolon 
amplitude is zero. We will choose the condition that 
the amplitude 

(1JI01 Yo 10) = 0, (5.10) 

which is equivalent to the vanishing of the box in 
Fig. 2(b). By so doing, we can compensate the larger 
class of dangerous diagrams shown in Fig. 7(a), (b), 
and (c) which are a subclass of diagrams in Fig. 2(c), 
(d), and (e), respectively. 

Equation (5.10) is the mathematical expression for 
the statement that the sum of all the diagrams leading 
from the one bogolon state to the vacuum should be 
set equal to zero. This statement supplements Bogoliu­
bov's original statement of the PCDD. He was not 
faced with this problem since he chose Yo == O. 

Thus in Eqs. (5.7) and (5.10) we have the PCDD for 
boson systems which was obtained from the stipulation 
that the ground-state energy should not have any 
divergent diagrams. However, we are not at all 
certain that there are not some other divergent 
diagrams, or that the ground-state energy converges 
at all. Thus there is need to put the PCDD on a 
firmer foundation. In the next section we will show 
that the PCDD corresponds to maximizing the overlap 
between the true ground-state vector and the bogolon 
vacuum state. 

6. MAXIMUM OVERLAP 

A criterion which can be used to determine the 
coefficients in the canonical transformation of Eq. 

(2.3) is that the distance in Hilbert space between the 
true ground-state vector 10) and the bogolon vacuum 
state 11JI) given in Eq. (3.2) is a minimum,' 

1110) - 11JI0) II = minimum. (6.1) 

This condition should be superior to the Hartree 
method used in Sec. 4 to obtain the CLODD, since 
it is well known that a good ground-state energy can 
sometimes be obtained from a poor wavefunction. 
However, a good wavefunction should not only give 
a good ground-state energy, but good expectation 
values to other operators as well. 

On expanding Eq. (6.1) it is easily seen that the 
condition is the same as having maximum overlap 
between the true ground-state vector and the bogolon 
vacuum state 

(0 11JI0) = maximum (6.2) 

if the overlap is real and positive. The condition of 
maximum overlap was used in a previous paper to 
obtain the PCDD for fermion systems. 7 It was 
originally introduced by Brenig22 to obtain orbitals in 
the independent-particle model. 

The bogolon vacuum state 11JI0) depends only on 
CPo and Sk' The overlap is extremized with respect to 
variation of these two parameters, and it is shown 
later in this section that the extremum is indeed a 
maximum if bogolon interactions can be neglected. 
The condition that the overlap in Eq. (6.2) is an 
extremum with respect to the variation of CPo is 

13(0 11JIo)/acpo = O. (6.3) 

Since the true ground state 10) does not depend on the 
coefficients in the transformation of Eq. (2.3), only 
the state 11JIo) can be varied. Equation (4.5) can thus 
be used, along with Eq. (2.3), to transform the particle 
operators to bogolon operators. If the property in 
Eq. (3.1) that the state 11JIo) is the bogolon vacuum is 
used, Eq. (6.3) becomes 

t (01 Yo 11JIo) = O. (6.4) 

Equation (6.4) is just the complex conjugate of Eq. 
(5.10) and so is the part of the PCDD describing the 
compensation of the one-bogolon-to-vacuum dia­
grams. Equation (6.4) is shown graphically in Fig. 
8(a), which is the generalization of Fig. l(a). 

The condition that the overlap in Eq. (6.2) is an 
extremum with respect to variation of Sk is 

13(0 11JIo)/ask = 0 (6.5) 

for all k. If Eqs. (4.9) and (4.10) are used in Eq. (6.5), 
along with Eqs. (2.3) and (3.1), the equation becomes 

(01 Y~Y~k 11JIo) = O. (6.6) 

•• W. Brenig, Nucl. Phys. 4, 363 (1957). 
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FIG. 8. The principle of compensa­
tion of dangerous diagrams (PCDD) in 
graphical form. (a) One-bogolon-state­
to-vacuum; (b) t wo-bogolon-state-to­
vacuum. 

Equation (6.6) is just the complex conjugate of Eq. 
(5.7) and is the part of the PCDD describing the 
compensation of the two-bogolon-to-vacuum dia­
grams. Equation (6.6) is shown graphically in Fig. 
8(b), which is the generalization of Fig. 1 (b). 

In order to show that the overlap is a maximum, it 
is necessary to examine the second derivatives of the 
overlap, 

(6.7) 

The overlap has its extremum at the values {s~} where 
To = Ll for convenience. The mean-value theorem 
can be used to obtain an exact expansion about the 
extremum 

F = F(O) + t I FkIXkXI , (6.8) 
k.I 

where F(O) is the value of the overlap at the extremum 
and the sum includes the term -I. The expansion 
variables X k are the deviations in Sk from their extre­
mum values s~ as given in Eq. (4.14). The coefficients 
in the expansion are 

FkI = a2F/aSk aS
" 

(6.9) 

evaluated at {s~ + exk }, where 0 ~ e ~ 1. Since the 
first derivatives vanish at the extremum, they do not 
appear in Eq, (6.8), so it is a quadratic form. If the 
sum in Eq. (6.8) is always negative, the extremum is 
indeed a maximum. Thus it is necessary to show that 
the matrix F whose elements are given in Eq. (6.9) is 
negative-definite. 

The matrix elements of F are given in Table IV. 
They are . all extremely difficult to evaluate, since the 
true ground-state is not known. After the extremum 
values of Sk are determined from the PCDD, the 
matrix elements in Table IV can be evaluated by 
perturbation theory. The matrix F is thus an infinite­
dimensional matrix, each matrix element of which is 
an infinite expansion. The determinants of all the 
principal submatrices of F must be calculated to see 
if the even-dimensional ones are positive, and the 
odd ones are negative. If they are, the matrix F is 
negative-definite, and the extremum is a true maxi­
mum. Needless to say, this program will not be 
carried out here. 

If the bogolon interactions are negligible, which is 
the case when the potential is weak and/or the bogolon 

TABLE IV. The coefficients in the quadratic form for the 
overlap expansion. 

Derivative 
operator 

on 
Element (0 I 'Po) Expression 

P-1,-1 a'lap~ -(uo - vo)'(O I 'Po) 

P_"o a'i api)so (u~/2)(lIo - vol (01 y~t l'Po) 

3P_"k a'iapoask u~(uo - vol (0\ ytytY!k l'Po) 

Poo a'iasoaso -(u~j2)'(O I 'Po)[2 - (01 y~t \'Po)/(O I 'Po>] 

3Pok a'iasoask (U~j2)I1~ (0\ y~tY~Y!k \'Po) 

3,bPkl a'iaskasl uN (0\ ytY!kytY!,I'Po) 

aPkk a'las: -lIt(O I 'Po)[1 - (0\ (Y~Y!k)' \'Po)/(O I 'Po)] 

ak ~ 0, -1. 
bk ~ I. 

vacuum is close to the true ground state, all the 
amplitudes in Table IV describing three- or four­
bogolon processes can be neglected. The remaining 
matrix elements are the diagonal ones which are 
negative if the overlap is positive. Thus in this case 
the overlap is a maximum. Unless the three- and 
four-bogolon processes are very important, this 
conclusion is expected to be valid in general. It is, 
however, conceivable that if the bogolon vacuum 
state is not a good approximation to the true ground 
state, the PCDD would not correspond to a true 
maximum. 

7. TRANSITION AMPLITUDES 

The criterion of maximum overlap in the fermion 
case was shown by Smith23 to imply that the density 
matrix determined from the bogolon vacuum state 
be equal to the transition density matrix (01 aiak l1J!o). 
Maximum overlap also implies that the pair amplitude 
determined from the bogolon vacuum state be equal 
to the transition pair amplitude (01 aka_k l1J!o). In the 
independent-particle model the transition density 
matrix is also related to maximum overlap.24 

As another criterion for the PCDD, the density 
matrix calculated from the bogolon vacuum state 
can be equated to the transition density matrix 

(1J!ol a~ak l1J!o) = (01 a~ak l1J!o)' (7.1) 

The expectation value of ao in the bogolon vacuum 
state can be equated to the transition one, 

If intermediate normalization 

(7.3) 

'3 V. H. Smith, Jr., Nuovo Cimento 48, 443 (1967). 
,. W. Kutzelnigg and V. H. Smith, Jr., J. Chern. Phys. 41, 896 

(1964). 
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is used, and the canonical transformation in Eq. (2.3) 
is substituted into Eq. (7.2), the condition 

(01 Yb 111'0) = 0 (7.4) 

is obtained. Equation (7.1) along with Eqs. (7.3) and 
(7.4) implies 

(01 yty ~k 111'0) = o. (7.5) 

Equations (7.4) and (7.5) are just the PCDD obtained 
in Eqs. (6.4) and (6.6) by the maximum-overlap 
criterion. 

A variational method could have been used here 
also. The sum of the squares of the differences between 
the density matrix calculated from the bogolon 
vacuum state and the transition density matrix could 
have been minimized. The result would have been 
Eq. (7.1). A similar method could have been used to 
obtain Eq. (7.2). It was felt that using a variational 
procedure to obtain Eqs. (7.1) and (7.2) would not 
have given any further insight, however. 

An alternative criterion for the PCDD is to equate 
the pair amplitude calculated from the bogolon 
vacuum state to the transition pair amplitude 

(11'01 aka_k 111'0) = (01 aka_k 111'0) (7.6) 

and use Eq. (7.2) in addition. By substituting the 
canonical transformation in Eq. (2.3) into Eqs. (7.2) 
and (7.6), we can also obtain the PCDD in Eqs. (7.4) 
and (7.5). 

8. ELIMINATION OF ONE- AND TWO­
BOGOLON CONTRmUTIONS TO THE 

TRUE GROUND STATE 

One way of characterizing the PCDD in fermion 
systems is to eliminate the two-bogolon contributions 
to the true ground-state vector.7 This condition is a 
generalization of the elimination of singly-excited 
configurations from the true ground state for the 
independent-particle modeI.25 In the boson case, it 
will be shown that eliminating both one- and two­
bogolon contributions to the true ground-state vector 
leads to the PCDD. 

The true ground state can be expanded in terms of 
zero-, one-, two-, three-, ... , bogolon states, 

10) = Co 111'0) + CIY~ 111'0) + .2 C2(k)ytY~k 1'11'0) 
k . 

+ .2 Ca(k, l)ytYiY~k-1 111'0) + .. " (8.1) 
kl 

since the set of states is" assumed complete. If the 
one-bogolon term in Eq. (8.1) is eliminated, then the 
coefficient 

(8.2) 

2. R. K. Nesbet, Phys. Rev. 109, 1632 (1958). 

This coefficient can be calculated by taking the inner 
product of Eq. (8.1) with y~ 11I'c)' Thus Eq. (8.2) is 

(11'01 Yo 10) = 0, (8.3) 

which is the same as Eq. (5.10) and the complex 
conjugate of Eq. (6.4). Equation (8.3) is the com­
pensation of the dangerous diagrams describing the 
creation of a single bogolon from the vacuum. 

The condition that there are no two-bogolon con­
tributions to the ground-state vector in Eq. (8.1) is 
that 

Cz(k) = 0, all k. (8.4) 

This coefficient can be calculated by taking the inner 
product ofEq. (8.1) with Y~Y~k 111'0)' Then Eq. (8.4)is 

(11'01 YkY-k 10) = 0, (8.5) 

which is the same as Eq. (5.7) and the complex 
conjugate of Eq. (6.6). Equation (8.5) is the com­
pensation of the dangerous diagrams describing the 
creation of a pair of bogolons from the vacuum. The 
vanishing of one- and two-bogolon contributions to 
the true ground state is closely related to the general­
ization of the Bose-Brillouin-Bogoliubov condition 
which is discussed in the next section. 

9. PARTIAL DIAGONALIZATION OF THE 
REACTION OPERATOR 

In Sec. 4, the CLODD was obtained by a diagonali­
zation of the Hamiltonian up to terms cubic in the 
bogolon operators. The PCDD can be obtained by a 
similar procedure, but instead of using the Hamil­
tonian, the reaction operator (t matrix) is diagonalized 
up to cubic terms. This procedure is similar to a 
generalization of the Brillouin condition16 in Hartree­
Fock theory by replacing the potential with the 
reaction operator. 

The reaction operator (t matrix) is the operator such 
that 

t 111'0) = V 10), (9.1) 

where V is the bogolon interaction defined in Eq. 
(2.9). The reaction operator satisfies the Lippmann­
Schwinger equation26 

t = V + VGot. (9.2) 

The propagator Go is 

G - 1 - 111'0)(11'01 (9.3) 
0- <' H ' ()o - 0 

where Eo is the eXact ground-state energy, and has 
been defined more precisely by L6wdin.27 From Eq. 
(9.1) it can be seen that the reaction operator is a 

2. B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950). 
27 P.-O. Liiwdin, J. Math. Phys. 3, 969 (1962). 
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many-particle operator. If the canonical transforma­
tion of Eq. (2.3) is made on it, we can write it as 

f = 2. f;b (9.4) 
;,k 

where t;k contains j creation operators and k anni­
hilation operators, 

t;k = 2. T;TcC 1, 2, ... ,j + k) 
1,2,' .. ,;+k 

t t t 
X Y1YZ' ., Y;YH1 ... YHk' (9.5) 

If we simplify the reaction operator such that it is 
diagonal up to terms cubic in the bogolon operators, 
then we must have the operators t 01 ' 110 , t 20 , and t02 

vanish in Eq. (9.4). Thus we obtain, from Eq. (9.5), 

T01 = 0, (9.6) 
and 

T02(k, -k) = O. (9.7) 

Equations (9.6) and (9.7) are equivalent to 

(11'01 tY~ 111'0) = 0 (9.8) 
and 

(9.9) 

which can be seen by substituting Eqs. (9.4) and (9.5) 
into them. 

Equations (9.8) and (9.9) are the generalization of 
the Bose-Brillouin-Bogoliubov condition obtained in 
Eqs. (4.6) and (4.11). The difference is that the bogolon 
interaction V has been replaced by the bogolon 
reaction operator I. The Brillouin condition in 
Hartree-Fock theory was generalized by Lowdin28 

and Nesbet25 by replacing the potential with the 
reaction operator, and was called the Brillouin­
Brueckner condition. In a previous paper7 this 
condition was further generalized to fermion Bogo1iu­
bov quasiparticles by using a two quasiparticle state, 
which is a generalization of the particle-hole state, 
and was called the Brillouin-Brueckner-Bogoliubov 
condition. Equations (9.8) and (9.9) represent a 
further generalization to boson systems, and hence 
can be called the Bose-Brillouin-Brueckner-Bogoliu­
bov condition (B4 condition). The B4 condition is 
equivalent to the usual form of the PCDD, as is 
shown below. 

The wave operator W is defined such that 

10) = W 111'0) 

and is related to the reaction operator by 

W = 1 + Got. 

Equations (9.8) and (9.9) then imply that 

(01 yt 111'0) = 0 

2. P.-O. Uiwdin, J. Math. Phys. 3, 1I71 (1962). 

(9.10) 

(9.11) 

(9.12) 

and 
(9.13) 

which is just the PCDD obtained in Eqs. (6.4) and 
(6.6). Thus the partial diagonalization of the reaction 
operator also leads to the PCDD. 

10. EXACT SELF-CONSISTENT-FIELD THEORY 

In Sec. 4 it was shown that the minimization of 
the unperturbed ground-state energy resulted in the 
CLODD. Thus it appears that if the energy is the 
property of primary interest, the CLODD should be 
used instead of the PCDD. In this section it is shown 
that an extension of the Hartree theory which was first 
used by Brueckner29 can be applied to this problem. 
The method was formulated more precisely by 
Lowdin and called the exact self-consistent-field 
(ESCF) theory for orbitals. 28 The application of the 
exact self-consistent-field theory resulted in the 
PCDD for the fermion case,8 and is shown now to 
result in the boson PCDD. 

The variational principle used here has a one-to-one 
correspondence with the equations of Sec. 4, but the 
reaction operator t defined in Eq. (9.1) is used 
instead of the bogolon interaction V. The exact 
ground-state energy 60 can be obtained from the 
reaction operator. From Eqs. (5.2), (2.9), and (9.1) 
the ground-state energy is 

60 = (11'01 (Ho + t) 111'0), (10.1) 

where the reaction operator t is calculated from the 
Lippmann-Schwinger26 equation given in Eq. (9.2). 
Equation (10.1) is true for any choice of the param­
eters in the trial-state vector 111'0), since the reaction 
operator adjusts itself such that the true ground-state 
energy is always obtained. Equation (10.1) is the 
analog of Eq. (4.3) for the unperturbed energy. 

Since 60 is a constant it cannot be varied, so it is 
necessary to find a related function that can be. Both 
the trial-state vector 111'0) and the operator Ho + I 
depend on the choice of the parameters U = 
«({Io, Uk' Vk) in such a way that Eq. (10.1) is a constant. 
However, a functional 

6(U, x) = (lpO(U) 1 [Ho(x) + leX)] 11po(u» (10.2) 

can be defined, where x is another independent 
choice of the parameters «({Io, Uk' Vk)' Thus, from 
Eq. (10.1), 

60 = 6(U, u) (10.3) 

for all values of the parameter, u. 
In order to find the extremum points of the func­

tional 6(U, x) as a function of u, we must set the first 

2. K. A. Brueckner and C. A. Levinson, Phys. Rev. 97, 1344 
(1955). 
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derivative equal to zero, 

o8(u, x)/ou = 0, (10.4) 

which is the analog of Eqs. (4.4) and (4.8) for the 
unperturbed energy. In principle, this relationship 
can be solved to give the dependence of u on x, 

u = u(x). (10.5) 

In order to determine the value of 8 at the minimum, 
the value of u in Eq. (10.5) can be used in (10.2), 

min 8 = 8(u(x), x). (10.6) 

If this minimum value of 8 is to be the true ground­
state energy 80 , then 

u(x) = x, (10.7) 

and the proper choice of u can be determined by 
setting u = x in Eq. (10.4) after differentiation, 

[o8(u, x)/ouL~", = o. (10.8) 

If the derivatives of Eq. (10.2) are taken using Eqs. 
(4.5), (4.9), and (4.10), the result of Eq. (10.8) is just 

<"Po(u) I [Ho(u) + t(u)]yo l"Po(u» = 0 (10.9) 
and 

<"Po(u) I [Ho(u) + t(u)]ytY~k l"Po(u» = O. (10.10) 

The bogolon operators in these equations are eval­
uated with the parameters u. Equations (10.9) and 
(10.10) just reduce to the B4 conditions in Eqs. (9.8) 
and (9.9), which were shown to be equivalent to the 
PCDD. These conditions are the analog of the B3 
conditions in Eqs. (4.6) and (4.11). Thus this ex­
tension of Hartree theory is completely equivalent to 
the PCDD. 

Figure 9 compares the Hartree procedure with the 
ESCF theory. In Sec. 4 the unperturbed ground­
state energy Hoo was minimized with respect to the 

Hoo 

V 
Eo 

u(CLODD) 

(0) 

f.(u,x, X' u(PCDD) 

Eol--------"'-T'""--

u(PCDD) u 

FIG. 9. A schematic 
comparison of the 
Hartree procedure 
and the exact self-con­
sistent-field (ESCF) 
theory. (a) The mini­
mization of the unper­
turbed ground-state 
energy Hoo implies 
the compensation 
of the lowest-order 
dangerous diagrams 
(CLODD). (b) The 
condition that the 
minimum of the ex­
pectation value of the 
"effective Hamilton­
ian" Ho + t lie on the 
exact ground-state 
energy &0 implies the 
PCDD. 

parameters u = (f/Jo, Uk' Vk)' The minimum condition 
was shown to imply the CLODD. In Fig. 9(a) the 
minimum of Hoo is an upper bound to the true 
ground-state energy by the variation principle. Fig. 
9(b) shows the ESCF theory. The condition that the 
functional 8(u, x) defined in Eq. (10.2) has its minimum 
(or extremum) at the true ground-state energy 80 

implies the PCDD as shown in the previous para­
graphs. 

The derivative ofEq. (10.1) with respect to u is zero, 
so that 

2 <"Pol (Ho + t) lo"P%u) 

+ <"Pol [o(Ho + t)/ou] l"Po)= O. (10.11) 

The variational principle in Eq. (10.8) says that the 
first term must be zero so the second term must also 
vanish. Thus the variation of the ground-state wave 
vector holding the operator Ho + t fixed is equivalent 
to varying the operator holding the ground-state 
vector fixed. 

Figure 9(b) shows that a first-order variation in the 
parameters of the ground-state vector holding Ho + t 
fixed results in a second-order variation in the energy. 
Equation (10.11) shows that holding the ground-state 
vector fixed while making a first-order change in the 
"effective Hamiltonian" Ho + t also makes only a 
second-order change in the energy. The Lippmann­
Schwinger equation given in Eq. (9.2) cannot, in 
general, be solved for t exactly. Various approxima­
tions like, for example, including only two-body 
parts,30 give some approximate reaction operator 
leu). If this approximate reaction operator can be 
written as the true reaction operator evaluated with a 
different set of parameters u + bu, i.e., 

leu) = t(u + (Ju), (10.12) 

then using this reaction operator will result in only a 
second-order change in the energy from the true 
value 80, If the condition in Eq. (10.8) were not used 
to determine the parameters, then there would be a 
first-order change in the energy. Since the Lippmann­
Schwinger equation is very difficult to solve exactly, 
this variation principle is very important in a calcu­
lation of the true ground-state energy. It is not 
obvious under what conditions Eq. (10.12) is satisfied, 
however. 

The function 8(u, x) as a function of u is. bounded 
from below if the Hermitian "effective Hamiltonian" 
Ho(x) + t(x) can be considered as the true Hamil­
tonian for some physical system. The system will then 
have a finite ground-state energy €o{x). If we take the 

30 This approximation is used in Refs. 25 and 29, and is the usual 
one. 
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0 0-
+ <C3> 

(a) 
(b) 

~ + ~ 
(e). 

(d) 

C>--+ ~+ ... 
(e) (f) 

FIG. 10. The compensation of the dangerous diagrams leading from 
the vacuum to the one-bogolon state up to second order. 

expectation value of the "effective Hamiltonian" with 
respect to the trial wavefunction l'Po(u» to obtain 
an energy E(u, x) given in Eq. (10.2), we will have an 
upper bound on EO(X) by the energy variation principle. 
In other words, the true lowest eigenvalue to Ho(x) + 
t(x) is a lower bound to E(u, x). 

11. SECOND-ORDER PERTURBATION 
CALCULATIONS 

The PCDD was recently used by Woo and Ma5 

in calculating corrections to the ground-state energy 
and excitation spectrum of a charged boson gas. They 
considered only one of the second-order diagrams 
describing the creation of a pair of bogolons from 
the vacuum. Thus there is some interest in obtaining the 
other diagrams in second order contributing to the 
vacuum-to-two-bogolon state and the vacuum-to-one­
bogolon state. Some comments on the reducibility of 
the diagrams will also be made. 

If the perturbation expansion for the wave 
operator31 in Eqs. (9.10) and (9.11) is used in the 
PCDD in Eq. (5.10) for the vacuum-to-single-bogolon 
processes, the result to second order is 

0= ('Pol Yo 10) = ('Pol YoW I 'Po) 
= (-EO)-lh10 

+ I (-EO)-lhI3(0123) 

X (-El - E2 - E3)-13! h30(123) 

+ I (-EO)-lh03(123) 

X (-Eo - El - E2 - E3)-14! h40(0123) 

+ (-Eo)-lhOl( -2Eo)-12! h20(0, 0) 

+ I (-EO)-lh12(012) 

X (- El - E2)-12! h20(12) 

+ I (-EO)-lh02(l2) 

X (- Eo - El -E2)-13! h30(l20) 
+ .... 

31 See, e.g., Ref. 27, Eq. (92). 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(ILl) 

=~ + ~ + ~ 
C>C+~+<= 

(d) (e) (f) 

+ 
(g) (h) 

FIG. II. The compensation of the dangerous diagrams leading from 
the vacuum to the two-bogolon state up to second order. 

The diagrams corresponding to the various terms in 
Eq. (ILl) are shown in Fig. 10. It can be seen that 
Fig. 1O( d) involves a vertex for the annihilation of a 
single bogolon. This vertex can be dressed with 
higher-order diagrams, and thus replaced with a box 
describing the annihilation of a bogolon to give the 
vacuum. If the box describing the creation ofa bogolon 
from the vacuum vanishes, so will the box describing 
the annihilation of a bogolon to give the vacuum. 
Figure 1O( d) can be eliminated in the compensation 
process. It is a reducible diagram since it can be broken 
into two parts by cutting only one line. 

The vertex describing the creation of two bogolons 
in Fig. lO(e) and the annihilation of two bogolons in 
Fig. 10Cf) can be dressed by replacing them with 
boxes. If the box in Fig. II vanishes, then these 
diagrams will also, and thus do not have to be 
considered in the compensation process. They are also 
reducible diagrams since they can be broken into two 
parts by cutting two lines. Thus only the irreducible 
diagrams that cannot be broken into two parts by 
cutting one or two lines need be considered in the 
compensation process. 

The propagator for a single bogolon with zero 
momentum is - EOl, which diverges if there is no 
energy gap. The bare-bogolon energy does have such 
a gap, but the dressed bogolon presumably does not 
have such a gap. The energies El in the denominators 
of Eq. (ILl) should be replaced with energies El 
dressed in the order of the calculation. In the case 
that -E01 diverges, a source term32 ex Ik wkaka_k + 
h.c., where Wk is arbitrary, can be added to the 
original Hamiltonian to insure a gap in the dressed 
spectrum. The coefficient of - E01 can be set equal to 
zero, and the limit ex -+ 0 can be taken at the end. 
It is not known whether the compensation of all the 
diagrams of the type shown in Fig. 10 will eliminate 

32 This kind of source term is used in the theory of supercon­
ductivity, N. N. Bogoliubov, Physica 26, 51 (1960). 
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the energy gap. entirely, 33 but presumably a gap 
would not be present in an exact calculation. 

A possible way of satisfying Eq. (5.8) in all orders 
is to use Bogoliubov's method1 of setting Yo == O. 
This method, of course, violates the commutation 
relation between ao and ab' However, this approxi­
mation is presumably correct in the infinite volume 
limit for the thermodynamic functions. 34 It is not 
obvious that the compensation of all the dangerous 
diagrams leading from the vacuum to the single­
bogolon state is equivalent to the Bogoliubov approxi­
mation, though. Presumably, it is an alternative but 
equivalent way of determining the chemical potential. 

The dangerous diagrams describing the creation of 
two bogolons from the vacuum in Eq. (5.7) can be 
compensated by using the expansion for the wave 
operator31 in Eq. (9.11). The result to second order is 

0= (11'01 YkY-k 10) = (11'01 YkY-k W 111'0) 
= (-2Ek )-lh20(k, -k) (a) 

+ ! (-2Ek)-lhI2(kI2) 

x (-Ek-EI-E2)-13!h30(-kI2) (b) 

+ L (-2Ek)-lhlaCkI23) 

X (-Ek - El - E2 - E3)-14! h40C-kI23) (c) 

+ ! (-2Ek )-lh22(k - k12) 

x (-El - E2)-12! h20(l2) (d) 

+ L H -2Ek )-lh02(l2) 

x (-El - E2 - 2Ek)-14! h40(l2k - k) (e) 

+ H -2Ek )-lho1 
X (-Eo -:- 2Ek)-13! h30(Ok - k) 

+ (-2Ek )-lh21(k, -k, 0)( -EO)-lh10 
+ (- 2Eo)-lhlO( -Eo)hlO(\O 

+ (k---*-k)+· ... 

(f) 

(g) 

(h) 

(11.2) 

Figure II shows the diagrams corresponding to the 
terms in Eq. (11.2). The diagram in Fig. 11 (d) 
involves a vertex describing the creation of a pair of 
bogolons which can be dressed in higher order and 
replaced with a box. It vanishes if the original box 
describing the creation of two bogolons vanishes, and 
thus does not have to be considered in the com­
pensation process. For a similar reason, the diagram 
in Fig. 11(e) does not have to be considered, since it is 
also reducible. 

In the diagrams of Figs. 11 (f), (g), and (h) the 
vertex describing the creation or annihilation of a 
single bogolon from the vacuum can be replaced with 

33 The energy gap in the bogolon spectrum was shown to vanish in 
the RPA by A. Coniglio and M. Marinaro [Nuovo Cimento 48, 
262 (1967)]. 

3. J. Ginibre, report of work prior to publication. 

the box in Fig. 10, or its Hermitian conjugate. If 
the diagrams of Fig. 10 are compensated, then these 
diagrams will not contribute in Fig. II. Thus only 
the irreducible diagrams need be considered in the 
compensation process. To second order these irre­
ducible diagrams are Figs. Il(a), (b), and (C).35.36 

WOO and Ma5 considered the contribution of Figs. 
II (a) and 11 (b), but not Fig. 11 (c). If the depletion is 
high, the latter diagram would be expected to be of 
the same order as the former, and should be investi­
gated. The diagrams in Fig. 10 were not considered by 
them either, and it would be interesting to see what 
effect they would have. 

12. RELATIONSHIP TO ANOTHER FORM 
OF THE penn 

In a subsequent paper9b it will be shown that the 
criterion of minimum number of bogolons in the 
true ground state gives another form of the PCDD, 

(01 Yo 10) = 0 (12.1) 
and 

(01 YkY _k 10) = 0, (12.2) 

which is called the PCDD(II). The PCDD(II) differs 
from the PCDD(l) in Eqs. (5.7) and (5.10) in that the 
bogolon vacuum state is replaced with the true 
ground state of the full Hamiltonian with a source 
term. The relationship between the PCDD(II) in Eqs. 
(12.1) and (12.2), and the PCDD(I) in Eqs. (5.10) 
and (5.7) is discussed in this section, and will also be 
discussed in the subsequent paper from another point 
of view. The diagrams used in this paper are based on 
the wave and reaction operator formalism, whereas 
the subsequent paper will use bogolon Green's 
function diagrams. 

If the wave operator in Eq. (9.10) is substituted into 
the amplitude in Eq. (12.1) the result is 

(01 Yo 10) - (11'01 Yo 10) = (11'01 tGoYoGol 111'0)' (12.3) 

The right side of Eq. (12.3) is the difference between 
the PCDD(II) and (I). If the perturbation expansion 
for the reaction operator I is substituted into the right 
side of Eq. (12.3), it can be seen that a bogolon with 
zero momentum will be annihilated before the other 
bogolons are annihilated. The class of diagrams that 

35 A similar analysis was carried out for fermion systems in Ref. 8. 
36 The above argument of reducibility does not properly take off­

the-energy-shell effects into account. These effects would be present 
in Figs. 10(d), 10(f), and II(h). If the gap in the spectrum is small, 
the effects would presumably also be small in these diagrams. On 
the other hand, in Figs. I I (e) and (f) the off-the-energy-shell effect 
would playa role, but to what extent is not known. These diagrams 
can be explicitly taken into account by considering them as i.rreduc­
ible. The concept of reducibility would then be restncted to diagrams 
that are on the energy shell,like Figs. 10(e), 11 (d), and l1(g), and the 
above analysis applies exactly. 
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compose the right side of Eq. (12.3) is shown in Fig. 
12(a). These diagrams are not dangerous in the sense 
that there is not necessarily any intermediate state 
with only one bogolon. Thus with the diagrams based 
on the wave and reaction operator formalism, the 
PCDD(I) should be used.37 

(0) 

[];>O 
( b) 

FIG. 12. Classes of diagrams which 
occur for the difference between the 
PCDD(II) and PCDD(I). 

The wave operator in Eg. (9.10) can also be 
substituted into the amplitude in Eg. (12.2), which 
gIves 

(01 YkY-k 10) - ("Pol YkY-k 10) 

= ("Pol tGOYkY_kGOt \"Po)' (12.4) 
The right side of Eq. (12.4) is just the difference be­
tween the PCDD(II) and (I). It also shows that two 
bogolons are annihilated from a group before the 
others are annihilated. The class of diagrams that 

compose the right side of Eq. (12.4) is shown in Fig. 
12(b). These diagrams are not dangerous, either, in the 
sense that the final state is not a two-bogolon state. 
Thus with the diagrams based on the wave and 
reaction-operator formalism, the PCDD(I) should 
again be used37 • 

In the subsequent paper, bogolon Green's functions 
and their diagrams will be used. In that case, only 
the PCDD(Il) can be expressed in terms of the Green's 
function diagrams. The PCDD(I) cannot be expressed 
in terms of the usual Green's functions for the bogo­
Ions, since they are true ground-state expectation 
values of time-ordered products of operators. Thus 
which form of the PCDD one uses will be based on 
the choice of perturbation formalism and the corre­
sponding diagrams. 

13. CONCLUSION 

The PCDD has been shown in this paper to have 
many theoretical advantages over the CLODD. 
These advantages can be seen from Table V where 
the PCDD and the CLODD are compared. The 
CLODD was shown in Sec. 4 to be based on the 
minimization of the unperturbed ground-state energy. 
Thus it appears that from the energy point of view it is 

TABLE V. Comparison between the compensation of the lowest-order dangerous diagram (CLODD) and the principle of 
compensation of dangerous diagrams (PCDD). 

CLODD 

Lowest-order dangerous diagrams are zero: < =0, 

~ =0. 

Unperturbed ground-state energy is a minimum, 

15 ('1'01 (Ho + V) 1'1'0> = o. 
Hamiltonian is a constant operator, 

('I'oll5(Ho + V) 1'1'0> == o. 
Bose-Brillouin-Bogoliubov condition, 

('1'01 V In bogolon> = 0, n = 1, 2. 
Distance between true ground state 10> and bogolon 

vacuum state 1'1'0> is not a minimum: 

1110> - 1'1'0> II # min. 

Some contribution of one- and two-bogolon states. to the 
true ground state: 

(01 n bogolon> # 0, n = 1, 2. 

Lowest-order dangerous contributions to the ground­
state energy vanish. 

PCDD 

All dangerous diagrams are zero: 

[]=:!: = 0, 

0--+ =0. 

True ground-state energy is a constant, 

15 ('1'01 (Ho + t) I'po> == o. 
Variation of the "effective Hamiltonian" is zero, 

<'I'oll5(Ho + t) 1'1'0> = O. 

Bose-Brillouin-Brueckner-Bogoliubov condition 

<'1'01 t In bogolon> = 0, n = 1,2. 

Distance between the true ground state 10> and the bogolon 
vacuum state 1'1'0> is a minimum: 

1110> - 1'1'0> II = min. 

No contribution of one- and two-bogolon states to the 
true ground state: 

(0 \ n bogolon> = 0, n = 1,2. 

All dangerous contributions to the ground-state energy 
vanish. 

37 If the PCDD(I) is used, the diagrams of Fig. 12 that can be dangerous, because the intermediate state has only one or two 
bogolons present, vanish because of the B' condition in the form of Eqs. (9.6) and (9.7). 
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the best method and would be preferable to the 
PCDD obtained from the maximum-overlap criterion. 
However, the discussion of the exact self-consistent­
field method in Sec. 10 shows that the PCDD implies 
that the expectation value of an "effective Hamil­
tonian" has the true ground-state energy as its 
minimum. Thus the PCDD gives the optimum way 
of determining the true ground-state energy, whereas 
the CLODD just gives an upper bound. Thus even 
from the energy point of view the PCD D is superior to 
the CLODD. 

The CLODD was originally obtained by diagonal­
izing the Hamiltonian up to cubic terms, but the 
PCDD diagonalizes the reaction operator up to cubic 
terms. Since the reaction operator is an effective 
interaction describing an infinite number of bogolon­
scattering processes, its diagonalization takes many 
of these processes into account. Thus it is more 
reasonable to use the PCDD. 

The PCDD developed in this paper is based on 
maximum overlap and the related criteria given in 
Table I. However, another form of the PCDD, called 
the PCDD(II), will be developed in a subsequent 
paper9b • It is based on the criterion of minimum number 
of bogolons in the true ground state, and other 
related criteria.9 In Sec. 12 the PCDD(II) was com­
pared with the PCDD(I). The conclusion drawn was 
that the PCDD(I) is more natural to use when the 
diagrams based on the reaction-operator formalism 
are used. The PCDD(lI) will be shown to be easier to 
formulate in terms of the diagrams based on bogolon 
Green's functions. Both forms of the PCDD are the 
same when stated in terms of diagrams, as Bogoliubov 
did, but the diagrams are defined differently in each 
case. 

ACKNOWLEDGMENTS 

I would like to thank Dr. A. Widom, Dr. F. Y. Wu, 
and Dr. E. H. Lieb for many stimulating discussions 
during the course of this work. 

APPENDIX: THE BOGOLON VACUUM STATE 

The bogolon vacuum state is assumed to be 
generated by application of power series in a~a.!k and 

a~. Thus it has the form 

l"Po) = CA(a~) IT' r(a1ta.!l) Ivac), (AI) 
I 

where the prime denotes the exclusion of the zero­
momentum state and only half the momentum states 
are included. The functions A and r are defined by 
the power series 

00 

A(z) = L Anzn (A2) 
n=O 

and 
00 

r(z) = L rnzn, (A3) 
n=O 

where z is a complex variable. 
If Eq. (2.3) and its Hermitian conjugate are solved 

for Yk' and Eq. (3.1) is used, the recursion relation 

Ukr n+1(n + 1) - vkr n = 0 (A4) 

is obtained for the coefficients of r. If Eq. (A4) is 
multiplied by zn and summed over n, the differential 
equation 

r'(z) - Skf(Z) = 0, (AS) 

where Sk is given in Eq. (3.3~ is obtained. The solution 
of Eq. (AS) with r(0) = 1 is 

(A6) 

which determines the functional form of r to be used 
in Eq. (AI). 

The function A can be obtained in a similar way. 
Equation (2.3) can be solved for Yo and applied to 
Eq. (AI). The result is zero from Eq. (3.1), which 
gives the recursion relation 

UoAn+l(n + 1) - vOAn_l + An91o(vo - uo) = 0 (A7) 

for the coefficients in Eq. (A2). Equation (A 7) can 
be multiplied by zn and converted into the differential 
equation 

uoA'(z) - [zvo + 91o(uo - vo)]A(z) = O. (A8) 

Equation (A8) has the solution 

A(z) = exp {910(1 - so)z + soz2/2} (A9) 

if A(O) = 1. Thus the functional form of A in Eq. 
(AI) has been determined. Substituting Eqs. (A6) 
and (A9) into Eq. (AI) gives Eq. (3.2). 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 9, NUMBER 1l NOVEMBER 1968 

Principle of Compensation of Dangerous Diagrams for Boson 
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The principle of compensation of dangerous diagrams (PCnD) postulated by Bogoliubov to determine 
the coefficients in his canonical transformation in boson systems is obtained from four criteria: (1) the 
number of quasiparticles in the true ground state is a minimum; (2) the "best" approximation to the 
true density matrix and pair amplitude is made; (3) the expectation value of an arbitrary operator is 
diagonalized up to terms cubic in the quasiparticle operators; (4) the most convenient starting point for 
dressing the quasiparticles is used. Quasiparticle Green's functions are introduced to obtain a diagram­
matic expansion of the PCnD. The reducibility of the diagrams is also discussed. 

1. INTRODUCTION 

The principle of compensation of dangerous diagrams 
(PCOD) was enunciated by Bogoliubovl to determine 
the coefficients in his canonical transformation to 
quasiparticles (or bogolons) in boson systems. He 
argued that it is necessary to set the sum of all the 
diagrams leading from the vacuum to the two quasi­
particle state equal to zero in order to eliminate 
divergences in the perturbation expansion of the 
ground-state energy. In a previous paper2 it was 
shown that the PCOO could be obtained by maxi­
mizing the overlap between the true ground-state 
wavefunction and the bogolon vacuum state. Other 
related criteria were also discussed. These criteria lead 
to a form of the PCOO that could be conveniently 
expressed in terms of diagrams based on the wave­
and reaction-operator formalism. In terms of these 
diagrams this form of the PCOD satisfied Bogoliu­
bov's original statement. There are, however, diagrams 
leading from the vacuum to a one bogolon state that 
must also be compensated, in order that the zero­
momentum state be treated exactly. 

In this paper another form of the PCDO is obtained 
from other criteria.3 The form obtained in I is called 
the PCOO(l), while the form obtained here is called 
the PCOO(Il). When expressed in terms of bogolon 
Green's functions, the PCOD(II) also satisfies the 
original statement of Bogoliubov in terms of diagrams. 
The PCOD(I1) is the natural form to use when bogolon 
Green's functions are to be used. 

The most intuitive of the criteria used in this paper 
is the minimization of the number of bogolons in the 

1 N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, A New 
Method in the Theory of Superconductivity (Academy of Sciences of 
the USSR Press, Moscow, 1958), Chap. 1 (English trans!.: Con­
sultants Bureau, New York, 1959); Fortshr. Physik 6, 605 (1958). 

2 D. H. Kobe, 1. Math. Phys. 9, 1779 (1968) (preceding paper). 
Henceforth this paper will be referred to as I. 

3 These criteria were used for fermion systems to obtain the 
PCDD by D. H. Kobe, J. Math. Phys. 8, 1200 (1967). 

true ground state. If the number of bogolons in the 
true ground state is small, it would be expected that 
the free-bogolon model in which bogolon interactions 
are neglected would be a good approximation to the 
true system. In other words, the bogolons would 
behave almost ideally. Mathematically, this criterion 
means that the expansion of the true ground state in 
terms of the bogolon states converges rapidly. 

Other criteria for obtaining the PCOO(II) are also 
discussed. The "best" approximation to the true 
density matrix and the pair amplitude by the ones 
calculated using the bogolon vacuum state is another 
criterion. The criterion of simplifying the expectation 
value of an arbitrary operator is also discussed. Since 
the bogolon interactions should be taken into account, 
the most appropriate starting point for the dressing 
of the bogolon is used as a further criterion. 

In the next section the Hamiltonian for the particles 
is transformed to the bogolon Hamiltonian, and the 
bogolon vacuum state is given. In the following four 
sections the criteria given in Table I are discussed. 
Section 7 gives the equations of motion for the 
bogolon Green's functions. They are used in Sec. 
8 to obtain equations satisfied by the Green's functions 
describing the creation or annihilation of one or two 
bogolons. A set of four coupled integral equations is 

TABLE I. Criteria for the pr~nciple of compensation of danger­
ous dIagrams (II). 

Section 

3 

4 

5 

6 

Criterion 

Expected number of quasiparticles in tlie true 
ground state is a minimum. 

"Best" approximation to the single-particle 
density matrix and pair amplitude. 

Simplification of the expectation value of an 
arbitrary operator. 

Best starting point for the dressing of the 
quasiparticle. 

1795 
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obtained, from which it is shown that only the irre­
ducible dangerous diagrams need be compensated. 
The PCDD(II) is compared to the PCDD(I) in Sec. 
9. Finally, the results of the paper are summarized 
and evaluated in the conclusion. 

2. CANONICAL TRANSFORMATION 

The transformation originally made by Bogoliubov 
has the result of mixing the part of the interaction that 
describes the excitation of a pair of particles with 
equal and opposite momenta from the condensate into 
the kinetic energy term for the bogolons. By including 
terms resulting from the normal ordering of the bogo­
Ion operators, the scattering of the pair of particles an 
infinite number of times above the condensate can also 
be taken into account.4 If the effect of triplets or quad­
ruplets of particles scattering with each other is to be 
included also, it is necessary to consider the bogolon 
interaction processes. 

The Hamiltonian for a system of bosons of mass m 
interacting with a two-body potential 11 iss 

H = ! (ek - ft)a!a k + t! (12111 134)aia:a3a4 , (2.1) 
k 1234 

where (1) = (k1), (2) = (k2), etc. The operators at 
and ak are the creation and annihilation operators, 
respectively, for a boson with momentum k and 
satisfy the usual commutation relations. The kinetic 
energy is ek = k2j2m and the chemical potential is ft. 
The matrix element of the potential (12111 134) is 
symmetric with respect to the interchange of 1 and 
2 and also 3 and 4. 

The Hamiltonian H commutes with the number 
operator so the number of particles is a good quantum 
number. However, it is invariant with respect to a 
gauge transformation of the first kind; that is, 

(2.2) 

where () is a real constant. Thus the ground state is 
infinitely degenerate, corresponding to values of () 
between 0 and 27T. In order to remove this degeneracy 
so that the usual forms of perturbation theory are 
applicable, it is convenient to add a source term to 
the Hamiltonian H to obtainS 

The Hamiltonian H' no longer commutes with the 
number operator and is no longer invariant with 
respect to gauge transformations of the first kind. 
Thus the true ground state 10) of H' is not an eigen­
state of the number operator. Anomalous amplitudes 
like (01 ao 10) and (01 aka-k 10) can then be nonzero if 
the source term is present. 

A generalization of the canonical transformation 
used by Bogoliubov7 is 

(2.4) 

where <Po, Uk' and Vk are real numbers to be deter­
mined.4.8 In order for the bogolons to be bosons also, 
it is necessary for their creation and annihilation 
operators yt and Yk' respectively, to satisfy boson 
commutation relations. These conditions put the 
following constraints on the coefficients: 

U~ - v~ = 1, 

Uk=U_k , 

Vk = V_k • 

(2.5) 

Since the zero-momentum state is expected to be 
macroscopically occupied, <Po has been used in Eq. 
(2.4), which is approximately equal to the square root 
of the number of particles in the zero-momentum 
state. The operators Yo were taken to be zero by 
Bogoliubov,7 but are included here so that the zero­
momentum state is treated exactly. In the limit of 
infinite volume, Bogoliubov's approximation has been 
shown to be exact for most poteritials,9 presumably 
because the Yo contribute only a set of measure 
zero. However, the Yo is included here to avoid any 
possible approximation regardless of the volume. 
By considering it, the condition determining the 
chemical potential is obtained. 

If the transformation of Eq. (2.4) is made on the 
Hamiltonian of Eq. (2.3), the bogolon Hamiltonian 
can be obtained: 

(2.6) 

wherej, k = 0,1,2,3,4, andj + k = 0,1,2,3,4. 
The term Hik has j creation operators and k anni­
hilation operators: 

I J- t H = H + (X Q(ao + ao). (2.3) Hik = ! hitC1, 2,'" ,j + k) 

The passage to the limit of infinite volume Q is taken 
first and then at the end of the calculation the limit 
as (X -+ 0 is taken. 

• D. H. Kobe, Ann. Phys. (N.Y.) 47, 15 (1968). 
• For a discussion of second quantization, see, e.g., D. H. Kobe, 

Am. J. Phys. 34, 1150 (1966). 
• N. N. Bogoliubov, Physica 26, SI (1960). 

1,2," . ,i+k 
t t t ( X YIY2' .. YiYi+1 ... Yi+k' 2.7) 

7 N. N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947). Reprinted in 
D. Pines, The Many-Body Problem (W. A. Benjamin, Inc., New York, 
1962), p. 292. 

8 A. Coniglio and M. Marinaro, Nuovo Cimento 48, 249 (1967); 
M. Girardeau, J. Math. Phys. 3, 131 (1962); H. Ezawa, J. Math. 
Phys. 6, 380 (1965). 

• J. Ginibre(report of work prior to publication). 
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The coefficients hjk are given in Table II of I with the 
value of r:t. equal to zero. However, these coefficients 
can still be used if it is remembered that the anomalous 
amplitudes can be nonzero. 

The bogolon vacuum state l1Jio) is also needed. It is 
the state such that 

Yk l'Ipo) = 0 (2.8) 

for all k. In I this state was determined to be 

l1Jio) = C exp {a~9'-'o(1 - so) + t ! ska~a~d Ivac), 
k 

if the amplitude is real. (If it is complex, the real part 
must be taken.) Equation (3.3) is just the mathe­
matical form of the PCDD which states that the 
sum of all the diagrams leading from the vacuum 
to the two bogolon state is zero. This condition is 
discussed in terms of diagrams in Sec. 8. 

The expected number of bogolons n must still be 
minimized with respect to 9'-'0' The derivative of an 
annihilation operator with respect to 9'-'0 gives 

(3.4) 

where Ivac) is the state of no particles and 

Sk = Vk/Uk • 

(2.9) Thus the condition obtained by differentiating n with 
respect to 9'-'0 and setting the derivative equal to zero 

(2.10) is 

The constant C is determined from the normalization 
condition on l1Jio). The sum in Eq. (2.9) is over all 
momentum states, including zero. 

3. MINIMIZATION OF THE NUMBER OF 
QUASIPARTICLES 

The coefficients in the canonical transformation of 
Eq. (2.4) have yet to be determined. They should be 
determined by some criterion which would make the 
free bogolon model a good approximation to the 
true system, so that bogolon interactions would not be 
as important. 

One criterion which can be used is to choose the 
coefficients such that the expected number oj bogolons 
in the true ground state is a minimum.3 This condition 
can be formulated mathematically by taking the 
expectation value of the bogolon number operator 
in the true 'ground state: 

n = ! (01 Y~Yk 10) = minimum. (3.1) 
k 

Physically, this condition means that the bogolons 
would behave more like an ideal gas and the bogolon 
interactions would not be as important. Mathemati­
cally, it means that the expansion of the true ground 
state in terms of bogolon states would be rapidly 
convergent, which is discussed in Sec. 9. Equation 
(3.1) leads to the peDD(Il), which is discussed from 
other viewpoints in the following sections. 

Equation (2.4) and its Hermitian conjugate can be 
solved for the bogolon annihilation operator Yk' 
When it is varied with respect to Sk given in Eq. (2.10) 
subject to the constraints in Eq. (2.5), the annihilation 
operator is converted into a creation operator 

OYk/OSk = -U~Y~k' (3.2) 

The condition that Eq. (3.1) is an extremum is that its 
first derivative with respect to Sk vanishes, which gives 

(01 YkY _k 10) = 0 (3.3) 

(01 Yo 10) = 0 (3.5) 

if the amplitude is real, since (uo - vo) > O. Equation 
(3.5) is the mathematical form of the statement that 
the sum of all the diagrams leading from the vacuum 
to the one bogolon state is equal to zero. This con­
dition supplements the usual statement of the PCDD.! 
Bogoliubov was not faced with these diagrams, since 
he chose Yo == O. 

That the extremum is indeed a minimum can be 
shown by calculating the second derivatives. The 
mixed second derivatives can easily be shown from 
Eqs. (3.2) and (3.4) to be zero: 

02n!OSkosl = 0 if k;c I, (3.6) 
and 

(3.7) 

at the extremum. The second derivative of n with 
respect to Sk at the extremum is 

a2n/os~ = (2U k)2{1 + (01 (ytYk + lkY-k) 10)} > 0, 

(3.8) 

which is obviously positive. The second derivative of 
n with respect to 9'-'0 is 

a2n/o9'-'g = 2(uo - VO)2 > 0, (3.9) 

which is also positive. Therefore, a Taylor series ex­
pansion of n about the extremum point shows that the 
value of n will increase if the variables {9'-'0, Sk} deviate 
from their extremum values. Thus the extremum is 
truly a minimum. 

The PCDD in Eqs. (3.3) and (3.5) is thus obtainable 
from a variational principle which is intuitively 
appealing. In the next sections the peDD will be 
obtained from other equivalent criteria. 

4. BEST APPROXIMATION TO THE TRUE 
DENSITY MATRIX AND PAIR AMPLITUDE 

Another criterion that can be used to determine the 
coefficients in the canonical transformation is that in 
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some sense the theory gives the "best" approximation 
to the true density matrix (or occupation number) 
(01 aZak 10) and the true pair amplitude (01 aka_k 10). 
In the independent-particle model the orbitals that 
give the best approximation to the true single-particle 
density matrix are Lowdin's natural spin orbitals. lOa 

The density matrix in the bogolon model is just 

('If'ol a~ak l'If'o) = v~ if k =;6: 0 (4.1) 

and the pair amplitude is 

('If'ol aka-k l'If'o) = UkVk if k =;6: O. (4.2) 

In general, these amplitudes cannot just be equated to 
the true ones because v: and UkVk depend on only one 
variable Sk' Different values could be obtained for 
Sk by equating either the true density matrix to Eq. 
(4.1) or the true pair amplitude to Eq. (4.2). If the 
numerical values of Sk obtained by equating (01 aLak 10) 
and (01 aka_k 10) to Eqs. (4.1) and (4.2), respectively, 
are the same, then both (01 YkY-k 10) and (01 ytYk 10) 
are zero. If (01 ytYk 10) is zero, then Yk 10) = 0 and 10) 
is the bogolon vacuum state. Thus only in the case 
where the free bogolon model is an exact solution can 
the true density matrix and pair amplitude be both 
equated to the model ones. lOb 

A criterion must be found for determining Sk if 
(01 aLak 10) and (01 aka-k 10) are given. Several criteria 
are possible and in fact reasonable .. However, the 
criterion that gives the PCDD is that Sk and CPo are 
determined to minimize the function 

[(01 ao 10) - ('If'ol ao l'If'o)]2 

+ r [ (01 aka_k 10) 
k~ (01 a~ak 10) + (01 akaJ 10) 

('If'ol aka_k l'If'o) J2 

- ('If'ol a~ak l'If'o) + ('If'ol akaJ l'If'o) 

+ I' [ (01 aka_k 10) 
k (01 a~ak 10) + (01 akat 10) 

('If'ol aka_k l'If'o) J2 

- ('If'ol atak l'If'o) + ('If'ol akaJ l'If'o) 

= minimum. (4.3) 

The prime on the summation denotes that the zero­
momentum state is not included. Minimization of Eq. 
(4.3) with respect to Sk and use of Eqs. (4.1) and (4.2) 
gives 

(01 aka_kIO) UkVk 

(01 atak 10) + (01 akat 10) = v~ + u~ . (4.4) 

10 (a) P.-O. Lowdin, Phys. Rev. 97,1474 (1955); see also Ref. 19. 
(b) This discussion also applies to Sec. 4 of Ref. 3. A criterion similar 
to Eq. (4.3) can also be used there to circumvent this difficulty. 

If Eq. (2.4) is used, Eq. (4.4) can be shown to be 
equivalent to 

(01 YkY-k 10) = 0, (4.5) 

which is the same as Eq. (3.3) for the PCDD. 
The expectation value of ao in the bogolon vacuum 

state is 
(4.6) 

from Eqs. (2.4) and (2.8). Minimization of Eq. (4.3) 
with respect to CPo gives 

CPo = (01 ao 10). (4.7) 

By using Eq. (2.4), we can rewrite Eq. (4.7) as 

(01 Yo 10) = 0, (4.8) 

which is the same as Eq. (3.5) for the PCDD. 
The extremum conditions correspond to a minimum, 

since the diagonal second derivatives of Eq. (4.3) are 
positive. The nondiagonal second derivatives of Eq. 
(4.3) are zero. 

The momentum distribution (01 aLaklO) and the 
pair amplitude (01 aka-k 10) have been calculated by 
McMilIanll for He II using a variational method with 
a Lennard-Jones 12-6 potential. From his values and 
Eq. (4.4), which is equivalent to the PCDD in Eq. 
(4.5), the values of Sk in Eq. (2.10) and CPo can be 
determined for He II. These values can then be used, 
assuming a bare single-particle energy k2j2m, to find 
the energy spectrum Ek of the bogolons. The roton 
dip does not appear if this is done, which supports the 
calculation of Parry and ter Haar.12 The bare single­
particle energy should be dressed,4 however, and 
the effect could be sufficiently large that the roton dip 
might appear. 

The function in Eq. (4.3) is used in the variational 
principle because it results in the PCDD. The con­
dition in Eq. (4.4) can be satisfied and yet the approxi­
mation of Eqs. (4.1) and (4.2) to the true expectation 
values can be poor. In this case, the validity of the 
theory is questionable. In order to check the theory for 
He II, more accurate values of the momentum 
distribution and pair amplitude should be calculated. 

5. SIMPLIFICATION OF EXPECTATION 
VALUES 

In his original paper, Bogoliubov7 diagonalized the 
Hamiltonian up to terms cubic in the bogolon 
operators. He neglected the terms coming from the 
normal ordering of the bogolon interaction, however. 
In I it was shown that the maximum overlap criterion 
was equivalent to the diagonalization of the reaction 
operator up to terms cubic in the bogolon operators. 

11 w. L. McMillan, Phys. Rev. 138A, 442 (1965). 
12 w. E. Parry and D. ter Haar, Ann. Phys. (N.Y.) 19,496 (1962). 
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However, too much attention can perhaps be paid to 
the energy operators and too little to other operators. 
If the expectation value of another operator is of 
primary interest, then attention should be focused on 
it. For fermion systems, it was shown that the 
PCDD(II) can be obtained by diagonalizing the 
expectation value of the quadratic part of an arbitrary 
operator.3 In this section the PCDD(I1) is obtained 
for boson systems by diagonalizing the expectation 
value of an arbitrary operator up to terms cubic 
in the bogolon operators. 

An arbitrary operator Q may be a sum of one, 
two, three,'" body operators. It can be easily 
written in terms of its matrix elements and the 
particle creation and annihilation operators.l3 If the ca­
nonical transformation of Eq. (2.4) is made on the 
operator and the bogolon operators are normal 
ordered, the result for the expectation value in the 
true ground state is 

(01 Q 10) = Qoo + (01 QOl 10) + (01 QlO 10) 

+ (01 Qll 10) + (01 Q20 10) 

+ (01 Q0210) + (01 Q30 10) + .. '. (5.1) 

The operator Qik has j bogolon creation and k anni­
hilation operators. It is given by an equation similar 
to Eq. (2.7), except that Hik and hik are replaced by 
Qik and qik' respectively. The coefficient qik depends on 
the matrix elements of Q and the coefficients in the 
canonical transformation. 

If the operator Q is Hermitian, then Qik will satisfy 

Qik = QZi' (5.2) 

Equation (5.2) shows that the expectation value of 
Qik is just the complex conjugate of the expectation 
value of Qki' Thus the terms with two creation or 
annihilation operators in Eq. (5.1) are 

(01 Q02 10) + (01 Q20 10) 

= 2 Re I q02(k, -k) (01 YkY-k 10). (5.3) 
k 

These terms will vanish if 

(01 YkY-k 10) = 0 (5.4) 

which is taken to be real. Equation (5.4) is just the 
PCDD obtained in Eq. (3.3). 

The terms in Eq. (5.1) with only one creation or 
annihilation operator are 

(01 QOl 10) + (01 QlO 10) = 2 Re qOl (01 Yo 10). (5.5) 

These terms will both vanish if 

(01 Yo 10) = 0, (5.6) 

'3 See, e.g., D. H. Kobe, Proc. Phys. Soc.(London)88, 9 (1966); 
E. R. Pike, ibid. 81, 427 (1963). 

which is also real. This equation is the same as Eq. 
(3.5) for the compensation of the new dangerous 
diagrams. 

If Eqs. (5.3)-(5.6) are used, Eq. (5.1) becomes 

(01 Q 10) = Qoo + (01 Qn 10) + (01 Q30 10) + ... , 
(5.7) 

which is considerably simplified. Although this crite­
rion of simplicity is rather subjective and other criteria 
of simplicity could have been used, it is interesting 
that the PCDD can be obtained by using a general­
ization of Bogoliubov's original diagonalization argu­
ment. 

6. BEST STARTING POINT FOR DRESSING 
THE QUASIPARTICLE 

In order to dress the bogolon in higher orders in the 
bogolon interaction terms, it is useful to use bogolon 
Green's functions. By calculating the bogolon self· 
energy,14 the effect of the emission and absorption of 
collective excitations on the energy of the bogolon 
can be taken into account. The bogolon interaction 
terms cause a shift in the bare bogolon energy, but 
the propagator has the same form as the bare 
propagator if the PCDD(I1) is used. 

The single-bogolon Green's function or propagator 
is defined as15a 

gu(1, 2) = i (01 T{YlY~} 10), (6.1) 

where the operators are in the Heisenberg picture and 
the operator T time orders the product with the 
largest (smallest) time to the left (right). If the com­
plete set of eigenstates Is) of the Hamiltonian H with 
the eigenvalues es are inserted into Eq. (6.1), the 
result is 

gu(1, 2) = i I {exp [-iws(tl - t2)] 

where 

s 

X (01 Yl Is)(sl y~ 10) e(tl - t2) 
+ exp [iw.(tl - t2)] 

x (01 y~ Is)(sl YlIO) e(t2 - tl)}, (6.2) 

ws = es - eo (6.3) 

are the excitation energies. The Heaviside step function 
e(t) is defined as 

{

I, if t > 0, 

e(t) = t, if t = 0, 

0, if t < O. 

(6.4) 

14 D. H. Kobe, Ann. Phys. (N.Y.) 28, 400 (1964); J. R. Schrieffer, 
Nucl. Phys. 35, 363 (1962). 

IS (a) For a discussion of Green's functions and dressing see, e.g., 
A. A. Abrikosov, L. P. Gorkov, 1. E. Dzyaloshinski, Method of 
Quantum Field Theory in Statistical Physics (Prentice-Hall, Inc., 
Englewood Cliffs, N.J., 1963). (b) The normalized state yt 10)/ 
(01 y,yi 10)* is actually used, of course. 
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The first term in the sum in Eq. (6.2) is a retarded 
term since it vanishes if the bogolon is destroyed 
before it is created. The second term is the advanced 
part which vanishes if the bogolon is created before 
it is destroyed. 

The single-bogolon propagator in the free-bogolQn 
model is obtained by using the bogolon vacuum state 
in Eq. (6.1) and the Hamiltonian for free bogolons. 
The free-bogo10n propagator is then just 

G~l(l, 2) = i exp [-iEit1 - t2)]b128(t1 - t2), (6.5) 

where E1 = hll (1,1) is the energy of a bare bogolon. 
The advanced part in Eq. (6.2) vanishes in the free­
bogolon model, since an annihilation operator acts on 
the bogolon vacuum state. 

In general, though, the bogo10ns are dressed by the 
interaction. However, if the interaction is not too 
strong, the approximation can be made that only the 
state with one bogolon excited from the true ground 
state yi 10) with excitation energy ~1 contributes.15b If 
the momenta k1 and k2 are both zero, it is also neces­
sary to include the true ground state 10) in the sum. 
In this approximation Eq. (6.2) becomes 

~11(1, 2) = i (01 Yo 10)(01 y~ 10) blOb20 

+ i exp [-i~1(t1 - t2)] 

X (01 Y1Y~ 10) 8(t1 - t2 ) 

+ i exp [i~1(t1 - t2)](01 Y-1Y~1 10)-1 

X (01 Y~Y~l 10)(01 Y-1Y1 10) 8(t2 - t1)' 

(6.6) 

The single-bogolon Green's function is coupled to 
the Green's functions describing the creation (anni­
hilation) of one or two bogolons from the vacuum, 
as well as to higher-order bogolon Green's functions, 
through the equations of motion. The Green's 
function describing the creation of one bogo10n from 
the vacuum is 

(6.7) 

where the operator is in the Heisenberg picture. The 
time-ordering operator T is unnecessary for just one 
operator, and the propagator can be written as 

~01(1) = i (01 y~ 10) blO • (6.8) 

The Green's function ~10 describing the annihilation 
of a bogolon to form the vacuum is defined III a 
manner similar to Eq. (6.8). 

The Green's function describing the creation of a 
pair of bogolons from the vacuum is 

~o2(l, 2) = i (01 T{yiy:} 10). (6.9) 

If the complete set of eigenstates Is) of H is inserted, 

Eq. (6.9) becomes 

~02(1, 2) = i! {exp [-iW.(t1 - t2)] 
s 

X (01 yi Is)(sl y~ 10) 8(t1 - t2) 

+ exp [iW.,(t1 - t2 )] 

X (01 y~ Is)(sl yi 10) 8(t2 - t1)}' (6.10) 

The assumption made in going from Eq. (6.2) to 
Eq. (6.6)-that only the state with a single bogolon 
excited from the true ground state yi 10) with ex­
citation energy ~1 contributes to the sum for k1 ¥: 0-
can also be made in Eq. (6.10).15b For k1 = 0 the 
vacuum state 10) must also be taken into account. 
The two-bogolon creation propagator thus becomes 

~02( 1, 2) = i (01 y~ 10)(01 y~ 10) b10620 

+ i exp [-i~1(t1 - t2)] 

X (01 Yil1 10) 02._18(t1 - t2) 

+ i exp [iMt1 - t2)] 

X (01 Y~1Yi 10) 02._18(t2 - t1)· 

(6.11) 

The propagator describing the annihilation of two 
bogolons has a similar form. 

These propagators can all be simplified by choosing 
the bogolon-pair amplitude 

(01 YkY-k 10) = 0 

and the one-bogolon amplitude 

(01 Yo 10) = 0, 

(6.12) 

(6.13) 

which is just the PCDD. Both the single-bogolon 
creation propagator in Eq. (6.8) and the bogolon-pair 
creation propagator in Eq. (6.11) then vanish: 

~Ol(1) = 0, 

~o2(1, 2) = 0, (6.14) 

as do the single-bogolon and bogolon-pair anni­
hilation propagators. The single-bogolon propagator 
in Eq. (6.6) becomes 

~1l(1, 2) = iZ1b12 exp [-i~1(t1 - t2)]8(t1 - t2)' 

(6.15) 

The renorma1ization factor Z1 in Eq. (6.15) is just the 
coefficient of the exponential in the retarded part of 
Eq. (6.6): 

(6.16) 

Equation (6.15) for the dressed bogolon propagator 
is of the same form as the bare propagator in Eq. (6.5), 
which is expected if the bogolon interactions are not 
too strong. Thus the bogo10n interactions do not 
change the form of the propagator if the PCDD in 
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Eqs. (6.12) and (6.13) is satisfied. The PCDD is 
therefore the most convenient criterion to use when 
considering the subsequent dressing of the bogolons. 

7. BOGOLON GREEN'S FUNCTIONS 

In order to discuss the expansion of the PCDD in 
terms of Feynman diagrams, it is necessary to derive 
the equations satisfied by the Green's function intro· 
duced in the last section. Then in the next section the 
relationship between the PCDD and the bogolon 
Green's functions can be investigated. 

The most general bogolon Green's function which 
describes the annihilation of n bogolons and the 
creation of m bogolons isIS 

gnm(I,2,··· ,n,n + I," ',n + m) 

= i (01 T{YlY2' .. YnY~+l ... Y~+m} 10), (7.1) 

where the expectation value is in the true ground 
state and the operator T time orders the bogolon 
operators in the Heisenberg picture. The equation 
satisfied by this function can be obtained essentially 
by differentiating it with respect to t1 and using the 
Heisenberg equations of motion. A more sophisticated 
technique was used in a previous paperlS to obtain the 
equations of motion for the fermion-bogolon Green's 
functions. 

The equation for the Fourier transform of Eq. (7.1) 
is easier to represent by diagrams. The Fourier trans· 
form of Eq. (7.1) is defined as 

G = (27T)-n-mjOO .. . Jdt .. , dt nm 1 n+m 
-00 

X exp {i :~m W-ltl}gnm, (7.2) 

where the frequency W_l is defined as 

{

WI' if I ~ n, 
W_! = . 

-WI' If l>n, 
(7.3) 

for the sake of convenience. The equation satisfied by 
the function G nm is 

Gnm(l, 2, ... , n + m) 

= 8n ~ f'( -27Tj)h~k(I'2', ... ,j + k')GO(U') 
1.k 

X Gn+k-l,m+i-1(j + 1',' .. ,j + k', 2," " n; 

2', ... ,j', n + 1, ... , n + m) 

- im8n 8 m G°(1, n + 1) 

X Gn- l ,m-l(2, ... ; n; n + 2, ' .. , n + m), (7.4) 
---

'6 For fermion systems, these Green's functions were investigated 
by D. H. Kobe and W. B. Cheston, Ann. Phys. (N.Y.) 20, 279 
(t 962). The equations of motion for the Green's functions were 
obtained in this paper in a way that maintains the anti symmetrization 
of the function at all steps of the derivation. Here, of course, the 
Green's function must be symmetric in the coordinates of the 
bogolons destroyed and also for the bogolons created. 

where the variables (I) = (kl' WI), (2) = (k2' w 2), 

etc., represent the momentum k and frequency 
(energy) W of the bogolons. The integral in Eq. (7.4) is 
an integral (sum) over all the primed frequencies 
(momenta). The primes on the variable (1') means 
(k~, w~), for example, and j + k' = (j + k)'. The 
prime on the hik(l, 2,· .. ,j + k) means that it is 
multiplied by a delta function for energy conservation: 

o(w1 + W 2 + ... + Wi - Wi+! - ••• - wi+k)' 

The sum over j and k is such that j, k = 0, 1, 2, 3, 4, 
andj + k = 0, 1,2,3,4, but the termj = I, k = 1 
is specifically excluded. The operator 8m is the 
symmetrizer for m bogolons with the variables 
n + 1, n + 2, ... , n + m. The operator 8n is the 
symmetrizer for n bogolons with the variables 1, 2, 
3, ... ,n. Thus Eq. (7.4) is symmetric in the first n 
variables and the last m variables, as it should be 
from the definition in Eq. (7.1). 

The free·bogolon propagator is defined as 

G°(l,n+l) 

= (-27T)-1(Wl - E1 + iO)-lol,n+lO(Wl - w n+!), 

(7.5) 

where El = hll (1, 1) and + iO is an infinitesimal 
imaginary quantity. The Kronecker delta is for 
momentum conservation, and the delta function is for 
energy conservation. 

Equation (7.4) is represented graphically in Fig. 1. 

~n, m~ 

~n_I':.¥ 

~ n+2,mF 

n~ ~, 
-i ! n-I, m-I r 

+ 

+ 

+ 

+ 

n~n_I' m~ + 

n~=+_I,m~ + 

g. 
~n-I'~+ 

FIG. I. The equation of motion for the Green's function G nm in 
graphical form. 
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~ 
~ 

~~J+k 
: '1+2 
r j+1 

2 

Gnm (1,2,·····,n+m) 

G·(I,21 

FIG. 2. The correspondence between the graphical quantities and the 
mathematical quantities in the Green's function equation of motion. 

All the bogolon interactions have been put in speci­
fically to show the true structure of the equation. 
The correspondence between the graphs and the 
mathematical quantities is shown in Fig. 2. Figure 1 
shows that Eq. (7.4) is essentially an "expansion" in 
terms of the first interaction the bogolon undergoes. 
As the bogolon propagates, it can undergo one of the 
interactions given by the Hamiltonian in Eq. (2.6). 
Then the resulting bogolons enter a "black box" 
where they can interact in all possible ways. Some of 
the emerging bogolons interact with the incoming 
bogolon, but this process happens simultaneously 
with their entering the box, so there is no breakdown 
in causality. 

The equation which is adjoint to Eq. (7.4) can be 
obtained essentially by differentiating Eq. (7.1) with 
respect to In+! and then taking the Fourier transform. 
When the equation of motion for a creation operator 
is used, the result is 

Gnm(1,2,"', n + m) 

= 8m Z I' 27Tkhjk(I'2', ... ,j + k')G°(j + 1', n + 1) 
i,k 

X Gn+k-l,m+i-l(j + k','" ,j + 2', 1,2,"', n; 

1', ... ,j', n + 2, ... , n + m) 

- in8n8mG°(l, n + 1) 

X Gn- l ,m-l(2, ... , n, n + 2, ... , n + m). (7.6) 

The same notation as used in Eq. (7.4) has also been 
used in this equation. The sum on j and k is restricted 
such that j -:;C 1, k -:;C 1, but other values such that 
j, k=O, 1,2,3,4, andj+k=O, 1,2,3,4 are 
included. 

Equation (7.6) is shown graphically in Fig. 3, where 
the graphical quantities are defined in a way similar to 
Fig. 2. The exact definition can be seen by comparing 
Eq. (7.6) and Fig. 3. The interpretation of Fig. 3 is 
similar to Fig. 1, except that it represents an "ex­
pansion" in terms of the last interaction the bogolon 
undergoes. 

Equations (7.4) and (7.6) form a hierarchy of 
coupled integral equations to be solved for the Green's 
functions. Although it is in general necessary to make 
some approximations to solve them, it will be seen 
in the next section that they can be resumed to give 
equations from which a reformulation of the PCDD 
can be obtained. 

8. GREEN'S-FUNCTION FORMULATION 
OF THE pcnn 

The PCDD as formulated in Eqs. (3.3) and (3.5) 
can be expressed in terms of the one-bogolon anni­
hilation (or creation) propagator GlO (or GOl) and the 
two-bogolon annihilation (or creation) propagator 
G20 (or G02)' Equations (3.3) and (3.5) are in fact 
equivalent to 

L: I dWl dW2G20(1, 2) = ° (8.1) 

and 

L: dw l G10(I) = 0, (8.2) 

which are shown graphically in Fig. 4, where the 
dashed lines indicate the integrations over the energy. 

In order to discuss the reducibility of the diagrams 
it is necessary to apply the equations of motion in the 
last section to the functions GOl , GlO , G20 , and G02 ' 

The higher-bogolon Green's functions can be sub­
stituted into the equations to obtain the perturbation 

~n, mr 
~n, m-'F' 

~n+2,m+= 

~n, m+l~ 

~ 
S.,·-,F' 

+ ~ .". m-'F' · 
+ 

+ 

+ 

+ n-I, m-I n~ ~' 
FIG. 3. The adjoint equation of motion for the Green's function 

Gnm in graphical form. 
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series expansion for the functions. These series can be 
resummed and expressed in terms of integral equations 
with irreducible vertex parts. The equations obtained 
for the four functions are shown in Figs. 5, 6, 7, and 8, 
respectively. The circles, which will be denoted by the 
symbol/with the appropriate subscripts, denote the 
irreducible vertex parts, which cannot be cut in two 
by merely cutting one or two lines. The single­
bogolon propagators in Figs. 5-8 are dressed prop­
agators. If the equations are integrated as in Eqs. 
(8.1) and (8.2) and set equal to zero, only the irre­
ducible vertex parts/IO (f01) describing the annihilation 
(creation) of a single bogolon and /20 (f02) describing 
the annihilation (creation) of a pair of bogolons 
remain on the right side. They must then be zero, 
since the left side of the equation is zero. 

However, we will assume that /10 (or /01) and /20 (or 
/02) are set equal to zero. The remaining coupled 

0--- .0 

(01 

o 

(b I 

FIG. 4. The principle of compensa­
tion of dangerous diagrams in graphical 
form. 

FIG. 5. The resummed integral equation for the single-bogolon 
creation propagator GOI • The outgoing line is dressed. 

+~ + 

FIG. 6. The resummed integral equation for the single-bogolon 
annihilation propagator G10 ' The incoming line is dressed. 

FIG. 7. The resummed integral equation for the two-bogolon creation 
propagator G02 ' The outgoing lines are dressed. 

FIG. 8. The resummed integral equation for the two-bogolon anni­
hilation propagator G20 • The incoming lines are dressed. 

integral equations are homogeneous and, therefore, 
possess the trivial solution that frequency integrals of 
GIO and G20 are zero. Thus it is not necessary to 
compensate all of the dangerous diagrams, but only 
the irreducible onesY Compensating the irreducible 
dangerous diagrams results in all dangerous diagrams 
being compensated as well. The PCDD can be 
reformulated in the following way: The sum of all 
irreducible diagrams leading from the vacuum to a 
two-bogolon state should be set equal to zero. The 
irreducible diagrams leading from the vacuum to a 
one-bogolon state are likewise compensated.Is 

9. RELATIONSHIP BETWEEN THE TWO 
CONDITIONS 

In a previous paper,2 the condition for the PCDD 
was obtained from the maximum overlap and other 
criteria. These criteria give the PCDD(I) 

<1f'01 YkY-k 10) = 0 (9.1) 

17 In Ref. 3, the only reducible diagrams were the ladder diagrams, 
which were eliminated by a similar argument. 

18 In I a less rigorous argument based on ordinary perturbation 
theory lead to the same result. 
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and 
("Pol Yo 10) = o. (9.2) 

These conditions are not in general the same as the 
PCDD(II) given in Eqs. (3.3) and (3.5). The relation­
ship between the two conditions can be seen by 
expanding the true ground state in terms of the bogolon 
states 

t 
10) = Co I "Po) + C1Yo I "Po) 

+ L C2(1, 2)YiY~ l"Po) 
1,2 

+ L C3(1, 2, 3)YiY:Y~ l"Po) -+- .. " (9.3) 
1,2,3 

where the sums are restricted so as to insure that the 
ground state has zero momentum. The PCDD(I) 
corresponds to 

Co = maximum, 

C1 = 0, (9.4) 

C2(1, 2) = 0, 

which was shown in I. The PCDD(II) is obtained 
from the criterion for the minimum number of 
bogolons in Eq. (3.1). By substituting Eq. (9.3) into it, 
we obtain 

n = 0· ICol
2 + 1· ICl 12 + 2· .L 2! IC2(1, 2)1 2 

1,2 

+ 3·.L 3! IC3(1, 2, 3W + "', 
1,2,3 

= minimum. (9.5) 

Thus the series in Eq. (9.3) must converge rapidly if 
the number of bogolons is to be small, since the higher 
terms in Eq. (9.5) are more heavily weighted. In 
general, Eqs. (9.4) and (9.5) will not be the same. There 
is no reason to be concerned, however, since it is 
known that different criteria in the independent par­
ticle model give different orbitals.19 Which condition 
to use then is a matter of taste. 

However, the PCDD(II) does have the advantage 
if bogolon Green's functions are to be used. It is 
extremely difficult to express the PCDD(I) in terms of 
the bogolon Green's functions. For the PCDD(I) the 
wave- and reaction-operator formalism is most 
suitable. The PCDD(II) also has the advantage that 
to extend it to finite temperatures it is only necessary 
to replace the ground-state average with a thermal 
average. The derivation based on the minimization of 
the number of bogolons is unchanged in this case. 

10. CONCLUSION 

The four criteria presented in this paper all lead 
to the PCDD(II). The criterion of minimizing the 
expected number of bogolons is the one that is the 

19 W. Kutzelnigg and v. H. Smith, Jr., J. Chern. Phys. 41, 899 
(1964). Equation (3) of this reference applies to the best overlap, 
not the best density orbitals. 

most physically appealing, since the bogolons would 
be expected to behave more as an ideal gas if their 
number were small. The "best" approximation of the 
bogolon density matrix and pair amplitude to the 
true amplitudes as formulated in Sec. 4 focuses 
attention on particle amplitudes. However, there are 
a large number of other criteria that could be used, 
but do not lead to the PCDD(II). The simplification of 
expectation values of arbitrary operators and simpli­
fication of propagators are criteria that by themselves 
are somewhat subjective. However, it is interesting 
that these criteria also lead to the PCDD(II) as 
obtained by the other criteria. 

Both the PCDD(I) and the PCDD(I1) satisfy 
Bogoliubov's original statement in terms of diagrams, 
but the diagrams are defined differently. The PCDD(I) 
is most advantageous when the wave- and reaction­
operator formalism is used with their associated 
diagrams. The exact self-consistent field approach to 
obtain the PCDD(I) shows that the condition also 
leads to the true ground-state energy. The PCDD(II), 
on the other hand, is most convenient when the 
Feynman diagrams of the Green's-function method 
are used. It is perhaps more convenient to discuss the 
self-energy of the bogolon14 in terms of bogolon 
Green's functions and develop a systematic way of 
dressing the energy denominators. In order to deal 
with the problem at finite temperatures, thermal 
averages can be used instead of the ground-state 
averages. However, in the final analysis which form 
of the PCDD to be used is a matter of taste. In the 
independent particle model there are several criteria 
for choosing the "best" single-particle orbitals, which 
give different equations.19 It is necessary to ask in which 
regard the orbitals are the "best." Usually, the 
simplest method is used, but that is only a practical 
consideration. In the case of bogolons the com­
pensation of the lowest-order dangerous diagram 
(CLODD) is the simplest, but it was shown in I that 
it has theoretical drawbacks. 

There is a deeper question that can be asked about 
the PCDD. Is the PCDD even necessary to use at 
all? The formalism developed by Beliaev20 using 
anomalous-particle Green's functions is in lowest order 
equivalent to the CLODD (omitting pair-correlation 
terms coming from the normal ordering). If the 
particle Green's functions are extended to all orders, 
an exact result can be obtained if perturbation theory 
converges. The use of the anomalous propagators can 
be justified by using a source term in the Hamiltonian.6 

20 S. T. Beliaev, Zh. Eksp. Teor. Fiz. 34, 417 (1958) [English 
trans!.: Soviet Phys.-JETP 7, 289 (1958)]. See also N. M. Hugen­
holtz and D. Pines, Phys. Rev. 116,489 (1959). 
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On the other hand, if the peDD is used in all 
orders, the many-boson problem can also be solved 
exactly. It is necessary to use bogolon Green's 
functions or another type of perturbation theory 
when dealing with more than just the CLODD. The 
diagrams are also more complicated. However, if the 
canonical transformation to bogolons is made, it is 
not necessary to introduce anomalous propagators in 
an ad hoc manner. Since the bogolon interaction is 
"richer" than the particle interaction, it is possible 
perhaps to see some new and better approximations. 
The peDD has a well founded physical significance 
and is no longer just a "recipe" for determining the 
coefficients. If all orders of perturbation theory are to 
be used, it does not make any difference what choice 
of coefficients is made, since the exact answer will be 

obtained if the series converges. In particular, the 
Beliaev formalism corresponds to the trivial canonical 
transformation with Uk = I, and Uk = O. However, 
by using the PCDD to determine the coefficients, the 
series will converge more rapidly. 

There is an'advantage to having more than one way 
of looking at a problem. It is even better when the 
different methods can be extended to show that they 
are essentially equivalent. Which method to use then 
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physics. However, our considerations may probably 
be made as rigorous as we want. In Sec. 3, we study a 
case of particular importance, the case of relativistic 
Markovian processes. Section 4 is devoted to stochastic 
processes in Minkowski space-time. Section 5 is 
mainly concerned with a brief discussion of our 
results. In the Appendix we give a completely different 
approach based on the use of proper time which we 
illustrate in treating the case of a particle embedded in 
a random force field. 

In this paper we mainly use the notation of a 
previous article.5 However, let us recall that 

gOO = _ gii = + 1, gllV = 0 for p, =;i: 'JI 

(p" 'JI = 0, ... , 3; i = 1, ... , 3), 

c = 1 

(where gllV is the metric tensor of Minkowski space­
time). The Einstein convention is also used. 

Finally we want to warn our readers that the use of 
classical mathematical symbols throughout this paper 
is adopted for the sake of clarity and concision. It is 
not intended to give our results a mystifying appear­
ance of mathematical rigor. Our approach is mainly a 
physicist's approach, although we are generally 
conscious of the mathematical problems we have 
discarded. 

2. RELATIVISTIC STOCHASTIC PROCESSES 
IN ,u-SPACE 

Let us consider the problem of a particle whose 
motions are random. The motions of this particle are 
random for different reasons. For instance, the 
particle may be embedded in an external random 
force field. The "initial data" necessary to specify 
completely the behavior of the particle may also be 
random, an "observer" being unprecise while 
performing his "measurements." Another example of 
a random particle is the one of a test particle (that is, 
a generic particle of a gas), whose motions are 
assumed to represent more or less the main properties 
of the system under study. 

A convenient way of describing this problem is by 
using what is commonly called the p,-space, i.e., the 
one-particle phase space. As p,-space we choose6 

p, = .A(,4 x U\ (1) 

where .A(,4 is the Minkowski space-time, while U4 is 

• R. Hakim, J. Math. Phys. 8, 131S (1967). 
• Actually, the 4-velocity space is 3-dimensional, because of the 

constraint 
ullul-' = 1, u· > 0, ull E U·. 

However, the use of the 4-dimensional space U' is more interesting 
(from a practical point of view), as is explained in Ref. S. 

the four-dimensional 4-velocity space.6 In fact, the 
choice (1) for the p,-space is not completely general: 
we implicitly assume that we are interested only in 
space-time and velocity properties of physical 
quantities. However, in all that follows we limit 
ourselves to (1), the extension of our results to more 
general p,-spaces being straightforward (for instance, 
we could add the acceleration space, 7 etc.). In what 
follows, xA (A = 1, ... ,8) denotes an arbitrary 
coordinate system in p, space; for instance, the usual 
coordinates in p,-space are (Xll, Ull) == x A • 

Physics imposes that the trajectories of a random 
particle (or of the stochastic process) be timelike (in 
Minkowski space-time). However, there are also 
random processes that are not related to "particles" 
and hence whose trajectories may be spacelike in the 
space under consideration. We shall come back to that 
question in the sequel. In 4-velocity space, trajectories 
are spacelike by construction. In what follows we call 
a trajectory in p,-space "timelike" when its projection 
in Minkowski space-time is timelike. "Spacelike" 
trajectories in p,-space are defined in the same way. 
Similarly, a 7-dimensional surface in p,-space is called 
"spacelike" when its normal is a "timelike" 8-vector. 

Definition of a Relativistic Stochastic Process in 
.u-Space 

Let now ~7 be a spacelike hypersurface embedded 
in p,-space (for instance, ~7 = sa X U4, with 
S3 c .A(,4 and S3 an arbitrary spacelike hypersurface). 
Furthermore we impose that ~7 cuts all the possible 
timelike trajectories of the process in p,-space. As we 
explained at length in two preceding papers,5.S "physi­
cal space at a given time" is represented in Minkowski 
space-time by an arbitrary spaceli~e hypersurface so 
that we have to deal with a spacelike hypersurface 
~7 in p,-space. Physical measures or observations 
always refer to such arbitrary spacelike hypersurfaces. 
Therefore we set the problem in the following way. 
Let 6. be a Lebesgue-measurable subset of ~7. We 
want to define the probabilities 

Prob{xA E6. c :E7c p,}, '(6.. (2) 

These probabilities are completely determined by the 
distribution 'U\ (XA) through 

Prob {xA E6. c:E7 c: p,} = r 17B'U)l(xA) d:EB , 
J.~CI7CIl 

(3) 

where d:EB is the usual differential form "element of 

7 R. Hakim, J. Math. Phys. 8, 1379 (1967). 
8 R. Hakim, J. Math. Phys. 6, 1482 (196S). 
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hypersurface" 

dL.n = ;!.JG EB,A" ... ,A7 dxA
, A,"', A dXA7

, (4) 

with 
+ 1, when (B, AI, ... ,A7) is an even 

permutation of (1, ... , 8), 

EB,A" ... ,A7 = -1, when (B, AI,'" ,A7) is an odd 
permutation of (1, ... , 8), 

0, otherwise. 

In Eq. (4), G represents the absolute value of the 
determinant of the metric tensor in ,u-space.9 In Eq. 
(3), 'YjB is an 8-vector which need not be specified at 
this stage: essentially, 'YjB is an "8-velocity"; i.e., 'YjB is 
"tangent" to the trajectories of the process, which 
property insures the invariance of definition (3) with 
respect to coordinate transformations. We see later 
what 'YjR actually is. Of course, 'U\(x4) is a positive 
density and is normalized by 

prob{xA EL7c,u}={ 'YjB'll\(xA )dLB =+I, VL7. 
)I;7 

(5) 

In the same way we can look for the probability 

Prob {[xf E ~1 c Li c ,ul n [x:1 E ~2 c L~ c ,ul}, 

(6) 

i.e., the probability of finding x A within ~1 c L.i and 
~2 c L.~. Exactly as above, these probabilities are 
entirely determined by a density 'UJ2(xt, x;-): 

Prob {[xf E ~1 c L.{] n [xt E ~2 C L.m 

=1' ~BIB.'UJ (xA xA
) dL (7) 7 7 2 1, 2 BIB. 

~IX~.CI;1 xI;. CIJ 

(A = 1, ... ,8; Bi = 1, ... ,16, i = 1,2), where 
dL.B,B. is the usual differential form "element of 
surface" corresponding to a 14-dimensional surface 
embedcled in a 16-dimensional manifold. In Eq. (7), 
~B,B. is defined as follows5 : 

~BIB. = ~f' A ~¥', (8) 
with 

;1 = '1)1 EB 0, 

;2 = 0 EB '1)2' (9) 

'U)2(Xt, xt) also gives the following probabilities: 

function. In the nonrelativistic case, the density 
'UJn (Xl' ... , xn; t1> ... , tn) is a symmetric function 
with respect to the permutations of the set of variables 
(Xl' ... , xn) and not with respect to the permutations 
of the set of variables (xl' t1 ; ••• ; X n , tn ). Conse­
quently, there is no reason why the relativistic 
density should be symmetric with respect to the 
permutations of (xi,"', x~). However, in some 
particular cases such a symmetry property may be 
verified.5 In what follows we shall see how the 
probabilities (7) are restricted by causality conditions. 

More generally, a relativistic stochastic process in 
,u-space is completely determined when all the proba­
bilities 

probn} [xt E~i c L.; c ,ul}; 

k E Z+, VL; ("spacelike") (11) 

are given (Z+ being the positive integers). This defini­
tion is completely similar to the customary one.2- 4 Of 
course, we have 

Prob {:g [4 E L.; c ,ul} = +1. (12) 

Now, we assume (and this assumption is, as usual, 
quite restrictive, although it is useful for practical 
purposes) that the set of probabilities (11) is fully 
characterized by the densities 'll\(xi4 , ••• , x~). These 
densities 'UJk(X;:I, ... , xi!) should verify the following 
conditions: 

(a) 'UJk(xt, ... , xt) ~ 0; 

(b) 'UJk(xt, ... , xiD is not necessarily asymmetric 
function of (xt, ... , xt); 

(c) 

i /:Bl'" . ,Rk'UJ ( A A) d'" 1 
7k kr.; k Xl' ... , X k ~Bl"" ,Ek = , 

I; cIJ 

VL. 7k (Bi = 1, ... ,8k, i = 1, ... , k; 

A = 1," ',8); 

(10) In Conditions (c) and (d) we have set5 

'UJ2(Wi4., xt) is a positive, not necessarily symmetric, 

• Since Minkowski space-time is a (pseudo-) metric space and 
since f-l can be considered as its tangent fiber bundle (with Lorentz wi th 
group as structure group), we can always endow f-l with a metric 
GAB (which need not be specified). 

i=k 

~B" ' .. ,Bk = A. ~f' 
i=l 

;i = 0 EB 0 EB • • • EB YJi EB • •• EB O. 

(13) 

(14) 
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In Condition (d), the notation 

~7(n-k) C p(n-k)(n, ••• , n - k) 

signifies that the surface ~7( n-k) is embedded in a space 
spanned by the coordinates (XnA' ... , Xn- k A)' Con­
dition (d) is simply a consistency condition: 'U)k may 
be obtained from all 'U)n (n > k) and independently 
of the surface on which 'U)n is integrated. Condition (c) 
is the normalization condition of 'U)k' Conditions 
(a)-(d) are the natural generalization of the similar 
nonrelativistic ones.2- 4 

In order that Conditions (c) and (d) be valid 
whatever the various surfaces ~7k, it is necessary and 
locally sufficient that the differential forms 

tBn ., ... ,Bn'U) ( A A) d" 
~ - nXl,"',Xn .,c...Bn-k",o,Bn (15) 

be closed forms, 5 i.e., 

d {tBl"" ,Bn-.'U) (XA ... XA) d~ } = 0 
Ii n 1, 'n Bl'" . ,Bn-lc ' 

k < n. (16) 

Conditions (16) imply the infinite number of inte­
grability conditions5 

V'Ai{1Jfi'U)n(xf,"', x~)} = 0, i ~ n. (17) 

Later, we shall see that, in fact, Eqs. (17) are kinetic 
equations such as Fokker-Planck equations. 

Let us now try to characterize a relativistic stochastic 
process in p-space in a more mathematical manner. 
Usually, a stochastic process in a given space E is 
defined as being a measurable application of the 
product of the "sample space" by an interval (possibly 
infinite) of real numbers (i.e. , time) into E 2: 

T X (n, A, 'lIT) Xt(ro» E (18) 

[n = sample space == {w}; T ~ R, real numbers 
(time); A = (j algebra on n; 'lIT = probability on A; 
Xt(w) E E = stochastic process]. In the relativistic 
case, instead of the diagram (18) we have 

XI;(ro) 

hypersurfaces indexed by one parameter and satisfying 
some regularity conditions8

), namely {~.}sER' then 
definition (19) is essentially equivalentll to the classical 
one (18). 

Average Values, Characteristic Functions, etc. 

In another paper5 we defined average values. If 
cIt(XA) is a given function on p-space with tensorial 
values, then 

(cIt(XA»I;7 = r cIt(XA)1JB'U\(XA) d2,B (20) 
JI;7 

is the average of cit on ~7. Classically we would say 
"average value of cit at time t." In general (cIt)I;7 
actually depends on ~7 except when the integrability 
condition 

V'A{<I>(XB)1JA'U)1(XB)} = 0 (21) 

is verified. Because of Eq. (17), we can have12 

[1JA'W1(XB)]· V AcIt(XB) = 0, (22) 

when, for instance, [V' A' 1JA] = O. More generally, 
average values are defined by5 

(cIt(x . .. x » 7' = r cIt~BI.··· .B.'U) d1: 1,A, 'kA I; JI;7' k BI"" ,Ek 

(23) 

and do not depend on ~7k when the integrability 
conditions 

V'Bi{cIt~Bl."·.B''U)k}=O, i~k (24) 

are fulfilled. 
These definitions allow us to determine the entropy13 

of a given distribution 'U)k' Indeed, we have5 

(25) 

By analogy with statistical mechanics, a relativistic 
stochastic process in p-space is termed irreversible of 
kth order whenever 

(26) 
{~} x (n, it, 'lIT) ) P (19) with 

({~} = set of all "regular" spacelike hypersurfaces in 
p-space). In other words a relativistic stochastic 
process in p-space is a random variable in p-space 
indexed by a hypersurface! The fact that the set 
{1:} cannot be totally ordered (for a natural order, of 
course) can give rise to difficulties. However, {~} may 
be partially ordered8: 1:1 -< ~2 if and only if ~2 is in 
the future10 of ~1' Note also that if we restrict our­
selves to a (j partition of p-space (i.e., to a family of 

10 :E. is said to be in the future of :E I , if its projection in 
Minkowski space-time is in the future of the projection of:E1 in 
Minkowski space-time. 

~~i -< ~~; (i ~ k). 

It is easy to see that the necessary and sufficient con­
ditions for a relativistic stochastic process in p-space 
to be irreversible is that the following inequalities be 
fulfilled: 

V' B;{log 'U); . ~Bl.··· .Bi'U);} < 0, j ~ i ~ k (27) 

11 With the restriction that "admissible" measures in ,u-space 
should have their support on :E. 

1. We shall see later that 1]A is, in general, an operator acting on 
densities 'UJ I • Therefore we have to be careful and avoid "simpli­
fying" Eq. (22) by 'UJ I (for instance). 

13 From the point of view of information theory. 
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or, equivalently, 

elt.··· ,B;,··· ,Bi'Wi • VBi'Wi < 0, (28) 

where use has been made of Eq. (17) and of the 
implicit assumption [V, ;] = O. A relativistic process 
in fl-space is called reversible when Eq. (26), Eq. (27), 
or Eq. (28) are equalities, with k running from I 
to 00. 

In the same way, we can determine the characteristic 
functions of the densities 'Wk' For instance, the 
characteristic function of 'WI on ~7 is 

fP(K\ ~7) D~F (exp {iKAxA})I" (29) 

This characteristic function implies, as usual, the 
knowledge of all moments of 'WI on ~7 (and on ~7 
only) through 

«XA1)ql, .. " (xAS)qSk 

')IkQk aIj,qk (K A ~7)1 
= (-I a(K )ql ... a(K )qS fP , KA;~O 

Al' , As 

(30) 

(with the restriction that the moments exist, of 
course). Therefore we see that in the relativistic case 
there is not a unique characteristic function corre­
sponding to a given density. This feature was, of 
course, expected, since the dependence on a surface is 
the relativistic analog of the usual time dependence 
of characteristic functions and more generally of 
average values. 

At this point it seems to be worthwhile to make 
several remarks about average values. Let us return 
to definition (20) with the choice 4» = x, i.e., to the 
definition of (xAh,. In the classical case, (xtCw) 
generally represents a curve (an average trajectory) 
either in E or in T X E [see Eq. (18)]. What about 
the relativistic case? When ~7 belongs to a given 
a partition, then it is clear that (xAh;, also determines 
a curve in fl-space (fl-space is the relativistic analog of 
T X E). However, this curve depends, in general, on 
the chosen a partition of fl-space so that there is not 
actually a unique average trajectory of the process as 
in the nonrelativistic case. This point will be made 
clearer in the Appendix. The same features are also 
true for higher moments of the process. For instance, 
in the classical case (Xt/w) @ X t2(w» determines in 
general a two-dimensional surface either in E @ E or 
in (T X E) @ (T X E) while there is in general no 
such unique surface generated in fl @ fl by 

(XA @ xBh14 , 

etc. In some cases, of course, (XA)~, may really deter­
mine an average trajectory of the process in fl-space. 

For instance, let us take 

i.e., the Hittner-Synge density (with ~Jl~Jl = 1, 
aJl~v = 0, and where K2 is a Kelvin function of order 
two). In Eq. (31), no(xJl ) is such that all the possibly 
used integrals are convergent. Since 'WI depends on 
only one 4-vector ~Jl, then necessarily 

(32) 

Therefore, (X Jl )S3 determines a straight line in .AU, 
while (UJl )S3 merely yields a point in U4 (or rather in 
the hyperboloid uJluJl = + I, UO > 0). Finally, < x A b 
gives rise to a curve in fl-space. 

Of course, we could try to limit ourselves to those 
sets of 'Wk which give rise to unique moments in fl, 
fl ® fl, fl @ .•. @ fl, etc. (i.e., to unique surfaces: 
a k-dimensional surface in fl ®k). However, we have 
not yet been able to find the necessary and sufficient 
conditions the 'Wk should satisfy in order to get these 
unique surfaces. Furthermore, this would be only a 
very particular case of stochastic processes in fl-space. 
However, these remarks suggest another way of 
defining this latter class of stochastic processes. 
Indeed, in the nonrelativistic case a large class of 
stochastic processes (at least those considered in 
physics) are determined by the data of all their 
moments 

i.e., by a curve in T X E, a 2-dimensional surface in 
(T X E) @ (T X E), etc. This suggests that a partic­
ular class of relativistic stochastic processes in fl­
space may be defined not through the 'Wk's but rather 
through the data of an infinite number of merely 
geometrical objects, i.e., a curve in fl-space, .. " a 
k-dimensional surface in fl ®k, etc. These surfaces 
have to satisfy a number of requirements connected 
with "timelikeness" or "spacelikeness." 

Gaussian Processes 

In the nonrelativistic case, Gaussian processes may 
be defined in a number of equivalent manners. For 
instance, Xt(w) is a Gaussian process when one of the 
following conditions is verified (the list below is not 
exha usti ve ) : 

(a) Its distribution functions are Gaussian.I4 

14 Gaussian distributions are themselves defined in a large number 
of equivalent manners. 
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(b) It is completely determined by (Xt(co» and 
(Xt (co) ® XI (co», where the higher moments are 
obt~ined fro~ the first two through a definite way.3 

In the relativistic case, definitions (a) and (b) are no 
longer equivalent. Suppose that 'ill l and 'ill2 are 
exponentials of quadratic forms of xA , i.e., are 
"Gaussian." Then it is easy to realize that these 
densities are not determined by their first two 
moments; the coefficients of the quadratic forms are 
not directly related to the first two moments. Con­
versely, if we adopt definition (b), i.e., if we assume 
that we are given the moments (XA)!;7 and 
(X A1 ® x cli )!;14 (VI; 7 , VI;14), then it is easily seen that 
these data do not determine a unique 'illl (or 'ill2): On 
each I;7 (or I;14) they determine a 'illl (or 'ill2), but 
these densities do depend on the particular I;7 (or 
I;14) chosen. 

It results from the above considerations that it 
seems hardly possible to define Gaussian processes in 
an intrinsic manner. Of course, if we are given a 
particular a partition of .u-space, then [and only f~r this 
a partition) a Gaussian process can be defined In the 
usual way (i.e., with either definitions (a) or (~)]. 

There is another possibility of defining Gaussian 
processes for the subclass of processes considered at 
the end of the last paragraph. Indeed, such a process 
may be defined-at least in principle-by the data of 
an average trajectory in .u-space and by a two-~imen­
sional surface in .u ®.u. However, the obtentIOn of 
higher-order moments (i.e., surfaces) from these ones 
is far from being clear. 

Causality 

An important difference between usual and relativ­
istic stochastic processes is related to causality. Indeed, 
usual stochastic processes-either in .u-space or in 
configuration space-may have arbitrary trajec!o~ies. 
However, in most cases a physically admISSIble 
relativistic stochastic process in .u-space must have 
timelike trajectories (either in Minkowski space-time 
or in .u-space). This causality requirement i~poses 
conditions on the various 'illn's and more partIcularly 
on the various transition probabilities. For instance, 
if we define15 the second-order transition density by 

A I A 'ill2(XO!, xf) (34) 
P2(XO Xl) = 'illl(xt-) , 

then we have the following obvious property: 

Proposition 1: If a relativistic stochastic. process in 
,u-space has timelike trajectories, then Its second-

10 See the next section for the details. 

order transition density is such that 

{

VXg, xi E .M, 4 such that: 

P2(xg, ug I xf, un = 0 (xg - xf)(xJlO - xJll) < 0 

or xg > x~. 
Proof· See Ref. 8. 

This proposition may be generalized in a straight­
forward manner for higher-order transition densities. 
It can also be generalized to the case of spacelike 
trajectories. In such a case P2 vanishes when x~ and 
xi satisfy 

(xg - xf)(xJlO - xJll) > O. (35) 

For a relativistic Markovian process (see Sec. 3) the 
above proposition becomes a necessary and sufficient 
condition since P2 characterizes the process. 

Stationarity 

The notion of stationarity in the relativistic frame­
work is much more complicated than the Newtonian 
one. In fact, there are several possible generalizations 
of such a notion. A stationary process is commonly 
defined as one whose statistical characteristics are 
invariant under time translations. A priori, the first 
natural relativistic generalization is to call stationary 
those processes whose statistical characteristics are 
invariant under space-time translations. This kind 
of stationarity is referred to as the strong stationarity. 
It implies immediately that 'illl is a constant, 'ill2 
depends on x~ and xi only through the combination 
(x~ - xi), etc. It also implies that the process is both 
stationary and homogeneous in each Galilean frame of 
reference. In fact, we are looking for a definition of 
stationarity, valid for each Galilean frame of reference 
(Lorentz invariance), which would not also imply the 
spatial homogeneity of the process. To do so, we 
might call stationary a relativistic stochastic process in 
.u-space whose statistical characteristics are invariant 
under the semi group of space-time translations 'b+ 
defined by 

IXJl E t;+ -¢:> IXJlIXJl ~ 0, lXo ~ o. (36) 

However, although this definition seems to achieve our 
goals, it is not completely satisfactory in so far as (~) 
it involves a semigroup and not a group, (b) thIS 
semi group is a four-parameter semigroup as opposed 
to the one-parameter group (or semigroup) of time 
translations of the usual case, and (c) it is easy to show 
that the invariance under this semigroup implies the 
strong stationarity (essentially because 'b+ algebrai­
cally generates the group of space-time translations). 
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Therefore we are led to the notion of stationarity 
with respect to a one-parameter group of transforma­
tions in space-time. This transformation group must 
have timelike orbits in space-time. Let fJl' be the time­
like unit 4-vector field tangent to the orbits of the 
group in space-time. The stationary property of the 
process then implies that all the 'illn's are invariant 
under this group of transformation. More explicitly, 
we have 

L(fJl')'ill l = 0, (37) 

{[(pI') ® I + I ® [(PI')}'ill2 = 0, (38) 

and similar expressions for higher-order distributions. 
In Eqs. (37) and (38), [(fJl') is the Lie derivative with 
respect to the field fJl' while I is the identity operator in 
# space. When the field fJlt is a constant field, and in 
the frame of reference where it reduces to (1, 0), one 
can easily check that one recovers the usual definition 
of stationarity. Another expression of stationarity 
with respect to the field fJl' (or equivalently, to the 
group of transformations generated by fJl') is the 
following: 

(xf' ® ... ® xtk)r.'k = (xf' ® ... ® X~k)(1(r.'k), 

k = 1, ... , 00; V,£7k C #k; and 

Va E (transformation group generated by fJlt). (39) 

All these features (and more particularly the non­
uniqueness of the definition of stationarity) occur 
because of the equivalence of all timelike axes 
(principle of relativity): in Newtonian physics all 
these axes are parallel and therefore there is a unique 
definition of stationarity. We must bear in mind that 
the above definitions are probably the most natural 
ones, but there exist other possible notions of station­
arity, such as the stationarity with respect to a a 
partition, etc. 

Definitions of ergodism may also be obtained, but 
they are all very artificial and not easy to handle. 

Comparison with Usual Definitions 

In order to consider the connection with usual 
definitions let us look at the probability: 

Prob C~ [4 E~i c '£; c #]} 

=i .. '1 tAl' ... . A,..w (xA . .. xA) d~ ~ k 1, 'k ~Al"",Ak' 
i\., i\.k 

(40) 

Since the surfaces '£7 considered are of the form 
'£7 = sa x U4,wecanset~ = <5 x y(<5 C S3, y C U4). 
To compare with usual definitions let us assume that 
the surfaces '£i, ... , '£i belong to a given a partition 

of #-space (or equivalently let us assume that the 
surfaces 51, ... , ~ belong to a given a partition of 
Minkowsky space-time). Let s be the parameter 
indexing the surfaces of the a partition: 

'£i == ,£7(Sl)' ... , '£~ == ,£7(Sk) 

[or equivalently: S~ == S3(Sl)' ... , S~ == S3(Sk)]' Then 
Eq. (40) represents the probability of having xt E ~1 
at "time" Sl , ... , and xi! E ~k at "time" Sk' Apparently 
this is similar to the common definitions. However, we 
must remember that the various ~k do not belong to the 
same space, except when the ,£7'S are all obtained from 
a given one through timelike translations. This latter 
case is of practical importance although it is most 
restrictive. Indeed the a partitions constituted by 
spacelike 3-planes enter in this category. So far we 
have dealt with the lhs of Eq. (40) only. Now we 
consider the rhs of this equation. To achieve our 
goal we use the coordinate system x A == (xl', ult), in 
#-space. This coordinate system is adapted to the 
structure of ,£7, i.e., takes into account the fact that 
,£7 = S3 X U4. It follows that 

d'£A = (d'£l' , Oil) 

and more generally that 
tAl . .... Ak'ill d'£ 
<; k A,.···.Ak 

(41) 

= 'fJf' ... 'fJ~"'Wk d'£I" ... d'£lt,d4Ul ... d4uk, (42) 

where 'fJ1t designates the first four components of 'fJA. 
However, since 'fJA is tangent to each realization of the 
process,s it follows that 'fJ1t == ul', whatever the last 
four components of 'fJA. Hence, Eq. (42) reads 
tA,.···. Ak'ill d~ 
<; k ':"'A,,···. Ak 

I' = 'illkuf' ... u/d4ul d'£Il' ... d4uk d'£111 . (43) 

Taking into account the constraint ullul' = 1, zIl > 0 
(i.e., d4u has to be replaced by dau/uO) and using 
locally a coordinate system with a local time axis 
orthogonal to the surface S3, we can finally write Eq. 
(42) in the form 

eA, .. ". Ak'U)kd'£A, .. ... Ak = 'illkd3xldaUl ... d3xkd3uk, 

(44) 

which is the usual expression. When S3 is restricted to 
being a spacelike 3-plane, then the probability (40) 
has the same expression as usual. At the nonrelativistic 
limit, it reduces to the usual expression whatever S3, 
since all spacelike hypersurfaces "get flat" and reduce 
to 3-planes, t = const. 

3. RELATIVISTIC MARKOVIAN PROCESSES 

Let us now restrict ourselves to the important class 
of stochastic processes constituted by Markovian 
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(a) 

(b) 

FIG. I (a). Partial ordering of space-time: Xl -< x •. (b) Partial 
ordering of space-time: Xl and x. are not comparable. 

processes. To this end we first define the conditional 
density of probability 

P ( 
. . . I) - 'UJn+1(XoB, X1B' ... , x nB) 

n X1B' 'XnB XOB - . 
'UJixw , ... , XnB) 

(45) 

Expression (45) represents the density of probability 
for the process to reach the state XOB knowing that it 
passed through the states X1B' ... , XnB' Of course this 
sequence of states is (partially) ordered as 

XnB -< ... -< XlB -< XOB' (46) 

where the order -< is generated in ,u-space by the 
order of Minkowski space-time. [In space-time we 
have 

X~ -< x~, (47) 
if and only if 

(x~ - Xf)(X1fl - X2fl) ~ 0, 

x~ - x~ > ° (48) 
(see Fig. 1)]. 

Note that the density (45) is normalized by 

51: 1)A(XOB)P n(XOB' ... , XnB I XOB) d~A(XOB) = 1, 

'v'~ c,u, (49) 
and verifies the conservation relation16 

V' A [1)A(XOB)P ixlB , ... , xnB I XOB)] = 0. (50) 

We now define a relativistic Markovian process, as 
usual, as one such that 

Pn(XlB, ..• ,xnB I XOB) == P2(X1B I XOB), (51) 

which property immediately implies that 'UJ2(xw , XOB) 
completely determines the process.a.4 In particular, we 
have 

'UJn(XlB , ... , XnB) 

= P2(XnB I Xn- 1 B) ... P2(X2B I XlB)'UJ1(XnB) 

XnB -< Xn-l B -< ... -< XlB' (52) 

Using now Eq. (52), with n = 3, and the compati­
bility relation 

L 1)A(X2B)'UJa(XW' ... , XaB) d~A(X2B) = 'UJ2(X1A , X3A), 

we find 
(53) 

P2(XOB I X1B) 

= 51: 1)A(X2B){P2(XOB I X2B)P2(X2B I XlB)} d~A(X2B)' 
(54) 

with 

Equation (54), which is the relativistic Chapman­
Kolmogorov equation, leads to 

V A2{1)A(X2B)[P2(XOB I X2B)P2(X2B I xw)]} = 0, (55) 

which is nothing but Eq. (l7) with n = 3. From the 
compatibility relation 

J1:1)A(X2B)'UJ2(X1B' X2B) d~A(X2]]) = 'UJ1(XW), (56) 

we obtain in a straightforward way 

L 1)A(X2B) [P2(X2B I XlB)'UJ1(X2B)] = 'UJ1(xw)· (57) 

In principle, and modulo well-known supple­
mentary conditions, the Chapman-Kolmogorov equa­
tion (54) allows the derivation of the relativistic form 
of the Fokker-Planck equation. Using the coordinates 
(t, x, u), we are immediately led to this equation,3.4 
which reads 

V' A{ -BA(XB)P2 + ~ V'BDAB(XB)P2} = 0, (58) 

once rewritten covariantly. Equation (58) reduces to 

uflo P + - _Bflp + -- DflVp = ° (59) O{ 10 } 
fl 2 oufl 2 2 ou v 2 , 

16 Equation (50) represents the conservation of a "conditional 
current." when using the coordinates (xv, uv) and after taking 
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into account the fact that, since 

, j;).x\ 
v =hm\-j' 

4t .... O ;).t 

Besides the positive and anti symmetric character of 
these currents, they must satisfy the conservation 

(60) relations 

we have 

I' / ;).x (8) ;).X \ - 0 
.i!~o\ ;).t / - , 

(61) 

Equation (61) explains why Eq. (59) does not involve 
terms in 02 P2. Unfortunately we have not been able IlV 
to derive Eq. (58) or (59) in an arbitrary coordinate 
system or even with the coordinates (xv, uv). A priori, 
the Fokker-Planck tensors Bil and DIlV (or BA and 
DAB) seem to depend on an arbitrary surface, since 
they represent average values of increments of x A (or 
(Xll, ul')]. However, it is not so, since P2 does not 
depend itself on an arbitrary surface [see Eqs. (54) 
and (55)]. 

Equation (59) is extremely interesting. It represents, 
indeed, a conservation equation3 in ,u-space. It shows 
that in the systems of coordinates (xv, U.), 'Y)A has the 
following form: 

1JA = u ll, A = 1,' ",4, 

1JA = ~ {-Bil + ! ~ DI'V} A = 5 ... 8 (62) 
oul' 2 OU v' " , 

and thus is an operator. Of course for a non-Marko­
vian process, 1JA would have a completely different 
form and might be an integral operator. This cir­
cumstance is by no means unusual and also occurs in 
the nonrelativistic framework.3 

4. STOCHASTIC PROCESSES IN MINKOWSKI 
SPACE-TIME 

Although stochastic processes in ,u-space implicitly 
include processes in space-time, in this section we 
derive their main properties in a more direct manner 
because of their particular importance. 

In Minkowski space-time, a stochastic process is 
assumed to be determined by the data of the "time­
like" currents 

normalized through 
(63) 

r J~lo···.lln(XIV' "·,xnv)dL.
Il1 

... I' = 1, (64) 
Jr.3nct.A{;4n ' , n 

where ~3n is "spacelike." The currents (63) have to 
verify the following compatibility relations: 

r JI'I.· .. 'I'n(x '" x ) d2; 
)r.3{n-k} c.At,4{n-k) n lv" nv Jlk+l, .•• , Ji n 

= J~l.···.l'k(XIv'···' X kv ), v~3(n-k); Vk < n, (65) 

0l'iJ~l ,"', I'i ,"', Iln(Xlv' ... , Xiv, ... , Xnv) = 0 (66) 

in order that they should not depend on the various 
surfaces involved in Eqs. (64) and (65). [Of course, we 
used above Lorentzian coordinates in .At,4n; otherwise 
0l'i in Eq. (66) should be replaced by \7l'i'] 

If we restrict the surfaces ~ to be products of 
spacelike 3-planes of the type t = const, then we can 
easily see that the zeroth components of the currents 
(63) may be interpreted as ordinary densities of 
probability.3.4 

The currents (63) are linked with the distributions 
'illn of the preceding sections through 

J~l .... 'I'n(Xlv' ... , xnv) 

= J'illn(XIv> UIv; ••• ; X nv , unv) IX ui id4Ui' (67) 

and after antisymmetrizing the indices (,ul, ... , ,un), 
as can be seen from Ref. 5. 

Properties of the Conditional Current JI'(xvo I XvI) 

Since it will play the basic role in the theory of 
Markovian processes in Minkowski space-time, let 
us now define the current of transition probability as 
being 

(68) 

with 

The conditional current (68) is obviously normalized 
by 

r JI'(xvo I XvI) d~iXVl) = 1, V~, (69) 
Jrc.AL 4 

which implies the following conservation relation: 

0l'lJIl(xvO I XvI) = 0, (70) 

resulting from Eq. (66) in a straightforward way 
(n = 2). 

Conversely, given the currents Jr(xvo) and 

we have 
JIl(xvO I XvI)' 

J~V(Xvo I XvI) = J~(xvo)JV(xvo I XVI), (71) 

which may be found either from the probabilistic 
interpretation of the various currents or from Eq. 
(68) considered in a local system of coordinates, 
where Jr(xvo) reduces to its zeroth component. 

The current of transition probability (68) has to 
satisfy some causality requirements. First it should be 
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such that 

Jll(XVO / XvI) = 0, whenever Xvo 1< XvI. (72) 

Next it must be such that the restriction of the 
differential form 

Jll(XVO / XvI) d~iXVl) == Q (73) 

on the forward null cone r+(xvo): 

(xvo - XvI)(X~ - xD = 0, 

XOI - Xoo > ° (74) 

vanishes identically. Indeed, if we denote by ~l and 
~2 two spacelike 3-surfaces cutting r+(xvo) and such 
that ~2 -< ~I' then the conservation of the number 
of particles joined to the causality condition (72) 
implies that there should not exist any contribution 
from the part of r+(xvo) lying between ~I and ~2' 
say S. We have (see Fig. 2) 

r n = r Q (conservation of "particles"), (75) JI1 J I. 
and 

or, using Eq. (66) with n = 1, 

J~(xvo)o/JoJ'(xvo / XvI) = 0. (80) 

Markovian Processes in Minkowski Space-Time 

Now in the same way as usuap·4 we can find the 
covariant form of the Chapman-Kolmogorov equa­
tion. We derive it in the same way as in the preceding 
section except that we no longer deal with densities but 
rather with currents. For instance, the Markovian 
property is expressed on J;VP(XVl' Xv2 , Xv3) as 

J~VP(XvI' Xv2 , xva) = J~(XvI)JV(Xvi / xv2)JP(XV21 xva), 

(81) 
with 

Integrating Eq. (81) over Xv2 and using Eq. (65) with 
n = 3, k = 1, we find 

J/J(XVI / xva) = II d~vCXv2)J'(XVI / XV2)J/J(Xv2/ xva), (82) 

with 

from which it follows that 

(76) which is nothing but the relativistic Chapman­
Kolmogorov equation. It leads to the conservation 
relation 

IsQ = 0, (77) 

and since JIl is positive, Eq. (77) leads to Q == ° on 
r+(xvo)· 

This property shows that on r+(Xvo), the current 
JIl(xvo / XvI) is necessarily a null 4-vector: It should 
be orthogonal to the null 4-vector d~/J • 

Finally let us note the important property 

II d~/J(xvo)JHxvo)J/J(xvo I XvI) = J~(XvI)' (78) 

obtained by integrating Eq. (71) and using the com­
patibility relation (65) with n = 2, k = l. Equation 
(78) immediately leads to the following conservation 
relation: 

a /Jo{J~(xvo)J'(xvo I XVI)} = 0, (79) 

~------------ --,L-- L, 

x •• 

FIG. 2. Illustration of Eq. (77). 

OV2{JV(XVI I XV2)JJl(XV21 xva)} = 0, 

which reduces to 

(83) 

J'(Xvi / XV2)OV2JJl(XV2/ x v3) = 0, (84) 

after using Eq. (70). 
Equation (82) has already been given by .f..opus­

zanski,17 though without proof. Note that the 
relativistic Chapman-Kolmogorov equation cannot 
be obtained simply by integrating Eq. (54) over the 
4-velocity variables. It is indeed well known that the 
projection of a Markovian process is not necessarily 
a Markovian process itself (see, e.g., Ref. 4). 

i:.opuszanski has also shownI7 that the Fokker­
Planck equations we could get from Eq. (82) reduce 
to the conservation relation (84) and the adjoint 
equation as a consequence of causality. As another 
consequence he also obtained the "physical" inter­
pretation of the spatial components of the current of 
transition probability: They are simply the increments 

r /!1Xi\J 
4~r::O \!1t / o· 

This absence of a second-order Fokker-Planck 
equation shows that a theory of relativistic Brownian 
motion at local equilibrium cannot be erected on the 

17 J. f,opuszanski. Acta Phys. Polon. 12, 87 (1953). 
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basis of the assumption that it may be represented by 
a relativistic Markovian process. 

Invariance Properties 

(1) The strong stationarity of a relativistic process 
immediately implies that 

J't(xv) = J't(O) = (const)l', 

(85) 

and therefore the conditional current (68) is a function 
of the only variable: Xv = XvI - Xvo' From the 
continuity equation (70) and the fact that this current 
has necessarily the form1s 

JI'(xv) = xl' . J(T = {x.l.x;Jt), (86) 

it follows that 

(87) 

or 

(88) 

However, the current (86), with f given by Eq. (88), 
is singular on the null cone r+(O) and therefore 
satisfies neither the normalization condition (it is too 
singular on the light cone) nor all the causality 
conditions [it does not vanish on r+(O) after multi­
plication by the normal vector of r+(O) at point xvl. 
Therefore we can conclude: 

Proposition 2: There exists no relativistic Markovian 
process invariant under the inhomogeneous Lorentz 
group. 

Therefore, it seems a priori difficult to generalize the 
very interesting results of Nelson l in a relativistic 
framework. 

(2) Let us now consider the invariance of a process 
under timelike translations parallel to a 4-vector 
rxl'. In such a case we have [see Eqs. (37) and (38)]: 

L(rxl')J\, = 0, 

{[(rxl') CO I + I CO L(rxl')}J~ = 0, 

(89) 

18 Where we have assumed that we have no other 4-vector than 
xl' in the theory. i.e., a strict invariance under the proper homo­
geneous Lorentz group. 

which reduces to 

J\,(x.) = J\,(x, 0), 

(90) 

in a frame of reference where ('J.,I' = (I, 0), etc. 
Other invariance properties may be found in a 

similar way. However, when the invariance group is 
such that the field rxl' actually depends on the space­
time position, then the conditions fulfilled by the 
various currents are more complicated. 

5. DISCUSSION AND CONCLUDING REMARKS 

We have now to discuss several points about the 
preceding results. 

(1) The approaches (see Appendix for an alter­
native approach) that we have given have essentially 
been suggested by relativistic statistical mechanics5 

and therefore present the same essential characteristic 
features. In particular, instead of using the proper 
time in the Appendix, we could as well have used any 
other parameter and the corresponding 4-velocity 
ul' = dxl'/ds, no longer normalized to one. This last 
remark raises the point that such an expression as 
dXI'/ds or dxl'/dT does not always exist as a mathemat­
ical object (even dT does not necessarily exist). 
However, we do not want to enter into these details 
since such quantities may be given a precise meaning. I9 

In fact we can always think that a stochastic process 
in ,u-space is nothing but an idealization of an under­
lying dynamical problem, given assumptions about 
scales of time and length, etc. It is the reason why we 
do not have to worry too much about the mathemati­
cal problems involved, though they have an interest of 
their own. 

(2) Let us now come to the question of Markovian 
processes. First, if we think that they occur as an 
idealization and simplification of hidden dynamical 
processes, then we may wonder whether they do exist 
at all. It is indeed well known that nonquantal 
relativistic interactions between particles are pro­
foundly nonlocal; i.e., the system "keeps the memory" 
of its past during at least a finite interval of "time" and 
therefore is not Markovian. However, if we denote by 
A an invariant parameter characterizing the spatial 
extension of the system and by T the correlation time 
of the process, and when the condition T» AC-l is 

,. See, e.g., E. Nelson, Dynamical Theories of Brownian Motion 
(Princeton University Press, Princeton, N.J., 1967). 
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valid, then a Markovian process may be a consistent 
idealization. 

(3) As we have seen, causality requirements impose 
strong limitations. In particular, in Minkowski space­
time it limits the Fokker-Planck equation to be a 
first-order equationP Furthermore, it demands that 
there should not exist stochastic processes invariant 
under the inhomogeneous proper Lorentz group20 and 
this is a very strong demand. However, causality is 
required only if we consider a random particle and 
therefore can be relaxed if we look at our stochastic 
process as describing a system of particles, i.e., a gas. 
Obviously, two particles of a gas may be separated by 
a spacelike interval, whereas it is not possible for a 
single particle to pass through points separated by 
such an interval. 

(4) Throughout this paper we have given a formal­
ism of relativistic stochastic processes in ,u-space. Ifwe 
except the case of stochastic processes in more general 
spaces such as ,uN (which can be dealt with in a 
similar way, with the only difficulty of complex 
notations), we may say that we have probably treated 
the most complicated case, although not the most 
general one. 

Unfortunately, we cannot consider an abstract 
relativistic random process in an arbitrary (but 
given) space. Indeed, the random process has to be 
specified further before we build up the corresponding 
theory. For instance, we have to answer the following 
questions. What is the tensorial character of the pro­
cess? Is it "timelike"? "Spacelike"? How may causality 
be expressed? What is (are) the "time" parameter(s) 
that indexes (index) the process? etc. The answer to 
these questions depends on the physical meaning of 
the process under consideration. 

In order to be a little more specific let us consider 
an "abstract" relativistic random process a of 
unspecified tensorial character. A priori, a covariant 
way of indexing this process might be to do so with 
space-time points. Therefore, such an abstract process 
would be a measurable mapping of .A{,4 X (0, A, '!IT) 
into the space {a}. This could be very convenient, 
essentially because .A{,4 is partially ordered. However, 
this procedure does not obviously make much sense 
when applied to processes occurring in .A{,4 itself. Of 
course this does not mean that it never makes sense 
at all. This just shows that we have to be careful and 
need to know the specific physical meaning of a. 
Another way of indexing the process would be with the 
help of an invariant parameter, for instance the proper 
time of an "observer," etc. Here again we have to 

20 This invariance also leads to nonnormalizable currents. How­
ever, this property is not as important as causality. 

specify a. More generally it seems to us that not only 
a has to be specified, but also the way it can be ob­
served or measured. 

(5) Finally, it is easy to realize that the preceding 
results can be transposed in a straightforward manner 
into a general relativistic framework. 
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APPENDIX: ANOTHER APPROACH TO 
RELATIVISTIC STOCHASTIC PROCESSES 

In a preceding paper5 we gave two equivalent 
formalisms for relativistic statistical mechanics: a 
"geometrical" one and a more intuitive one based on 
the use of proper time. Here we give also an approach 
based on proper-time-dependent densities. This ap­
proach is completely equivalent to the geometrical 
one studied in the preceding sections insofar as 
equivalent statistical assumptions are used. 

Generalities 

Let us consider the random point x A E ,u. It may be 
considered as proper-time-dependent: XA(T). Hence, if 
we consider T as a time variable, then XA(T) is a 
"true" stochastic process in ,u space. However, the 
proper-time parametrization of the trajectories of the 
process is only a possible one among many others. 
Thus the results we obtain hereafter have no direct 
physical meaning unless they are linked to the "geo­
metrical" approach of Sec. 2. We come back to this 
point below. 

The stochastic process XA(T) is assumed, as usual, 
to be completely determined3 •4 by the data of the 
following distribution functions: 

WnCxt, T1; ... ; x:; , Tn), n = 1,2, ... ,00, (AI) 

which verifies 

f· . 'f Ii d,ui Wn(xt, T1; ... ; x~ , Tn) = 1, 
.=1 

V(Tl,"',Tn)ERn, (A2) 

f· . ·f rri=n dll..W (XA T ..... X A T) r." n l' 1, 'n' n 
i=k+1 

= ~(xt, Tl; ••• ; Xt/, T k), Vk < n. (A3) 

Note that the densities Wn are normalized in the 
entire ,u-space and not merely on a hypersurface as in 
Sec. 2. With Eqs. (1), (2), and (3) we can develop the 
theory of relativistic stochastic processes in the usual 
way. However, it is important to realize that the 
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stationarity of the process x A( T) with respect to the 
proper time has in general no physical meaning. 
Furthermore, all the discussion of Sec. 2 on station­
arity or causality remains valid. 

In Ref. 5, we have shown, mutatis mutandis, that 
(a) lim Wn = 0, and (b) 

Ti"""""'± 00 

L+tXJOO. . . L+oooo WnC xf-, T 1; . . . ; x~, Tn) 

= 'illn(xf-, ... ,x~), (A4) 

which establishes the link between the two formalisms. 

Markovian Processes 

Once again we can apply conventional methods and 
definitions and find the following properties: 

(a) The Chapman-Kolmogorov equation 

~2(Xt, 'To I xf-, Tl) 

= J df-l~2(xt, TO I xA, T)~2(XA, T I xf-, T1), (A5) 

with 

TO < T < Tl' 

and, with appropriate assumptions2- 4 ; 

(b) The Fokker-Planck equation 

o~ 0 I 02 

_2 + ullo ~ = __ {BIl~ } + ___ {Dllvfj' } 
OT Il 2 oull 2 20ullouV 2 , 

(A6) 

where the coefficients Bil and DIlV may be called, 
respectively, the friction and diffusion tensors which 
we study below. 

It is easy to realize that the "proper-time" Marko­
vian processes studied in this Appendix are not 
equivalent to the "true" ones studied in Sec. 3. 
Indeed, the integration over Tl of Eq. (A5) does not 
lead to the Chapman-Kolmogorov equation (54). 
Furthermore, if we consider the definitions of the 
Markovian property in both approaches in a closer 
way and use Eq. (A4) , we can see that they do not 
mutually agree. However, in the case where the 
Markovian process is stationary with respect to the 
proper time, we do recover the form of the Fokker­
Planck equation used in relativistic statistical me­
chanics,7 after integration on the proper-time variable. 
Indeed, in this case, the Fokker-Planck coefficients 
BIl(xv' u.) and D"v(xv' uv) do not really depend3 on the 
proper time and therefore Eq. (A6) reduces to the 
following: 

o I 02 

ullo P + - {BIlP} - --- {DIlVP } = ° (A7) 
Il 2 oull 2 20ullouV 2 , 

after using the above properties (a) and (b). 

Let us now give some properties of the Fokker­
Planck coefficients. Note that the properties given 
below are valid whatever the formalism used. 

(I) If the process x A( T) is strongly stationary, 
then Bil and DIlV do not depend on XV: 

BIl(xv, uv) = BIl(U.), 

DIlV(xv, uv) = DIlV(U.). (A8) 

(2) In a large number of problems, the Jiittner­
Synge21 equilibrium distribution function is a sta­
tionary solution of Eq. (A7), i.e., 

P(uv) """" exp {-meu ll } (A9) 

is a solution of 

~{-BILP +!1- [DIlVP]} = 0. 
oull 20uv (AIO) 

Such a case occurs, for instance, when we think of 
Eq. (A7) as a kinetic equation.5 Then, Eq. (AlO) 
leads to 

_ ~W + ~IlB + !_0_2_D"v 
ou" Il 20u"ou v 

- ! {~ ~ Dllv + ~ ~ Dllv) = 0. (All) 
2 v oull Il ouv J 

(3) In Ref. 5 we noticed that provided the 4-force 
Fil is such that Fl'u" = 0, the uniform distribution 
O[UILUIL - 1] is identically a solution of Eq. (AlO). 
This leads to the relations 

(AI2) 

- u - DIlV + u - DI'V = BIlU . I {O O} 
2 Il ouv v oull Il 

(AI4) 

Of course, Eqs. (All)-(AI4) depend on the nature and 
the interpretation we give to the basic stochastic 
process. 

Illustration of the Formalism 

As an application of the preceding ideas let us 
consider the problem of a particle of mass m embedded 
in a random force field. 

There are two possible equivalent ways of dealing 
with this problem. Either we study the random 
differential system3 

dul' 
m-=FIl 

dT ' 

dxll 
-=ull 
dT ' 

(AI5) 

21 J. L. Synge, The Relativistic Gas (North-Holland Publishing Co., 
Amsterdam, 1957). 
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with given (or random) initial data, or we directly 
write the equivalent random Liouville equation5 

satisfied by 

R(xv' Uv; T) == b(xv - xvCT»@b(uv - UiT», 

o F~ a 
- R + u~O R + - - R = 0 
OT ~ m OU~ , (AI6) 

where we have assumed implicitly that (%u~)FP = 0, 
and next solve it. The former method is inspired by 
Stratonovich,3 while the latter is from Kubo.22 

The random force field F~ is assumed to be com­
pletely specified (in a statistical sense) when all the 
moments 

(F~l @ •.• @ F~k) = <I>~l.· ..• ~\ k = I, 2, ... , 00 

(AI7) 

are known. Mathematically, F~ is in fact a random 
variable in a functional space. 

Let us now set 
Lo = -u~o~, 

P 0 
L I =--· 

m OU~ 
(AI8) 

With these notations, Eq. (AI6) can be written 

o 
- R = (Lo + LI)R, (AI9) 
OT 

and, in the interaction representation, it reads 

with 

o 
-:R = £.:R 
OT ' 

:It = exp [-LoT]R, 

£. = exp [-LoT ]LI exp [LoT]. 

(A20) 

(A2Ia) 

(A2Ib) 

Equation (A20) is formally integrated and yields 

:R = exp [L' £.( s) dS] :R(O) = exp [L'I.:( s) dS] . R(O), 

(A22) 

where exp [ ] designates symbolically the series 

with TI < T2 < ... < Tn' and where P designates the 
chronological operator. Our purpose is to derive an 
equation satisfied by (R) = WI' It is easy to show 

• 0 R. Kubo, J. Math. Phys. 4, 174 (1963). 

that (:R) satisfies 

! (:R) = :T <exp [L'£.(S) dS]) 

X Kexp [L'I.:(S) dS])r\:It), (A24) 

so that WI satisfies 

:T WI = LOWI + {exp [LoT] X ! <exp [1'£.(S) dS]) 

X <exp [1'£.(S) dS])-I X exp [-LoT]} WI' 

(A25) 

Of course, the second term of the rhs ofEq. (A25) can 
be explicitly written with the help of definition 
(A2Ib), (A23) and the moments of F~. If we consider 
that F~ is a term of order I in a squared coupling 
constant, then the various series of operators involved 
in the rhs of Eq. (A25) give a development in powers 
of this constant. Equation (A25) may be useful in 
connection with problems of kinetic equations. To 
the second order in the squared coupling constant, 
Eq. (A25) reads 

o 
- WI - LOWI - (LI)WI 
OT 

= L'dS K[LlT) exp {Lo(T - s)} LI(S) 

X exp{-LoC-t-s)}] X WI' (A26) 

where K[ ] signifies "correlation function of [ ]." 
Next we have to solve Eq. (26) and use its solution to 
find the "true" density '11\ by using Eq. (4). The 
assumption that F~ does not depend on u~ is, of 
course, an oversimplification of the real situation 
and thus a fully correct treatment is in fact more 
complicated. 

In another paper we shall show that these equations 
are useful when dealing with problems of acceleration 
of relativistic particles by random fields (i.e., accelera­
tion of the charged component of extragalactic cosmic 
rays) and also in problems of turbulence. 

Concluding Remarks 

We can repeat here what has been said in Ref. 5 
about the proper-time-dependent formalism. It has 
no specific meaning by itself and has only ~ heuristic 
value. It may be used as a useful intermediary in the 
calculations leading to the "true" geometrical densi­
ties. The main advantage of this approach lies in the 
fact that it allows the use of standard methods al­
though usual definitions should be used only after a 
careful analysis of their "physical" meaning . 
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In this paper we study the effect of a spatial modulation in the magnetic field on invariants such as the 
magnetic moment II = Vi/B. In particular, we investigate whether an invariant still exists when the 
wavelength of the modulation is comparable to the gyro radius of the particle. In an axially symmetric 
magnetic field, with a square-wave modulation, the orbit equations reduce to algebraic relations con­
venient for numerical study. We find from such studies that orbits are of two types: (a) regular orbits 
which generate an invariant; (b) orbits which are quasi-ergodic. We have also calculated an invariant by 
perturbation theory with the depth of modulation of the field as a small parameter. For this we developed 
a modified form of perturbation theory which overcomes the difficulty of infinities arisir,g at resonance 
between the perturbation and the cyclotron period. This difficulty in fact corresponds to a change in 
topology of the invariant curves. The invariant calculated from this theory shows very good agreement 
with the numerically computed orbits of type (a). The transition to quasi-ergodic behavior cannot be 
predicted analytically, but some indication of it may exist in the complex topology of the invariant curves 
in the ergodic regions. 

1. INTRODUCTION 

The invariants of motion play an important role 
both in the trapping and containment of charged 
particles in magnetic-confinement systems. For motion 
in sufficiently smooth fields, an important adiabatic 
invariant is the magnetic moment f-t = Vi/B, where 
V 1- is the particle velocity transverse to the magnetic 
field B. In this paper we consider the effect of a spatial 
modulation, superimposed on an otherwise uniform 
magnetic field, on the behavior of such invariants. 
We are particularly interested in the situation where 
the wavelength of the modulation may be comparable 
with the gyro magnetic radius of the particle. In this 
case f-t is no longer a valid invariant and we investigate 
whether any alternative invariant exists. 

Interest in a possible invariant in a modulated 
magnetic field arose out of studies of the containment 
properties of magnetic traps incorporating such 
fields,I-3 but here we are concerned only with the 
invariant itself, not with any possible containment. 
Accordingly we consider a very simple field, with axial 
symmetry and without any end effects. The axial com­
ponent of the magnetic field Bz is Bo[l + Eg(Z)] where 
g(z) is the periodic modulation with wavelength A; 

1 D. A. Dunnett, E. W. Laing, S. J. Roberts, and A. E. Robson, 
J. Nucl. Energy: Pt. C, 7, 359 (1965). 

• A. E. Robson and J. B. Taylor, Phys. Fluids 8, 2026 (1965). 
3 D. A. Dunnett and E. W. Laing, J. Nucl. Energy: Pt. C, 8, 

399 (1966). 

there is no radial dependence so that V x B :,= 0, 
although V • B = 0. 

The motion of a charged particle in this field is 
studied both numerically (Sec. 2) and analytically 
(Sec. 3). In the numerical studies g(z) is taken to be a 
step function, alternately ± 1 with discontinuities at 
z = nA.j2. With this form of magnetic field the orbit 
equations reduce to a set of transfer matrices so that 
the orbit can be computed over many field periods 
with speed and accuracy. 

The results of these numerical calculations show 
that, depending on their initial values, orbits can be 
classified into two types: (a) regular orbits which 
correspond to the existence of an invariant of the 
motion, and (b) orbits which fill quasi-ergodically all 
the available part of phase space not mapped by 
orbits of type (a). 

In the analytic investigation we study invariants 
using perturbation theory, with E as a small parameter. 
Straightforward perturbation theory fails because the 
perturbation may "resonate" with the cyclotron 
period of the unperturbed orbit, leading to the problem 
of "vanishing denominators." However, a modified 
form of perturbation theory is introduced which 
overcomes this difficulty and permits us to generate an 
adiabatic invariant J, as a series in E. This is valid 
throughout phase space, even in the region of the 
resonances. Comparison of the first few terms of the 

1819 
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FIG. 1. Numerically computed orbits, " = 0.025. 

invariant 1 ~ 10 + ell with the numerical computa­
tions shows excellent agreement with the regular 
orbits calculated numerically. 

2. NUMERICAL COMPUTATIONS 

It has been shown by Laing and Robson4 that, 
within a range of z for whichf(z) = 1 + eg(z) has a 
constant value J; , the orbit equations may be put in the 
form 

d2r/dT2 = r~/r3 - r!;, 

d2z/dT2 = O. 

(1) 

(2) 

We have used as a dimensionless time variable T = 
twt, w = eBo/mc, and the length ro is related to the 
constant canonical momentum Pe conjugate to the 
azimuthal coordinate () about the axis of symmetry. 

The general solution of (1) is 

r2 = rJ.i + ~i cos (2J;T + cfoi)' (3) 
where 

rJ.; - ~; = r~If;. 

At any time T, the state of motion of the particle is 
thus described by only two parameters rJ.i , cfoi' At a 
discontinuity in f, both rand dr/dT are continuous, 
so that at the boundary between region i and region 
(i + 1), 

and 
J;~; sin cfoi = J;+1~i+1 sin 1Jli+1' (4) 

Here we have set T = 0 at the boundary between 
the ith and (i + 1 )th regions and 1Jli' cfoi denote the 
phase at the beginning and end, respectively, of the 
ith region. Thus 

cfoi = 1Jli + AJ;/Ui (5) 

4 E. W. Laing and A. E. Robson, J. Nucl. Energy: Pt. C, 3, 
146 (1961). 

where Ui = (dz/dT); and can be determined from (3) 
and the energy equation. This takes the form 

(
dr)2 (dZ)2 (r2 )2 
dT + dT + -; - rli = v

2
, (6) 

where we have written v = 2 V/w. A more detailed 
account of the procedure for computing the trajectory 
of a particle is given by Dunnett et al. 1 

Instead of using cfo and rJ. to represent the orbit, the 
results are presented in terms of the phase cfo and the 
normalized magnetic moment 

The value of ~ is constant with a region of uniform 
magnetic field, and is related to rJ.i by 

~i = 2(/;/V2)(rJ.i li - r~). 

In the calculation, then, values of (~, cfo) are com­
puted in successive periods of the magnetic field and 
the successive points (~i' cfoi) are plotted to give a rep­
resentation of the "orbit." Some typical results are 
shown in Figs. 1-3. These all refer to orbits with 
v = 2, A = 217, ro = 2, which were of particular 
interest in the containment problem studied by 
Dunnett et aU They represent a particle injected 
parallel to the axis at a distance ro = 2 from the axis 
with a velocity satisfying the resonance criterion 
V = WA/217, i.e., v = 2 for A = 217. The three figures 
are computed with amplitudes of the modulating 
field which are 0.025, 0.05, and 0.10, respectively, 
of the main field. 

From these diagrams it can be seen that orbits are 
of two distinct types. In some regions of the a, cfo) 
plane the successive values of (~i' cfoi), along an orbit, 

·6 

·4 

FIG. 2. Numerically computed orbits, € = 0.05. 
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FIG. 3. Numerically computed orbits, £ = 0.10. 

lie on a smooth curve. These [type (a)] orbits corre­
spond to the existence of an invariant of motion. 
However, for orbits in other regions of (~, cP) the 
successive values of (~i' cPi) do not lie on a regular 
curve but fill, quasi-ergodically, part of the (~, cP) 
plane. In fact, one of these [type (b)] orbits eventually 
fills all the (~, cP) plane except for regions already 
mapped by type (a) orbits and some regions of large ~. 
(These excluded large ~ regions correspond to particle 
reflection at the field discontinuities.) It should be 
stressed that with type (a) orbits each initial value 
(~o, cPo) generates only one invariant curve (except 
that it may generate a chain of "islands," as shown). 
However, with the type (b) quasi-ergodic orbits, 
any single initial state (~, cPo) will ultimately map the 
whole area. It is in this sense that we claim that the 
motion is quasi-ergodic. 

The region occupied by type (a) (regular) orbits 
decreases, and that occupied by type (b) (quasi­
ergodic) orbits increases, as the strength of the field 
modulation E is increased. In Fig. 1, where E = 0.025, 
almost all possible orbits are regular and possess a 
valid invariant. In Fig. 3, where E = 0.1, almost the 
whole plane is mapped by a quasi-ergodic orbit and 
only a small class of orbits possess a valid invariant. 
In all cases there is a sharp transition between regions 
where an invariant exists and those where quasi­
ergodic behavior pertains. 

This kind of behavior is similar to that found in 
several other problems, notably in the quest for a 
third invariant of galactic motion.s It is worth noting, 
however, that in our present problem the motion for 
E = 0 is unbounded, whereas interest usually centers 
around motion which is periodic when E = O. 

SM. Henon and C. Heiles, Astron. J. 69, 73 (1964). 

We note in passing that, if ft were an invariant, the 
orbits (~i' cPi) would be on horizontal straight lines 
~ = const. 

3. THE INVARIANT 

The results of the numerical calculations indicate 
that, at least for small E, an invariant may exist even 
when the usual magnetic-moment invariant is no 
longer valid. In this section we show how this invariant 
may be calculated by a perturbation expansion in E. 

The essential problem is to devise a perturbation 
expansion which remains valid even when the modula­
ted magnetic field gives a perturbation in resonance 
with the unperturbed cyclotron orbit, i.e., when its 
effect is no longer "small." In conventional perturba­
tion calculations this resonance gives rise to vanishing 
denominators in the coefficients of the E power series. 
We shall show how this difficulty may be overcome, in 
principle, to any finite order in E. 

Perturbation Theory 

The Hamiltonian describing the motion of a charged 
particle in the magnetic vector potential A is given by 

H = (p - eAjc)2j2m. 

In our case, using cylindrical coordinates, the vector 
potential has only one nonzero component, A9 = 
irB •. Using C for r~, but otherwise the same notation 
as in Sec. 2, we may then write 

H = t(p; + p~ + [Cfr - r(1 + Eg(Z»]2). (7) 

As we evaluate the invariant only to first order in E, 

we express H approximately in the form Ho + EHI : 

Ho = Hp; + p; + (Cjr - rn, 

HI = (r2 - C)g(z). (8) 

Ho is thus the Hamiltonian for motion in a uniform 
magnetic field. 

The object is to generate a new constant of the 
motion J which is to replace the constant p. or, 
equivalently, the constant ~, which exists when E = O. 
The system is still conservative and H = Ho + EHI 
is a constant of the motion so that any other constant 
of motion J has the property [J, H] = 0, where 
[ , ] is the Poisson bracket. Setting J = J o + EJ + 
.. " H = Ho + EHI , and expanding the Poisson 
bracket, one obtains a set of recurrence equations, of 
which the first two are 

[Jo, Hol = 0, 

[JI , Hol + [Jo, HI] = o. (9) 

We first perform a simplifying canonical transforma­
tion6 (r, Pr) -+ (Q, P), so that Hp; + (Cfr - r )2] -+ P. 

6 B. McNamara and K. J. Whiteman, J. Math. Phys. 8, 2029 
(1967). 
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This is effected by the generating function 

(10) 

which gives 
y2 = P + C + A sin 2Q, (11) 

where 

The transformed Hamiltonian then becomes 

(12) 
where 

n = (P + A sin 2Q)g(z). 

The recurrence equations (9) become, writing P. = P 
for brevity, 

oJo + oJo = 0 (13) 
oQ p oz ' 

oJ1 + oJ1 + [J n] = o. (14) 
oQ p oz 0, 

Equation (13) indicates that Jo is an arbitrary func­
tion of P, p, pQ - z. However, dependence on the 
last of these is ruled out by requiring thatJo be periodic 
both in Q and in z for all p. In fact, we need regard Jo 
only as an arbitrary function of p. Then, after a 
change of variables to IX = pQ - z, f3 = z, Eq. (14) 
may be written 

oJ1 1 oJo on -=---, 
of3 p op oz 

so that 

J = 1 OJoJ
P 
df3'[P + A sin ~ (IX + f3')J dg(f3'). (15) 

1 pop p df3' 

Now g(f3) is a periodic function of period A, so that the 
integral is unbounded in f3 whenever p = Af1Tn. In the 
neighborhood of such points our expansion in € must 
apparently break down-the well-known vanishing­
denominator problem. 

This failure of perturbation theory near a resonance 
has a simple interpretation. It is a manifestation of the 
fact that at such a point the topology of the true 
invariant curves, J = const, differs from that of the 
curves Jo = const. Generally, if € is small, the contours 
of (Jo + d 1) = const can be topologically different 
than those of Jo = const only if J1 is large. Thus the 
appearance of a large J1 is simply the response of 
perturbation theory to the change in topology. 
Consequently, a valid perturbation expansion can 
be obtained if Jo is chosen so that a small J1 can make 
the topology of the (Jo + d 1) curves differ from that of 

the Jo = const curves. This is the case if oJ%p 
vanishes at the points concerned. 

We illustrate this by evaluating J1 for the square­
wave modulation used in the numerical calculation, 
g(f3') = ± 1. Then 

dg = 2!(-1)nc5(f3' - nAf2), 
df3 -00 

and so 

J1 = ~(OJo) 
p op 

x {I + (_l)N + A [sin (21X - A/2) 
2 2 cos (Af2p) p 

X (_I)N sin (21X + (; + t)A)J} + C(IX, p, P). 

(16) 

In (16), f3 has been chosen in the interval [NA/2, 
(N + 1)..1/2] so that f3 = NAf2 + 'Y, 0 < 'Y < Af2. 
The integration "constant" C may conveniently be 
chosen so that terms independent of N disappear; 
then, if J1 is evaluated at the midpoint of an interval, 

J1 = (_I)N! oJo [p + A sin 2QJ. (17) 
p op cos (Af2p) 

We now observe that, as expected, J1 is unbounded at 
p = 0 and at the zeros of cos (Af2p), unless oJ%p is 
chosen so that it vanishes at these points. A suitable 
choice for Jo is 

Jo = p3(sin (Af2p) - 6p/A cos (Af2p», 

giving finally 

J ro..J Jo + d 1 = p3(sin (Af2p) - 6p/A cos (Af2p» 

=ft€A[1 + 48(p/A)2][P cos (Af2p) + A sin 2Q]. (18) 

Of course, other functions Jo may be chosen, provided 
oJ%p vanishes at the appropriate points, and these 
would apparently lead to a different function for 
Jo + d 1 (= j, say). However, it can be shown that 
there would then be a functional relationship between 
J and j, so that the curves j = const would be identical 
with the curves J = const. 

For comparison with the numerical computations, 
J must be expressed in terms of the variables ~,tfo. 
The only dynamical variable in Jo is p, and this is 
exactly v(l - ~)!. In J1 , we need only zero-order (in €) 
relations between P, Q and ~, tfo. These are 
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FIG. 4. Invariant curves Jo + £Ii = const, .. = 0.025. 

Consequently J can be written 

J = v3(1 _ ;)f sin A ! 
2v(1 - ;) 

6v4 A __ (1 - ;)2 cos ---. 
A 2v(1 - ;)! 

=F teA[1 + 48v2(1 - ;)jA2] 

X {tV2 ; cos A ! 
2v(1 - ;) 

+ [ctv2;)2 + v2;C]! cos 4>}. (19) 

Curves J = const are shown in Figs. 4-6 for the 
same parameters (v = 2, C = 4, A = 27T, and E = 
0.025, 0.05, 0.10) as were used in the numerical 
computations of Figs. 1-3. It is seen that there is close 
agreement between curves derived from the invariant 
(19) and the computed orbits of type (a). 

·6 

FIG. 5. Invariant curves Jo + .. J i = const, .. = 0.05. 

FIG. 6. Invariant curves Jo + £Ii = const, .. = 0.10. 

SUMMARY AND DISCUSSION 

We have investigated the motion of charged particles 
in a spatially modulated magnetic field, in particular, 
to see whether any invariant exists when the modula­
tions give resonance with the cyclotron period' and 
destroy the magnetic-moment invariant. A study of 
numerically computed orbits in a modulated field 
shows that they fall into two classes: (a) regular 
orbits, corresponding to the existence of an invariant; 
and (b) quasi-ergodic orbits. Provided the modulation 
E of the field is not too great, the regular orbits 
predominate. 

For small E, then, these numerical studies indicate 
that an invariant exists, even in the resonant situation. 
We have, therefore, computed this invariant as a 
power series in E. For this we developed a form of 
perturbation theory which avoids the usual problem of 
vanishing denominators near resonance and shows 
that this phenomena really indicates a change in 
topology of the invariant curves. The invariant 
calculated in this way is given by Eq. (18) and shows 
very good agreement with the numerically computed 
orbits of type (a). This agreement confirms that, 
when an invariant exists, it can be calculated by our 
modified form of perturbation theory. 

However, perturbation theory can give no direct 
indication of the transition to quasi-ergodic behavior. 
An indirect indication may lie in the chain of "islands" 
which the numerical studies show near the boundary 
between regular and ergodic behavior. These' islands 
represent further changes in topology which would be 
reproduced if our perturbation theory were carried to 
higher order, and we may speculate that the increas­
ingly complex behavior of the analytic curves represent 
the onset of quasi-ergodic behavior. 
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The crossing ~~Iation f~r transversit~ amplitudes is used in a simple proof of the kinematic-singularity 
str~cture ?f hehc.lty ampht~des, both In t~e gen~ral-mass and in various particular-mass cases. A com­
panson wl~h earher r~sul~s IS made. The kIne~atlc properties of heIicity and transversity amplitudes are 
empl?yed In the denvatlOn of an asymptotic expression for the contribution of Regge poles to the 
amphtude. 

1. INTRODUCTION 

The kinematic-singularity structure of helicity 
amplitudes has been given by Hara1 and by Wang.2 

Both the proofs and the final results are, however, 
rather complicated. At thresholds and pseudothresh­
olds the behavior of helicity amplitudes may be 
related to that of partial-wave amplitudes, and 
Frautschi and Jones3 have shown how, at least in 
certain cases, this relationship may be used to obtain 
the powers of the singularities very simply. We show 
that this result is quite general. 

Cohen-Tannoudji et al.4 also derived the kinematic­
singularity structure of helicity amplitudes, this time 
from the properties of invariant amplitudes, without 
using crossing, and Stapp5 obtained similar results 
from basic analyticity properties. Reference 4 also 
employs the transversity amplitudes of Kotanski6 in a 
derivation of kinematic constraints on the helicity 
amplitudes. Section 2 of the present paper is devoted 
largely to the presentation of a very simple proof of the 
kinematic-singularity structure of helicity amplitudes. 
The method employs the same physical assumptions 
as does Wang,2 but by using transversity amplitudes6 

and their kinematic properties4 great simplification is 
obtained. 

In Sec. 3 some results on the high-energy limit of a 
Regge-pole contribution7- 1o to the helicity amplitude 
are derived (for general mass), and questions about 
daughter contributions, conspiracy, and evasion are 
considered. In Sec. 4 it is shown how recourse to 

* Present address: Department of Applied Mathematics, The 
University, Liverpool 3, England. 
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transversity amplitudes may make for a simpler 
phenomenological analysis, in spite of the various 
helicity-dependent kinematic factors. Since this part 
of the paper is for application to inelastic processes, 
where data are at present rather inadequate, no 
apology is made for the somewhat crude approxima­
tions suggested. 

The Appendix is devoted to showing the equivalence 
of the results of Sec. 2 with those of Wang2.9 and to 
the derivation of the kinematic-singularity structure 
of thehelicity amplitudes in various particular-mass 
cases. 

2. KINEMATIC-SINGULARITY STRUCTURE OF 
HELICITY AMPLITUDES 

We review briefly the properties of helicity states 
in order to establish some notations and conventions. 
Single-particle rest states of a particle of mass m and 
spin s transform under rotations according to 

R IpA) = L D:;.(R) Ipft), p = (m, 0). (1) 

We use the conventions of Edmondsll for the rotation 
matrices. 

States of momentum p with p2 = m2 are defined by 

IpA) = H(P) IfA), (2) 
where 

H(P) = R(P)Z(P), (3) 
and, for 

p = [m cosh " m sinh '(sin () cos T, 
sin () sin T, cos ()], (4) 

we have 

Z(P) = exp (-i,Kz ), (5) 

R(P) = exp (-iTJz) exp (-i()Jy) exp (-iTJz)' (6) 

In particular, for 

ql = (ml' 0, 0, q), (7) 

q2 = (m2' 0, 0, -q), q ~ 0, (8) 

11 A. R. Edmonds, Angular Momentum in Quantum Mechanics 
(Princeton University Press, Princeton, N.J., 1960), 2nd ed. 

1824 
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we define 
(9) 

R(q2) = e-irrJ•. (10) 

The generators J, K of the homogeneous Lorentz 
group satisfy the usual commutation relations: 

[Ji, Ji] = iEiik J", 

[Ki,]i] = iEiikKk, 

[Ki, Ki] = _iEiikJk. 

(11) 

(12) 

(13) 

Two-particle states in the over-a11 center-of-mass 
frame are defined in terms of direct products of 
single-particle states by 

IPI,1.IP2,1.2) = R(PI)(lqI,1.I) ® Iq2,1.2», (14) 

where ql and q2 are defined in (7) and (8), with 
q = IPII = Ip21· We have omitted the Jacob and 
WickI2 factor (_1)S2+A2 for the second particle. For 
momenta PI, P2 in the xz plane, the parity operator 
acts according to 

p IPI,1.IP2,1.2) 
= rh'Y/2( _lYl+).1+s2+A2e- i "Ju IPI -,1.IP2 -,1.2), (15) 

'Y/I and 'Y/2 being the intrinsic parities. 
We define the scattering amplitude /edab for the 

reaction 
a+b-+c+d (16) 

in the usual way, and normalize it by the requirement 
that the differential cross section be 

da [S2 ( ( -1 '" 2 - = 7r ab 2Sa + 1) 2sb + 1)] L.., Ifedabl, (17) 
dt abed 

where 

S!b = [S - (ma + mb)2][s - (ma - mb)2]. (18) 

Parity conservation is expressed [from (15)] as 

fedab = 'Y/( _lya+Sb+Sc+s,,+a+b+e+df_c_d_a_b (19) 

in agreement with Ref. 4. Here 

(20) 

(We assume that a11 intrinsic parities are real.) 
Transversity amplitudes6 are defined in terms of 

helicity amplitudes by 

TCdab = 2: u*(se)e'eU*(Sd)d'du(sa)a'aU(Sb)b'bfe'd'a'b" (21) 

where 
c'd'a'b' 

U(S) = DS(e-!irrJze-!irrJ·e+hrrJz), 

u(s) = e-!rrCa-blds (_.1 ) 
ab ab 27r • 

(22) 

(23) 

12 M. Jacob and G.-C. Wick, Ann. Phys. (N.Y.) 7, 404 (1959). 

The matrices u(s) are unitary and symmetric and 

U(SLa-b = U(S)ab' 

U*(S)ab = ( -l)a-bu(s)ab' 

( _l)s+aU(S)ab = eir.bu(sLab· 

(24) 

(25) 

(26) 

These matrices diagonalize the rotation matrices 
dS(e), so that the crossing matrix for transversity 
amplitudes takes a particularly simple form4 

T~c -a -d -b = EO( -1 ya+Sb+SC+Sde-irrCb-el 

X eiCaXa-bXb+eXc-dXdlT~dab' (27) 

where EO = -1 if a and dare fermions and is + 1 in 
a11 other cases. 

Each Xi is the angle between the sand t rest frames 
as seen from the corresponding particle. Their sines 
and cosines are as follows: 

where 

(32) 

The threshold factor Sab was defined in (18); Sed is 
defined similarly, and also b ea , b db with t replacing s. 
The function cp is zero on the boundary of the physical 
region: 

cp = st(:r.m 2 - s - t) - sCm; - m;)(m! - m~) 

- t(m! - m~)(m~ - m~) 

- (m~m~ - m~m~)(m~ + m~ - m~ - m~). (33) 

We deduce the kinematic singularities of the 
helicity amplitudes from the result, basic to the argu­
ment of Ref. 2 and proved in Ref. 4, that the only 
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s-kinematic singularities of the t-channel amplitude 
jI are those appearing explicitly in 

I t (10 )j).'+/l'I· 0 1).'-/l'I-t e'a'd'b' = cos ~ t (sm l t) 'fe'a'd'b" (34) 

where 
A' = d' - b', fl-' = c' - a'. (35) 

The formulas for the sines and cosines of the s- and 
t-channel scattering angles follow: 

The s-channel scattering amplitude is written in the 
form 

I s = (cos 10 )IH/lI(sin 10 )1).-/l'lS edab ~ S ~ s edab' (38) 

where 

A = a - b, fl- = e - d, (39) 

andj" has no t-kinematic singularities. 
It is convenient at this point to introduce the 

following linear combinations of ledab and I-e -dab' 
although the necessity for doing so is not yet apparent: 

I~ab = .lcdab ± 1J e1Ji _l)'.-s"v( -1 »).+.!ml-e -dab (40) 

I' ± (1)'a-Sb-V( 1)-/l+).ml = J cdab 1Ja1Jb - - J ed-a-b' 

by (19). (41) 
Here, 

v = 0 or t so that Sc - Sd - v is integral, (42) 

and 
Am = max (IAI, Ifl-J) 

= HIA - fl-I + IA + fl-I). (43) 

The choice of phase in (40) is governed by the applica­
tion to Regge-pole theory ,7.10 but we postpone 
discussion of this point since the results on kinematic 
singularities are quite independent of this model. 

We now derive the s-kinematic singularities of the 
f±. Since jt, cos to t' sin tOt, and the crossing matrix 
are regular at s = 0, so also is/". However, the factor 
cos lO, or sin to, introduces s! singularities into I, 
and we have 

I ± ,...., s-!max <lH/lI.I).-/lP = s-!<I).I+I/lP s _ 0 (44) edab , • 

Our treatment of the singularities at thresholds and 
pseudothresholds will use the behavior of the trans­
versity amplitudes at these points. Since Tt is kine­
matically regular at Sab = 0, Sed = 0, it follows from 
the crossing relation (27), which of course contains 
no summation, that 1'" behaves near these points like 

exp [-i(aXa - bXb + eXe - dXd)] 

= exp [-ii[(Xa + Xb)(a - b) + (Xa - Xb)(a + b) 

+~+L~-~+~-L~+~~ ~~ 

We write 
q;ab = [s - (rna + rnb)2]!, (46) 

"Pab = [s - (rna - rnb)2]!, (47) 

and similarly for q;cd' "Ped' and note, following Ref. 
4, that the vanishing of the denominators of cos Xi 
and sin Xi leads to poles or zeros of exp [i(Xa ± Xb)], 
exp fi(Xe ± Xa)]' It is clear that whether a pole or zero 
occurs depends on the determination of q;! in the 
sin Xi' and hence on whether £ is + 1 or -1 in 

cos 0,""" -i£ sin Os, (48) 

at the corresponding pole of cos O. and sin Os. (Here 
we use,...., to mean "is asymptotically equal to" rather 
than "is asymptotically proportional to"; which 
sense is intended will always be clear.) 

The results for the behavior of 1'" at thresholds and 
pseudothresholds are as follows': 

T' ,...., q;<l(a+b) edab ab , q;ab - 0, (49) 

T' <ab<2(a-b) 
cdab""" "Pab , "Pab- O, (50) 

TS <.(e+d) 
edab""" q;ea , q;ea - 0, (51) 

T~dab ,...., "P~d<i<",(e-d), "Ped- O. (52) 

Here, 

rni - mj 
(53) £ij = 

Imi - mil 

Since the q;ii and "Pii are themselves square roots, any 
kinematically regular amplitude must contain only 
even powers of each. This is the reason for defining 
f+ andf- as will appear. Consider first the threshold 
q;ab = O. We have 

10 1 + cos O. '.10 .' 10 ! cos 11 • =. sm 11 .,...., -1£1 sm 2 8""" q;;b . 
sm Os 

(55) 
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Thus, from (41), 

j~dab ""' (sin 10s)-P.+IlI-I.Ht l( - i€l)-I).+Il~~dab 

± rJarJb( _1)'a-Sb--V( -1)-IlHm(sin iO s)-P.+IlI-IJ.-1l1 

X (- i€1)-IJ.-1t1nd -a -b (56) 

""' (sin 10s)-2Am[f~dab ± rJarJb( _1)'a-Sb-V 

X e-iJT).E1~d_a_b]' (57) 

We write f" in terms of T S
, using the inverse of (21); 

because of (26) we can expressf± as a single sum over 
the T S

: 

X (1 ± rJarJb( _1)"+El(a'+b'»T~'d'a'b" (58) 

It is now clear that the sum is over even or odd values 
of a' + b' and therefore that multiplication by a 
suitable power of rpab will make f± kinematically 
regular. From (49) the most singular terms on the 
right of (58) are those with a' = - €lSa' b' = - €lSb' 
except that the factor in front of T'may vanish. We 
allow for this by writing 

j± Am-Sa- Sb+81 cdab ""' rp ab , (59) 
where 

01 = 0 or 1, (60) 
and 

±rJarJb( _1)"-Sa-Sb+81 = + 1. (61) 

For total and initial orbital angular momentum j 
and 11, respectively, parity is rJa'Y/b( -1)!1 and j-parity 
is (-!)i-" .. Thus (60) and (61) define 01 such that 
11 = j - Sa - Sb + 01 is the lowest orbital angular 
momentum for parity X j-parity = ± 1. This will 
acquire greater significance when we come to consider 
Regge poles. 

Consider, now, the pseudothreshold "Pab = O. From 
(50) w.e find in an exactly similar manner that 

(62) 
where 

O2 = 0 or 1, ±rJarJb(_1)V-Eab(Sa-Sb-8.) = +1. (63) 

Equation (63) for O2 differs from Eq. (61) for 01 only 
in that the parity of the lighter particle is replaced by 
the parity of the corresponding antiparticle. The same 
arguments apply to the final-particle threshold and 
pseudothreshold. 

It may be convenient to have the definitions of the 
0i and Ii displayed explicitly, though it should be 
emphasized that in practice one does not need to 
refer to formulas since the interpretation in terms of 
initial and final orbital angular momentum and 

threshold factors can be used as a mnemonic: 

0i = 0 or 1, (64) 

±rJarJb( _1)"-Sa-Sb+81 = + 1, 11 = j - Sa - Sb + 01, 

(65) 

±[rJarJb](-1)"-Sa-S b+8• = +1, 12 =j - Sa - Sb + O2, 

(66) 

±rJcrJaC _0"->,-Sd+83 = + 1, 13 = j - Sc - Sa + 03, 

(67) 

± [rJCrJd]( _1)"-8,-Sd+84 = + 1, 14 = j - Sc - sa + 04, 

(68) 
Here we have 

In particular, for BB reactions [rJirJi] = rJirJi' for 
FF (or FF) [rJirJi] = - rJirJi' for FB (or BF) [rJirJi] = 
± rJirJi' depending on whether the fermion or boson 
is more massive. 

The final result, then, for the general-mass case is 

f ± ""' s-!<!AI+IIlI)mAm-Sa-Sb+81 Am- Sa-Sb+8• _ cdab Tab "Pab 

X rp:;-S'-Sd+83"P:;-S'-Sd+B4 • (70) 

Frautschi and Jones3 brought out the connection 
between kinematic behavior at thresholds and pseudo­
thresholds and orbital angular momentum, and 
remarked that this method agreed with the results of 
Wang2 in all cases they checked. We show in the 
Appendix that the agreement is quite general. 

3. ASYMPTOTIC EXPRESSIONS FOR REGGE­
POLE CONTRmUTIONS 

We take from Ref. 10 the following expression 
for the contribution to the I-channel amplitude of a 
single Regge pole of signature (1, parity X j-parity = 
± 1, trajectory IX = IX ±, and residue f3 ± : 

j~dab ""' - ~ (1 + ae-irr(a-v» 

21X + 1 ( 1)Il-Vaa ( {j ){3± 
X. ( ) - II-A 7T - Vt cdab' 

sin 7T IX - v 
(71) 

where a + b --+ c + d is now the I channel and 

[r(1X +,u + l)r(IX-,u+ l)r(IX-A+ 1)r(IX+A+ I)i 
x F(,u - ct., A + IX; - 21X; cosec2 lOt). (72) 
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Changing (2.35) and (2.36) of Ref. 10 to take 
account of the omission in the present paper of the 
Jacob and Wick12 factor (_I)S2-'<2, we have 

fJ± ± (1)Sa-sb-vfJ± cdab = fJarlb - cd-a-b 
= ±fJcfJaC -1 )Sc-Sa-v fJ-c -dab 

= 'I'1(_1)Sa-Sb-Sc+SafJ± 
'1 -c-d-a-b' 

Let us write 

m = max (A, fJ), m' = min (A, fJ). 

Because of (19) we may assume that 

m~lm'l· 

This saves some trouble with phases. 
We write the denominator of (72) as 

and use the result13 

r(21X + l);r(1X + 1) = 22a7T-!r(1X + t) 
to obtain 

0:_;.( 7T - ° t) 
= 'IT-!r(1X + t) K

1
(1X)(2 sin iOt)2a-m-m' 

r(1X + 1) 

(73) 

(74) 

(75) 

(76) 

(77) 

(78) 

X (2 cos tOt)m+m'P(m - IX, m' - IX; -21X; cosec2 tOt) 

(79) 

= e±iu(a-m) 'IT-!r(1X + t) K (1X)(2 cos I.O )2a-m+m' 
r(1X + 1) 1 2 t 

x (2 sin tOt)m-m'P(m -IX, -m' -IX; -21X; sec2tOt). 

(80) 

The last line follows from the properties of the 
hypergeometric functions 13 and is a familiar one for 
the ordinary rotation matrices di (for which, however, 
it is true only for physical values of j). In the asymp­
totic limit s --+ 00 we have, for t ~ 0, 

(81) 

the alternative signs in (80) correspond with those in 
(81), as is easily seen from the fact that both hyper­
geometric functions become unity in that limit. 

For t --+ 0 we have sin 0t f"-.J t! and either sin tOt 
or cos tOt behaves like t!. The asymptotic limit P = 1 
no longer applies, but the correct behavior of the 
scattering amplitude is nevertheless obtained by 
assuming P = 1 in (79) and (80) for sin tOt f"-.J t!, 
cos tOt --+ t!, respectively. The daughter hypothesis is 
one way of arranging additional contributions to the 

13 A. Erdelyi, et al., Bateman Manuscript Project, Higher Trans­
cendental FUflctions (McGraw-Hill Book Co., New York, 1953). 

scattering amplitude to make this true.14- 16 With this 
modification to the asymptotic limit, (71) becomes 

!~dab f"'o..j - 'IT!(1 + ae-iu(a-v» 

X r(1X + .~?( -1)1'-v K
1
(1X)(2 sin tOt)m-m' 

r(1X + 1) sm 'IT(IX - v) 

X (2 cos 20t) -- fJcdab , 1. m+m' ( -4st )a-m ± 

babbcd 
s --+ 00, all t. (82) 

Now from (19), (73), and (76) we find 

!;dab f"'o..j ±fJcfJaC _1)HJ.m( _l)Sc-Sa-1l!":c -dab (83) 

= ±fJafJb( -1 )-IIHm( -1 )Sa-Sb-1l!Ct
d -a -b , (84) 

valid without the restriction (76). This shows that the 
choice of phase in (40) and (41) is such that a pole 
with parity x j-parity = ± 1, residue fJ ± contributes 
only to f± in the asymptotic limit, f~ being of lower 
order in S.7.10 The t-kinematic behavior offt± is given 
by (70) (on replacing s by t), but fJ must contain an 
additional factor (PabPcd)'l.- m = (babb cd/4t)a-m to 
cancel that appearing in (82). Thus 

fJ± oc tJ.m-!(IAI+IIII)-amII11112mI3.JlI4 (85) 
cdab rab rabrcdrcd' 

where the Ii are defined in (65)-(68). The interpretation 
given earlier of the behavior of the amplitude at 
thresholds and pseudothresholds in terms of initial 
and final orbital angular momentum should now be 
more transparent. 

Sincejl is regular at t = 0, we see from (38) (forjl) 
that if jI is nonzero at t = 0, either fc~ab or !:"'c-dab 

will be more singular than the other there, and there­
for thatft+ andjl- differ, if at all, only by a sign. 
However, we have found that a single pole with 
residue fJ± contributes only to f± in the asymptotic 
limit, and therefore, either there is another trajectory 
of opposite parity x j-parity passing through the same 
value as IX at t = 0 and contributing equally to f~ 
(conspiracy) or evasion takes place, the residues 
having additional factors t beyond those in (85),17-19 
Working back from (85) we see that fCdab and f-c-dab 

behave like 1 and t-lm'l (not necessarily re.spectively) 
at t = 0, and therefore that an extra factor tlm'l must 
appear in (85) in order to make both .t;,~ab and f":c -dab 

regular at t = O. Factorization of the residues also 
may introduce factors t, 9 and these may be sufficient 
to satisfy the condition for evasion.17•18 We write 

14 D. Z. Freedman and J.-M. Wang, Phys. Rev. 153, 1596 (1967). 
15 L. Sertorio (private communication). 
,. D. Z. Freedman and J.-M. Wang, Berkeley Preprint, 1967 (un-

published). 
17 E. Leader, Phys. Rev. 166, 1599 (1968). 
18 S. Frautschi and L. Jones, Phys. Rev. 167, 1335 (1968). 
,. H. Hogaasen and Ph. Salin, CERN preprint TH 788, 1967 

(unpublished). 
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K
3
(t) for any additional factor in (3 coming from 

evasion or factorization. 
We require also the "sense-nonsense" factors7

-
1o 

such as [IX (a. + I)]! if zero is a sense-nonsense value 
of a., and a.(a. + 1) if zero is a sense-sense value and 
the trajectory chooses nonsense, or a nonsense-non­
sense value and the trajectory chooses sense. We 
write the factor coming from this source as K2(a.) , 
and note that Kl(a.)K2(a.) is a polynomial in a.. We 
now define reduced residues Yedab which are free from 
kinematic singularities and zeros, but are still subject 
to kinematic constraints at thresholds and pseudo­
thresholds 4: 

(3~dab = K 2(a.)t-!(J-<I+IJlIl4a( -tso)-<m-a 

(86) 

where So is a scaling constant which may be taken to be 
the geometric mean of the squares of the masses, or 
set conveniently at 1 GeV. 

We write 

K(t) = K 1(a.)K2(a.)Kit)t-hl -<I+IJlIl !p~;.-sa-MO, 

then, from (82), 

it ,...., _ !(1 + ae-i1da- v ») 
I edab n 

r(a. + f)(-1)Il-
V
K(t) ± (!..)a--<m (88) x Y~d' 

r(a. + 1) sin n(a. - v) So 

The restriction max (A, fh) > 0 still holds: other 
residues are obtained by using (19). The reduced 
residues y± satisfy the same symmetries (73) and (74) 
as the (31:, and from (88), as from (82), we see that in 
the asymptotic limit Y ± contributes only to p ±, i.e., 
to the amplitude with the same index of parity 
X j-parity. 

4. PHENOMENOLOGY USING TRANSVERSITY 
AMPLITUDES 

In this section we assume that -z = -cos f)t, 
as well as s, is large and positive. Then 

€ = ±1. (90) 

From (82), for the contribution of a Regge trajectory 

a., we obtain 

f~dab""" -n!(1 + ae-iu(a-v») 

X r(a. + f)( _l)Hv K1(a.)(i€)HJI 
r(a. + 1) sin n(a. - v) 

X (-4st )·(3~dab' 
babbed 

(91) 

By analogy with Eq. (21), we 
residues (31' by 

define transversity 

(3'!'a!b = I u*(sJc'CU*(Sd)d'dU(Sa)a'aU(Sbh'b( -1)-<+V 
c'd'a'b' 

X KtCa.)(i€)HJI(3~dab' (92) 

so that the transversity amplitude (in the t channel) 
is given by 

T~dab""" -n~(l + ae-iu(a-v») 

r(a. + f) ( -4st )a(3T± 
X -- cdab' 

r(a. + 1) sin n(a. - v) babbed 
(93) 

As we have seen, Tt is regular at t = 0, while at 
thresholds and pseudothresholds the behavior is 
given in Eqs. (49)-(52). Let us define reduced residues 
)'T by 

(94) 
and put 

K T(t) _ K1' (t) <,(a+b) <ab<2(a-b) <3(c+d) <cd<,(e-d) 
- 123 !Pab 1fab !Ped 1fed ' 

(95) 
Then 

T~dab""" -ni{1 + aexp [-inCa. - v)]} 

r(a. + f) KT( 1'± (S)" 
X !'( + 1). ( ) t)y cdab - . a. Sill n a. - v So 

(96) 

The function K~aCt) represents the contribution to the 
behavior from K1(a.) , K2(a.) , and K3(t). Any factor 
common to all helicity amplitudes will appear in 
K~3(t), the others should be treated as constraints, 
but an "average" function may be defined if there is 
not too much variation between different amplitudes. 
The reduced residues are regular at t = 0 and at 
thresholds and pseudothresholds. The !p! cut remains, 
but can be ignored in the region considered. The 
variation in !Pab and !Ped will also be small in most cases. 
For the purposes of phenomenological fitting of 
da/dt, the various €i in (94) are clearly irrelevant, 
since a change in their determination amounts only 
to a permutation of the amplitudes. 

By employing transversity amplitudes we have 
obtained directly the wide variation in kinematic 
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behavior of the different amplitudes at the pseudo­
thresholds, instead of having to take this into account 
by means of the kinematic constraints of Cohen­
Tannoudji et af.4 A further advantage is that all the 
nonzero amplitudes are independent. From an argu­
ment close to that leading to Eq. (58), we see that for a 
trajectory of parity X j-parity = ± I, which therefore 
contributes only to I± in the asymptotic limit, we have 

T~dab "" ±rJaflb( -1 y+£(a+b)T~dab' (97) 

where E is now that given by (90), and, similarly, 

T~dab "" ±1]c1]i -1y+£(C+d)T~dab' (98) 

Taking these two together we get the equation for 
parity conservation: 

T~dab = 1]( -1 )a+b-c-dT~dab . (99) 

Thus about three quarters of the amplitudes vanish. 
Since KT is clearly invariant under change of sign of A 
or fl, Eqs. (97)-(99) apply also to yT±. 

The theory outlined in this section will be used in a 
forthcoming paper to improve the fit to daldl for 
7T + N ---+ OJ + ~ found in Ref. 10. 

Since the matrix relating 1 and T is unitary [that 
relating K2(IX)fJ and fJT in (92) is also real or pure 
imaginary], 1 may be replaced by Tt in (17), the 
expression for the differential cross section. The 
situation with measurements involving polarization 
would of course be much less simple. 

Note added in proof' The work of Jackson and Hite20 

on helicity amplitudes shows that the results of this 
section have to be interpreted with care. The poles in 
some of the tran'sversity amplitudes at thresholds 
and pseudothresholds in I do not appear in daldl. 
The powers of fPab' etc., to be used in fitting are the 
nonnegative ones, including zero whether or not any 
nonzero transversity amplitude has this behavior. 
This point will be discussed more fully in a later 
paper.21 
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APPENDIX 

First we show the equivalence of our results on 
kinematic singularities with those of Wang.2 Results 

10 J. D. Jackson and G. E. Hite, Phys. Rev. 169, 1248 (1968). 
21 A. McKerrell, Nuovo Cimento 56A, 249 (1968). 

for the singularities at fP = 0 and s = 0 are clearly 
identical. We have to show that our formulas (64)-(70) 
agree with equations (lV3)1 and (11112)1 of Ref. 2. 
Wang's2 formulas for IXg(±), fJaC±) are clearly of the 
form 

Ja + Jb - HIA - fll + IA + fll) - () (AI) 
and 

Jc + Jd - telA - fll + IA + fll) - (), (A2) 

respectively, where each () is 0 or 1. We need only 
show that the value of () in every case agrees with that 
given by (65)-(69). For this we use the result 

max 1] ofn = n - (), () = 0 or 1, 1](_1)n-9= +1, 

(A3) 

which is equivalent to Wang's2 definition of "max 1] 

of n." 
First consider the cases BB ---+ BB, BB ---+ FF, 

FF ---+ BB, FF ---+ FF, where v = O. The sign between 
iCdab and i-c-dab which Wang writes ± is, for our 
amplitudes I± in (40), ±1]c1]i _l)B,+Bd+).+).m, where 
we change back to Jacob and Wick12 amplitudes for 
the purposes of this comparison. Thus for the () 
corresponding to IX, we have, from (A3) and Wang's2 
formula, 

± 1] c1] aC -1 )",+Bd+A+Am 

X 1]ab( _1)Ja+Jb-l(va+vb)+lq).-I'I-IHI'P+9 = +1, 

(A4) 
which simplifies to 

±1]a1]b( _1)-Sa-8b+9 = + 1 (A5) 

in agreement with Eq. (65) for ()1' 
The proof for fJ1 is similar, if slightly simpler. 

Agreement for IX2 and fJ2 may be shown in the same 
way, or we may note that IX1 and IX2 are the same or 
different in Wang2 exactly when [1]a1]b] is plus or 
minus 1]a1]b, and similarly for fJ1 and fJ2' 

For FB ---+ FB interactions, the () corresponding to 
Wang's2 IX~ is defined by 

+ 1 = =F1] c1]aC -1 )",+8cr-l+A+Am 

X 1]ab( _l)Sa+Sb+lq).-I'I-IHI'P+9 (A6) 

= ±1]a1]b( _1)1-sa-8b+9, (A 7) 

which agrees again with (65). The case of PI is similar. 
To obtain agreement for IX2 and fJ2 we must assume 
that each fermion is more massive than the corre­
sponding boson (so that [1]i1]j] = + 1]i1];). 

Our formulas agree exactly with Table IV of 
Ref. 4 for the general-mass case. 

We turn now to a consideration of particular-mass 
cases. At particular values of the masses, two or more 
singularities may coincide. A special treatment is then 
required at that point. For singularities with no such 
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coincidence the treatment is the same as in the general­
mass case. The same cases I-V of Ref. 4 will be 
considered. 

(i) Elastic Scattering: a == c, b == d, ma ¥= mb, 
'f) = + I. Here both thresholds and both pseudo­
thresholds coincide. Equations (49) and (51) may be 
combined to give 

[when due account is taken of the Jacob and Wickl2 

factor (_l)ss-A.] and to Table VII of Ref. 4. 

(iii) me = md, ma ¥= mb, V = 0. This case is exactly 
similar to the last, and we have 

r~dab "-' s-!(SC+Sd-8,)(S _ 4m~)!(Am-Sc-s.+83) 

(A18) 
TS El(a+b+e+d) 

edab "-' fPab . (A8) where 

Since by parity invariance (which we always assume), 

T~dab = 'f)( -1 )a+b-e-dT~dab , (A9) 

only even (or only odd) powers of fPab (= fPCd) appear 
(the other components of rs vanish). In this case, 
therefore, we need not define f±, and it follows that 
each P behaves like the most singular TS, that with 
a = c = - ElSa' b = d = - EISb' [This is consistent 
with (A9) since 'f) = + 1.] The pseudothreshold result 
is similar. Thus, 

At S = 0, cos Os = +1, sin Os ,,-,s1. Therefore 

coslOs,,-,±I, sintOs,,-,s1, 
and so 

(AIO) 

(All) 

(ii) ma = mb' me ¥= md, V = 0. Here "Pab = s1 so 
that the point S = ° requires special consideration. 
Nevertheless, (50) still applies and 

(A12) 

It is true that Eab is no longer defined, but its value will 
turn out to be irrelevant. At S = 0, sin 08 = ± I, 
cos Os = 0, tan tOs = ± 1. Thus 

f!dab "-' ndab ± 'f)a'f)b( -l)sa-So-/lHmnd_a_b 

"-' L [U]c'd'a'b'edab 
c'd'a'b' 

(A13) 

X (1 ± 'f)a'f)i _l)A-/lHm+a'+b')T~'d'a'b' (AI4) 

"-' s-1(SaHo-82 ), (A15) 

where 

(A19) 

(iv) ma = m b, mc = md, ma ¥= me' V = 0, Again, 
only the point S = ° (which now coincides with 
"Pab = 0, "Pcd = 0) requires special treatment, but now 
fP "-' s, sin Xi "-' ± I, cos Xi "-' s1, and so (50) and (52) 
no longer apply. Now, however, the crossing matrix 
is no longer singular, and we work directly with 
helicity amplitudes. We have sin lOt "-' s1, cos tOt = 
± I at S = 0. Thus, from (34), 

f t 11A:-/l'1 e'a'd'b' "-' S • (A20) 

The crossing relation for helicity amplitudes given by 
Cohen-Tannoudji et al. 4 is as follows, where we use 
the notation of (27) and the conventions of Edmondsll 

for the rotation matrices: 

f~dab = Eo( _1)2so+2Sdeiu(b-e) 

X L da';(Xa)d:g'(Xb)d:~'(Xc)d~~'(Xd)f~'a'd'b" 
a'b'c'd' 

At S = ° we have, from (28)-(31), 

sin Xa = sin Xb = ±I, sin Xc = sin Xd = ±1. 

(A2I) 
It follows that 

d~~'(Xa)d:t'(Xb) = (_l)sa+so'F(a+b)d~~a.(Xa)d:~b.(Xb)' 

(A22) 

and similarly for c, d. Since a + b is an integer, the 
uncertain sign is irrelevant. Parity conservation implies 
that 

f t , , , , = '1'1 '1'1_'1'1 '1'1 (_l)Sa+so+s,+sd+a'+b'+e'+dj' t 
cad b '/e'/a'/i!'/b -c'-a'-d'-b" 

(A23) (A16) 
and therefore we may write 

Combining this with the results from the general-mass 
case for the other thresholds and pseudothreshold, we ndab "-' L d:'(Xa)d:~'(Xb)d:~.(Xc)d~~'(Xd) 
find a'b'c'd' 

f~dab "-' S-1(8aHo-82 )(S - 4m~)1(Am-sa-so+Ol) 

X 
).m-sc-sd+8. ).m-s,-sa+8. 

fPCd "Ped ' (A17) 

This is equivalent to the result of Appendix I of Ref. 9 

X HI + 'f)( _l)a+b+e+d-a'+b'+c'-d')f~'a'd'b' (A24) 

for S ---+ 0. Thus we see from (A20) that P is a sum 
over even or odd nonnegative powers of s1 at s = 0, 
accordingly as 'f)( _1)a+b+C+d is even or odd. Using the 
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familiar () notation, we may write 

n~'b ,-.." sloes - 4m~)l().m-sa-sb+Otl(s _ 4m~»).m-Sc-Sd+03, 

At s = 0 the discussion of (iv) applies; at s = 4m~ the 
argument given for general elastic scattering (i) 
goes through unchanged. The result is 

(A25) 
where (A27) 

where o = 0 or 1, 1]( _1)a+b+c+d+O = +1. (A26) 

(v) ma = mb = me = md, a == c, b == d, 1] = +1. () = 0 or 1, (_l)a+b+c+d+O = + 1. (A28) 
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Matrix elements for the spin-orbit interactions of the configuration tn - l l'l" in L-S coupling are 
expressed as linear combinations of radial integrals. 

1. INTRODUCTION 

In a previous paperl the techniques of the Racah algebra2 were used to obtain the matrix elements of the 
Coulomb interactions for the configuration dn- l sp in L-S coupling. The purpose of the present paper is to 
obtain the spin-orbit interaction-matrix elements for the more general configuration In-I!'l" , again in L-S 
coupling. 

The spin-orbit interactions for the configuration In-I!' l", denoted by SOtotal, can be written as3.4 

SOtotal = 'Z W-1(V2S2L2)1'(SILl)I"SLJMI SI . II + ... + Sn-l . In- 1 Iln-l(v~S~L~)I'(S~L~)l"S'1.:J'M') 

+ 'I' W-I(V2S2L2)1'(SILl)l"SLJMI s~ . l~ W-I(v~S~L~)I'(S{LDl"S'1.:J'M') 

+ 'I" W-\V2S2L2)1'(SIL1)I"SLJMI s~+1 . 1~+1 Iln-l(v~S~L~)l'(S~LDl"STJ'M') 

= SO (I) + SO(l') + SO(l"). (1). 

The parameters 'I' 'I" and 'I" include the gyromagnetic ratios of the spin and orbital motions and an integral 
over radial eigenfunctions. 

2. THE SPIN-ORBIT INTERACTIONS OF THE I ELECTRONS 

From (1) the spin-orbit interactions of the 1 electrons is given by 

SO(1) = (n - l),z (In-l(V2S2L2)1'(SILl)I"SLJ MI Sn-I . In-l Iln-\v~S~L~)l'(S~LDl"S' 1.:1' M'). (2) 

Expanding (2) by means of coefficients of fractional parentage3 yields 

SO(I) = (n -1)'z L [W-2(V3S3L3)ln_l(S2L2)1'(SILl)l"SLJMI Sn-l ·In_lI1n-2(v3S3L3)ln_I(S~L~)l'(S~LD1''S'1.:J'M') 
vaSaL a 

x (In-\V2S2L2){lln-2(vaSaLa)IS2L2) W-2(vaSaLa)lS~L~I}ln-l(v~S~L~»]. (3) 

By ITS Eq. (15.6), the matrix element of (3) [ME(l)] is given by 

ME(l) = [exp 7Ti(S' + L + J + 1)](SII S~~I liS') (LIII~~1 111.:)W(~ ~ ~)t5(J, J')t5(M, M'). (4) 

1 C. Roth, J. Math. Phys., 9, 686 (1968). 
2 G. Racah and U. Fano, Irreducible Tensorial Sets (Academic Press Inc., New York, 1958), henceforth referred to as ITS. 
3 G. Racah, Phys. Rev. 63, 367 (\943). 
4 E. U. Condon and G. H. ShortIey, Theory of Atomic Spectra (Cambridge University Press, Cambridge, England, 1935), Art. 66• 
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Successive applications ofITS Eq. (15.7) yield 

(SII S~21 liS') = (S1 t SII s~121 IIS~ t S') 

= [exp 1Ti(S2 + S1 + S{ + S' + 1)][(2S1 + 1)(2S{ + 1)(2S + 1)(2S' + l)]! 

x W(SI S;. I)W(S S' 1)<S II s[~ liS'). 
S~ S2 t S{ S1 t 2 n 1 2 

By ITS Eqs. (15.7') and (14.9), 

(S211 S~~21 IIS~) = (Sa t S211 S~~1 liSa t S~) 

(
s S~ = [exp 1Ti(Sa + S2)][t(2S2 + 1)(2S;+ 1)] !W t2 t 

Similarly, by repeated application ofITS Eq. (15.7), we have 

(LII 1~121 ilL') = (L1 I" LI11~~1 IIL{ 1" L') 
1 

= [exp 1Ti(L2 + Ll + L{ + L' + l' + 1")][(2Ll + 1)(2L~ + 1)(2L + 1)(2E + 1)]" 

X W(L1 Lf 1) w( L L' 1) (L 111[12 IlL'). 
L~ L2 [' Lf Ll l" 2 n 1 2 

By ITS Eqs. (15.7') and (14.9), 

<L2\11~~1 IIL~) = (L3 I L2111~~1 liLa 1 L~) 

(5) 

(6) 

(7) 

(
L L~ 1) = [exp 1Ti(La + L2 + 1+ D)[(2L2 + 1)(2E2 + 1)1(1 + 1)(21 + 1)]!W / I L

3
' (8) 

Inserting (4), (5), (6), (7), and (8) into (3) yields, for the spin-orbit interaction for the electrons I, 

SO(J) = (n - l)'lb(J, J')b(M, M')[exp 1Ti(L1 + Lf + L + E + 1 + l' + 1" + 2S2 + S1 + S{ + 2S' + J + ·m 
x [t/(l + 1)(21 + 1)(2L2 + 1)(2L~ + 1)(2Ll + 1)(2L{ + 1)(2L + 1)(2E + 1) 

X (2S2 + 1)(2S~ + 1)(2S1 + 1)(2S{ + 1)(2S + 1)(2S' + 1)]! 

X W(L1 Lf 1) w(L L' 1) W(SI S;, 1) w(S S' 1) W(S S' Jl) 
L~ L2 I' L{ Ll If! S2 S2 t, S{ S1 t L' L 

x 1 {[exp 1Ti(La + Sa)] w(L2 L~ 1) W(~2 ~~ 1) (r-1(v2S2L2)1 
VaS3L3 liLa "2"2 Sa 

X {jln-2(vaSaLa)IS2L2) (In-2(VaSaL3)IS;Lmln-l(V2S~Lm}. 

3. THE SPIN-ORBIT INTERACTION OF THE l' ELECTRON 

From (1) the spin-orbit interaction of the l' electron is given by 

SO(l') = 'I' W-1(V2S2L2)1'(S1L1)/"SLJMI s~ . I~ Iln-1(v~S~L~)l'(S{L{)I"S'L'J'M'). 

(9) 

Since the interaction pertains to the nth electron, the quantum numbers of the first (n - 1) electrons must be 
the same on both sides of the matrix element. Hence we must have 

Then, by ITS Eq. (15.6), we have 

SO(l') = 'I,[exp 1Ti(S' + L + J + 1)](SII S~11 liS') (LIII~1] IlL') 

-(S S' 1) X W L' L J ti(J, J')ti(M, M')ti(V2S2L2, v2S~L2)' (10) 
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Now, by ITS Eqs. (15.7), (15.7'), and (14.9), we have 

(SII S~1] liS') = (S1 t SII S~1] IIS{ t S') 

= [exp 1Ti(S2 + 2S1 + S' + i)][i(2S1 + 1)(2S~ + 1)(2S + 1)(2S' + 1)]1 

x W(S1 Si 1 ) -( S s' 1) 
t ! S2 W S{ S1 t 

and also 

(LII I~ III:) = (L1 I" LII/~[l] IIL{ I" I:) 

(11) 

= [exp 1Ti(L2 + I: + I' + I" + !)][l'(l' + 1)(21' + 1)(2L1 + 1)(2L{ + 1)(2L + 1)(2I: + 1)]1 

W(L1 Li 1) w(' L I: 1) 
x I' l' L2 L{ L1 I'" 

Hence substituting (11) and (12) into (10) yields, for the spin-orbit interaction of the /' electron, 

SO(l') = 'dexp 1Ti(L2 + L + I: + I' + I" + S2 + 2S1 + 2S' + J + 1)] 

(12) 

X [i/'(1' + 1)(2/' + 1)(2L1 + 1)(2L{ + 1)(2L + 1)(2I: + 1)(2S1 + 1)(2S{ + 1)(2S + 1)(2S' + 1)]1 

x w(L1 L~ 1) w(L I.: 1) W(S1 S{ 1) w(S S' 1) w(S S' 1) 
l' I' L2 L{ L1 1" !! S2 S{ S1! I.: L J 

x b(J, J')b(M, M')b(V2S2L2, v~S~L~). (13) 

4. THE SPIN-ORBIT INTERACTION OF THE r ELECTRON 

From (1) the spin-orbit interaction of the I" electron is given by 

SO(1") = ',,,W-~v2S2L2)1'(S1L1)I"SLJMI s~+1 . 1~+1 W-1(v~S~L~)/'(SiL{)l"S'I.:J'M'). 

Since the interaction pertains to the (n + l)th electron, the quantum numbers of the first n electrons must be 
the same on both sides. 

Hence we must have 

Then, by ITS Eq. (15.6), we have 

SO(/") = 'I,,[exp 1Ti(S' + L + J + 1)](SII s~~I liS') 

x (LII/~~~ III.:) w(~ ~' ~) b(J, J')b(M, M')b(V2S2L2, v~S~L~)b(S1L1' S~LD. (14) 

By ITS Eqs. (15.7') and (14.9), we have 

(SII s~~IIIS') = (S1 ! SII s:~~t IISi ! S') 

= [exp 1Ti(S1 + S)][i(2S + 1)(2S' + 1)]1 wG ~' ;J 
and also 

(LII I~~I III.:) = (L1 1" LII I~~I IIL{ 1" I.:) 

= [exp 1Ti(L1 + L + I" + !)][I"(I" + 1)(21" + 1)(2L + 1)(2I: + 1)]IW(~ ~ 

Substituting (15) and (16) into (14) yields,for the spin-orbit interaction of the l" electron, 

SO(/") = 'I,,[exp 1Ti(L1 + I" + S1 + S + S' + J + i)] 

(15) 

1 ). (16) 
L] 

(
L I.: 1) -(S s' 1 ) x [il"(l" + 1)(21" + 1)(2L + 1)(2I: + 1)(2S + 1)(2S' + 1)]IW I" I" L1 w! ! S1 

(17) 
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The properties of free field theories of arbitrary spin and isospin particles are investigated. Self-con­
jugate isofermion (l = !, t, t, ... ) field theories of arbitrary spin S are shown to be nonlocal, with 
commutators (or anticommutators) failing to vanish outside the light cone. Special attention is given to 
discrete transformations e,(J, and 'b. For self-conjugate multiplets the parity , charge conjugation, and time­
reversal phase factors 'YJc, 'YJp, 'YJp are not arbitrary but obey 'YJ]' = (_1)'8, 'YJ~ = (-1)21'YJ~, 'YJ~ = ('YJ~)', 
where the phase 'YJa = ~(_1)IU (I ~I = 1, IX = -I, ... , + I) arises when the complex-conjugate repre­
sentations of SU(2) are transformed to the standard basis. Composite products of e, (J, and 'b are 
discussed, with general phases and attention to the dependence on order of the operators. The six possible 
e(J'b operations 0 i are analyzed. For pair-conjugate multiplets, the operator 0~ is, in general, a gauge 
transformation, with phase (001)' depending on the e, (J, 'b phases and the order in which e, (J, and 'b 
enter into 0;. By postulating that 0~1p0i' be independent of the order of e, (J, and 'b, we derive the 
Yang-Tiomno parity factors (±1, ±i) for pair-conjugate fermions. For self-conjugate multiplets, 
however, the phase restrictions previously stated lead to a unique order-independent result 0'1p0-' = 
(_1)2I+'81p. The usual local field theory result lacks the factor (_1)21. The latter differs from unity only 
for the case 21 = odd integer, in which case we are in fa{;t dealing with a nonlocal field theory. The 
technical details of the theory involve construction of local fields from helicity wavefunctions and helicity 
particle operators. Fields of spin greater than one are described by the Rarita-Schwinger formalism. An 
appendix treats in detail the form and properties of the high-spin wavefunctions in the helicity basis. 

1. INTRODUCTION 

It was recently discovered that the usually accepted 
principles of local quantum field theory preclude the 
existence of self-conjugate isofermions, i.e., half-odd 
integral isospin multiplets in which the antiparticles 
lie in the same multiplet as the particles.1- 8 The result 
is true for any spin. In Refs. 1-5, it was shown that the 
field theory of selfconjugate isofermions is nonlocal; 
in particular, the commutators of many physical den­
sities (energy, isospin, etc.) fail to vanish for spacelike 
separations, as shown in Paper 1.9 References 6-8 
instead assume the existence of a "normal" rcp oper­
ation 0, and show that contradictions with the latter 
arise for the anomalous theories in question. The latter 
approach depends on locality only to the extent that 
the usual rcp theorem depends on weak local 
commutativity.1o.11 
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In the present work we explore further the relations 
between locality, internal symmetry, and discrete 
transformations. Some interesting work along these 
lines has already appeared.12- 14 Here we are especially 
interested in restrictions placed on phase factors 
involved in the discrete transformations.15 For 
self-conjugate particles16 these phases are greatly 
restricted. We use Rarita-Schwinger fields17 to 
describe high spin. The detailed account of the 
associated helicity wavefunctions given in Appendix 
A may be of independent interest. 

The theoretical reasons for rejecting field theories of 
self-conjugate isofermions are very similar to those 
used to arrive at the spin-statistics connection. The 
similarity is quite striking in the analysis given by 
Weinberg,18 who showed that quantization of bosons 
with anticommutators (or fermions with commutators) 
led to noncausal commutators, a result quite similar 

12 L. Michel, in Group Theoretical Concepts and Methods in 
Elementary Particles, F. GUrsey, Ed. (Gordon and Breach, Science 
Publishers, Inc., New York, 1964), p. 135. 

18 L. C. Biedenharn, J. Nuyts, and H. Ruegg, Commun. Math. 
Phys. 2, 231 (1966). 

14 T. D. Lee and G. C. Wick, Phys. Rev. 148, 1385 (1966). 
,. P. Carruthers, Phys. Letters 26B, 158 (1968). 
16 In this paper the concept of selfconjugacy refers to the partic­

ular group SU(2h ® U(I)y [or better, U(2); see Michel, Ref. 121. 
MuItiplets which are pair-conjugate with respect to this group may 
become self-conjugate in a larger group containing operations 
changing the quantum numbers distinguishing particle from anti-
particle. For example, K and if belong to the self-conjugate meson 
multiplet 8 in SU(3)jZ3' 

17 W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (194\). 
18 S. Weinberg, Phys. Rev. 133B, 1318 (1964). 

1835 



                                                                                                                                    

1836 P .. CARR UTHERS 

to the results of Sec. 2. An alternative expression of 
the spin-statistics connection is thus to remark that its 
violation would lead to non local physical quantities. 
This aspect is usually ignored because of the more 
serious difficulties associated with negative energies 
or indefinite probabilities. 

An even more compelling difficulty of field theories 
of self-conjugate isofermions is the inevitable break­
down of Lorentz covariance when interactions occur. 
This aspect is analyzed in a sequel to the present 
work.19 

2. FIELD OPERATORS AND 
COMMUTATION RULES 

Except for technical details associated with spin, 
the analysis parallels that given in detail for spin 
zero in Ref. 9. As there, we distinguish between 
pair-conjugate (PC) and self-conjugate (SC) isospin 
multiplets, although for some purposes the latter 
is a special case of the former. Particle states with 
isospin I, spin S, momentum p,20 and helicity .121 are 
created by the operators a:(p, A.). For antiparticle 
states the same task is accomplished by the 21 + 1 
operators b:(p, A.). We only consider particles with 
finite rest mass, and employ the standard spin­
statistics assumption. We require that the a: and b: 
create isospin multiplets whose members are con­
nected by the Condon-Shortley phase convention, in 
order that the standard apparatus of the theory of the 
rotation group can be used intact. 

The Rarita-Schwinger field may be expanded in the 
form 

1J'~(x) = ! (aip, A.)X",(p, A.)frlx) 
v). 

+ 'fJltb~ip, A.)X~(p, A.)f:(x». (2.1) 

The details are given below. Here 1J'~ is a Rarita­
Schwinger field-a four-component spin or symmetric 
in its four-vector indices ~ = /..tl, ••• , #k, where 
k = S for bosons and S - t for fermions. 1J'~ obeys 
appropriate wave equations and subsidiary conditions. 
The spin S-wavefunctions are discussed in detail in 
Appendix A. XC denotes the conjugate wavefunction 
of the antiparticle, andfv(x) is Nve-ip .x, where Np is 
(2E)-! or (M/E)! for bosons and fermions, respectively. 
The phase factor 'fJ1t is introduced so that the particle 
and antiparticle constituents of (2.1) transform 
identically under isospin transformations.9 'fJ1t can be 

10 P. Carruthers, Phys. Rev. 172, 1406 (1968). 
.0 For simplicity of writing we write the four-momentum p = 

(Po, p), even though the quantity in question only depends on the 
three-vector p. Later, when space and time inversions are considered, 
the symbol -p is (Po, -p); in each case Po = +(p' + m·)!. 
Kronecker deltas r'Jpp' refer to box normalization and enforce 
p=p'. 

'1 M. Jacob and G. C. Wick, Ann. Phys. (N.Y.) 7, 404 (1959). 

represented as ~(_1)1+«, where ~(I~I = 1) accounts 
for the arbitrariness in the phase of XC or the operators 
bit describing the antiparticle multiplet. We are 
especially interested in learning what freedom remains 
to this phase as various restrictions are put on the 
theory. For SC multiplets we set bit = alt in Eq. (2.1). 

The field (2.1) transforms as suggested by the 
notation under Lorentz transformations and as D* 
under isospin transformations,22 where D is an 
irreducible representation matrix for isospin I. For 
clarity we approach the generality of Eq. (2.1) in easy 
steps: first spin 0, t, 1, followed by bosons of spin 
S ;;::: 2 and fermions of spin S ;;::: !. 

A. Spin 0 

In this case, the functions X and XC are unity; for 
PC multiplets 

cplt(x) = ! (aip)fp(x) + 'fJltb~,.(p)f:(x». (2.2) 
v 

The pertinent field commutators are 

[cplt(x), cpP*(x')] = iCJItP6.(x - x'), (PC, SC) (2.3) 

[cplt(x), cpP(x')] = o. (PC) (2.4) 

However, for SC muItiplets [b = a in Eq. (2.2)] 
in place of Eq. (2.4) we find 

[-I..It( ) -I..P( ')] CJ {i6.(X - x'), 
'I' x, 'I' X = 1t,-p'fJp 6. w(x _ x'), 

21 = even, 
21 = odd. 

(2.5) 

In the case 21 = even integer, the relation (2.5) is 
completely equivalent to Eq. (2.3a). However, in the 
isospinor case this is not so; in particular, the non­
causal commutator 6. (I) contaminates the whole 
theory. The rest of this section shows that the results 
(2.3)-(2.5) extend to any spin, provided that we take 
account of the "statistics" and supply appropriate 
spin factors in the commutators (or anticommutators). 

B. Spin! 

This case has been treated in the usual formalism by 
Einhorn.3 The only difference here is the purely 
formal one of replacing ordinary spin states (referred 
to a fixed axis) by helicity states. Letting i designate 
the components of the Dirac field 1J':(x), 

1J'~(x) = ! (a,.{p, A.)ulp, A.)fv(X) 
VA 

•• P. Carruthers and J. P. Krisch, Ann. Phys. (N.Y.) 33, 1 (1965). 
In the present work we use I for isospin to avoid confusion of the 
previous symbol (T) with the time-reversal matrix. 
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where the wavefunctions u and v are defined in Appen­
dix A, one easily computes the anticommutators: 

{1p~(x), 1jj!(x')} = i(iy . 0 + m)jk!5aP~(X - x'), 

(PC, SC) (2.7) 

{1p~(x), 1p!(x')} = 0, (PC) (2.8) 

{ 1pj( x), 1p~( x')} 

= 'Y}p!5a,-p 2 [Uj(p, A)vip, A)e-iP'(x-x'l 
P,;' 

+ (_1)2IVj(p, A)uip, A)eiv'(x-x'l]/2E 

{ i~(X - x'), 21 = even, 
= 'Y}p!5a,-pClkl(iy . 0 + m)il ~(Il(x _ x'), 21 = odd, 

(2.9) 

In Eq. (2.9) the matrix C1 is the usual charge-con­
jugation matrix. Comparison of Eqs. (2.3)-(2.5) with 
(2.7)-(2.9) reveals a one-to-one correspondence. The 
self-conjugate isospinor-spinor fields suffer from the 
same troubles as the zero-spin case. (The usual 
Majorana field23 corresponds to the special case 
1=0.) 

C. Spin 1 

For the PC vector-meson field we have 

Vl'a(x) = 2 (aaCp, A)e/p, A)fix ) 
PA 

where eip, A) is the vector wavefunction for helicity 
A, transverse to pI', thus guaranteeing 01' v: = 0. 
The commutators are 

[V:(x) , Ve*(x')] = i!5apMl'v( -io)~(x - x'), (PC, SC) 

(2.11) 

[Vl'a(x), V!(x')] = 0, (PC) (2.12) 

[Vl'a(x) , V!(x')] 

= 'Y}POa,-p 2 [el'(p, A)e: (p, A)e-iP,(x-x'l 
v;' 

- (_1)2Ie:(p, A)ev(p, A)eiP'(x-x'l]/2E 

= -'Y}pOapMl'vC -io) (i~(X - x'), 21 = even, 

~(1l(x - x'), 21 = odd. 
(SC) 

(2.13) 

The operator Ml'v is (gl'v + 01'0vlm2), obtained by 
replacing PI' in Eq. (A26) by -ioJl' 

The extension to arbitrary spin is now quite ele­
mentary using the wavefunctions and projection 
operators of Appendix A. 

D. Spin-S Mesons 

The only change from the vector field is to replace 
p. by a set of P.i (i = 1, ... , S) and the polarization 

23 E. Majorana, Nuovo Cimento 14, 171 (1937). 

vector el' by the spin-S wavefunction e~(p, A). Equa­
tions (2.11)-(2.13) are changed only by the replace­
ments (p., v) --+ (IL, 'II), el' --+ e~, -Ml'v --+ (-l)sM 11'" 

E. Spin-S Fermions 

This case is quite similar to that of spin t, but we 
give a few details. The field 1p~(x) has the expansion 

1p~(x) = 2 (aa(P, A)U~(p, A)fix) 
P;' 

+ 'Y}ab~a(P, A)V~(p, A)f:(X)), (2.14) 

where v~(p, A) = CU~T(P, A) (cf. Appendix A). 
For either PC or SC fields we find 

{1p~;(x), 1jjek(X')} 

= 2 ME (u~;(p, A)u~ip, A)e-iP'(x-x'l 
P;' 

+ v~lp, A)v~ip, A)eiP'(x-x'l) 

= (_l)s-l"" [«(I's ). e-1v'(x-x'l _ (~s ). eiP,(x-x'l] 
k. +11" Jk -11" Jk 
p;' 

= i(-1)s-![AI1,,(-io)(iy' 0 + m)]jk~(X - x') 

(2.15) 
on making use of Eqs. (A30) and (A34). 

F or PC fields we find 

{1p~lx), 1pek(X')} = 0, (2.16) 

while for SC fields a calculation similar to that of 
Eq. (2.15) gives 

{1p~lx), 1pek(X')} 

= 'Y}poa.-P( -1)S-!Clkl [AJl.( - io)(iy . 0 + m)]il 

{i~(X - x'), 21 = even, 
x A (ll(x _ x'), (2.17) 

u 21 = odd. 

In all these cases we expect that for SC fields 1p-a is 
dependent on 1pa*. For 21 = even, this dependence is 
a simple proportionality, in which case the quantities 
[1p,1p]± are not independent of [1p, 1p*]±' For 21 = 
odd, the dependence is more intricate. The relation 
between 1p-a and 1pa* is essentially the same as derived 
in I for zero spin. We do not repeat details of the 
calculation. Let 1p~C(x) be 1p~*(x) for mesons and 
Cl1jj~T(X) for fermions. An elementary calculation 
gives the SC conditions: 

1p;:;:a(x) = 'Y}_a1p~C(x), 21 = even, 

1p;:;:a(x) = i'Y}-af d3X'1p~C(x')a~~(1)(x' - x), 21 = odd. 

(2.18) 

Although (5.1) is nonlocal in configuration space, 
the general expression has a space-time translation­
invariant structure. Thus, in momentum space, one 
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can write a linear connection between "!'-;."(P) and 
'/fJ"p.0(p). In the case of interactions this allows for a 
seemingly more general definition of self-conjugacy, 
as has been noticed by the authors of Refs. 4, 6, 
and 7. 

We have shown that self-conjugate fermions of any 
spin give rise to noncausal commutators. It should be 
amply clear from I that the associated field theory is 
nonlocal. 

3. e, ;;, AND l) TRANSFORMATIONS 

Our discussion of e, ;;, and l) transformations is a 
straightforward generalization of the results of I 
for zero-spin particles. We omit details of arguments 
essentially the same as given there. The idea is first 
to define the discrete operations by particle mappings 
and then to require that the associated field have a 
sensible transformation law. Results are first given for 
PC multiplets; equating particle and antiparticle 
operators yields consistency conditions among the 
phases which must be satisfied in the SC case. Re­
peated use is made of results derived in Appendix A. 

Requiring that antiparticle conjugation e maps 
,,!,~(x) into 1f1'*(x) with an IX-independent phase, we 
obtain for the particle transformations24 

ea,lp, it)e-1 = 'YJd'I:b_,lp, it), 

eb,lp, it)e-1 = r/&'YJ_lAa-a.(p, A). (3.1) 

For SC multiplets the phases on the right-hand side of 
Eq. (3.1) are equal, giving the constraint 

2 ( 1)21 2 1Jo = 1J1I.'YJ-1t = - 1JIJ . (3.2) 

The field transformation law follows easily, using 
Eqs. (2.2) and the last of Eqs. (A24): 

(3.3) 

The matrix C1 is iYOY2 for fermions and unity for 
mesons. The bar-transpose operation is the usual one 
for fermions; for bosons it simply means taking the 
Hermitian adjoint. We do not consider here the other 
possible mapping for e discussed in I, which was 
nonlocal in the independent fields but unitarily 
equivalent to (3.2) for the anomalous case. 

The parity transformation is somewhat more 
intricate because of the more complicated behavior 
of the wavefunctions under parity. For spin 0 we have 

ffaip)ff-1 = 1Jpai - p), 

ffb..(p);r--l = 1J;b..( - p), (3.4) 
ff,,!,CZ(x, t)ff-1 = 1Jp,,!,IJ( -x, t). 

14 We always assume that the vacuum state 10) is an eigenvector 
of e, 9', and b with unit eigenvalue. 

In the usual discussions of the Dirac field, one uses 
wavefunctions and operators referring to a fixed axis. 
We review this before going over to the helicity 
formalism. From the relations (A4) we note the well­
known sign difference of the particle and antiparticle 
transformations: 

ffaip, S);;-1 = 'YJpai - p, s), 

;;baCp, S);;-1 = -'YJ;bcz( - p, s), (3.5) 

ff,,!,"(x, ty.Jl = 'YJpP,,!,CZ( -x, t), 

whereP = Yo. 
If we use the helicity basis, the transformation 

laws for the operators acz(p, A) and bcz(p, A) follow from 
(3.5) and (B6): 

ffaaCp, A);r--l = 'YJp( _1)1-.l.e-2i.l.4>a,,( - p, -A}, 

ffb,lp, A);r--l = -1J;( _l)1-.l.e-2i.l.4>b",( - p, - A). (3.6) 

We note that the helicity changes sign, although s 
does not, as expected. The detailed structure of (3.6) 
could have been surmised from the identities (All), 
which guarantee that the spinor-field parity-trans~ 

formation law is the same as shown in (3.5). 
For spin 1, inspection of (AI6) leads us to the 

definition 

ffaip, A);r--l = 1Jp( _1)1-.l.e-2i.1.4>ai - p, -A), 

ffb,lp, A);r--l = 1J;( -ll-.l.e-2i.1.4>bi -p, -A). (3.7) 

This gives the usual field-transformation law 

ffV;(x, t)ff-1 = 1Jp( - gllll)V;( -X, t) 

on using Eqs. (2.10), (3.7), and (A16). 

(3.8) 

The symmetry relations for higher-spin wave­
functions summarized in Eqs. (A2I)-(A23) lead the 
definition for arbitrary spin (including the previous 
cases): 

ffa,.(p, A)ff-1 = 1Jp(-ly-.l.e-2i.l.4>acz(-p, -A), 

ffbip. A)ff-1 = (-1)281J;( _l)s-.l.e-lli.l.4>b,.( - p, - A), 

(3.9) 

where the factor (-1)28 is especially to be noted. 
With these conventions the spin-S field transforms as 

ff,,!,~(x, t)ff-1 = 1Jp n( - gllll)P"!'~( -x, t). (3.10) 

The over-all sign has been chosen to give 1Jp its con­
ventional value. P is again Yo for fermions and unity 
for mesons. 

In the special case of SC multiplets the consistency 
of Eqs. (3.9) requires that 

1J}, = (_1)28. (3.11) 

For SC mesons the parity factor is thus ± I, while for 
Majorana particles it is ± i. 
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The discussion of time reversal proceeds in a similar 
way. Recalling that 'b is antilinear, for spin 0 we have 

'baa(p)'b-1 = 'YJTai - p), 

'bbip)'b-1 = ('YJ~'YJ:/'YJa)bi - p). (3.12) 

It is important to note that the 'b-transformation 
phase depends on the isospin variable, in contrast to 
the parity operation, which commutes with the isospin. 
The field Wa(x) transforms as 

'bWa(x, t)'b-I = 'Y)TWa(X, -t). (3.13) 

For spin t we first work in the usual basis, and then 
give results for the helicity basis. The result (A6) 
indicates the necessity for a spin-dependent phase 
factor: 

'baa(p, s)'b-I = 'Y)T( -l)i+sai - p, -s), 

'bbip, s)'b-1 = ('Y);'Y):I'YJa)(-l)i+"ba(-p, -s). (3.14) 

The Dirac field transforms as 

(3.15) 

where the matrix T = Y3Yl is real. 
The transformation of the helicity operators follows 

directly from Eqs. (B6) and (3.14): 

'baip, A)'b-l = 'YJTe2i).4>ai - p, A), 
'bba(p, A)'b-1 = ('Y);'Y):I'Y)/Z)e2i).4>ba.( -p, A). (3.16) 

These results could have been derived using Eqs. 
(AI2), requiring the transformation (3.15). 

For spin 1, Eqs. (AI6) suggest that the transforma­
tions of aa. and ba. are formally identical to (3.16). The 
field transformation law is 

(3.17) 

The general case is now clear from the preceding 
examples and the second of Eqs. (A24); Eq. (3.16) 
summarizes the form of the 'b transformation for any 
spin. The field undergoes the transformation 

'bW~(x, t)'b-I = 'YJTTI(gl'l')TW~(x, -t). (3.18) 

For the special case of SC fields the consistency of 
(3.16) implies 

2 (*)2 'YJT= 'YJa. . (3.19) 

Combining Eqs. (3.2), (3.11), 
the SC consistency conditions 

and (3.19) leads to 

1}1> = (_1)2~ 
('Y)C'Y)T)2 = (_1)2l. (3.20) 

We use these relations extensively in the next section. 

4. COMPOSITE DISCRETE TRANSFORMATIONS; 
TCP 

It is of some interest to consider, instead of the 
separate transformations e, a', and 'b, various com-

binations of them.2s A particularly important com­
bination is the ea''b operation, since every local 
relativistic quantum field theory is invariant under 
this transformation. In this section we study the 
composite transformations with emphasis on their 
dependence on operator order. The phases are kept 
absolutely general (except for SC multiplets, for which 
consistency restrictions arise) to exhibit an aspect of 
the theory usually obscured by a remark of the type 
"clearly we can choose phases so that· ... " 

In order to handle all spins at the same time, we 
rewrite the e, a', and 'b transformations of Sec. 3 in 
a more convenient order. Let i (i = 1,2,3,4) be the 
spinor index, when appropriate. Then the transforma­
tions in question are 

eW~;(x)e-l = 'Y)cW~~(X)Cii' 
a'w~lx, t)a'-l = 'YJpTI( -' gl'l')W~;( -x, t)Pii , (4.1) 

'bW~tCx, t)'b-1 = 'YJTTI(gl'l')W~;(x, - t)Tfi' 

Here summation over repeated indices is understood. 
For fermions the real matrices C = CIYo, C = -iYa, 
p = Yo, T = Y3Yl, while for bosons C = P = T = I 
and no spinor index occurs. T' is the transpose of 
T:T' = -T. 

The matrices C, P, and T have been put to the right 
of the fields in (4.1) so that the matrix products occur 
in the same order as the operator products which in­
duce the transformation. Since C, P, and T are real, 
the conjugate fields also transform as (4.1) except that 
each phase 'Y)i is replaced by 'fJ{. Thus far the various 
phases: 'fJc, 'YJp, 'fJT' 'YJa. are completely general, sub­
ject to the unimodular condition and also Eq. (2.3). 
Hence four arbitrary phases occur in the behavior of 
the PC field; for SC fields 'YJp and one of 'fJo or 'fJT are 
restricted by Eqs. (3.20). 

We begin by discussing bilinear products. We find 
easily the relations for the squares: 

e2We2 = w' 
'b2W'6-2 = (-1)2SW, (4.2) 

a'21pa'-2 = 1}~1p. 

The various field labels (IX, (L, x) are the same on both 
sides of Eqs. (4.2). The phases 'fJo and 'fJT drop out 
since e and '6 involve conjugation in one form or 
another. In the PC case 'fJ~ is an arbitrary number of 
the form exp (2ifpp), 'YJp = exp (icpp), so that a'2 is a 
gauge transformation generated by the difference in 
number of particles and antiparticles. For SC muIti­
plets this operator vanishes, so no such gauge trans­
formation is possible. However, in this case 'fJ1> is 

25 G. Feinberg and S. Weinberg [Nuovo Cimento 14, 571 (1959)] 
have discussed composite transformations for spin 0, t, and 1 
without considering internal symmetries. However, essentially 
nothmg new results from the ex.tension to general spin and isospin. 
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fixed to be (_1)28. Thus introducing the Fermi 
counting operator F s , which is + 1 for states with an 
odd number of fermions and 0 for states with an even 
number of Fermions or any number of bosons, we 
have 

C2 = 1, 
'G2 = (_I)F8, 

~2 = {( _1)F., 

exp [2i!pp(N - N)], 

SC multiplets, 

PC multiplets. 

The products C~ and ~C differ in general: 

(4.3) 

C~1p~;(x, t)(C~rl = 1]p1] cII ( - g!l!l)1p~~( -x, t)(CP)ji' 

(~C)1p~lx, t)(~Crl = 1] c1]; II ( - g!l!l)1p~~( -x, t)(PC)w 

(4.4) 

The product CP differs from PC by (-1)28, so the 
second transformation in (4.4) has phase 1]c1];'( _1)28 
as compared to 1]c1]p in the first. Thus, in general, 
C~ ::;6 ~C. However, for SC particles these phases 
coincide, giving 

C~ = ~C (SC). (4.5) 

The squared operators (C~)2 = (~C)2 are inde­
pendent of 1]c, 1]p, however: 

(C~)21p(C~)-2 = (_1)281p, 

(C~)2 = (~C? = (_I)F.. (4.6) 

For ~'G the situation is similar: 

~'lJ1p~lX)(~'G)-l = 1]P1]T( -1)~s1p~l-x)(PT')ji' 

'G~1p~lx)('G~)-l = 1];1]T( -1)~s1p~j( -x)(T'P)ji' (4.7) 

so that, in general, ~ ::;6 'G~, although for SC multi­
plets ~'G = (-IV·'G~. 1]8 is the greatest integer 
contained in S: 1]8 = S for mesons and S - t for 
fermions. However, (~'G)2 = ('G:f)2 is independent of 
phases 

(~)21p(~'G)-2 = (-1 )281p, 

(~'G)2 = ('G~)2 = (_l)F.. (4.8) 

The operations eb and 'GC give 

eb1p~;(x, t)(C'G)-l = 1]C1]T1p~~(X, -t)(CT')ji' 

'Ge1p~;(x, t)('GC)-l = 1]~1];1p~~(x, -t)(T'C)ji' (4.9) 

so that eb = 'GC only when 1]C1]T is real. When SC 
multiplets are under consideration, 1]i:1]~ is equal to 
(_1)211]c1]T' so that eb = (_l)F1'GC, F1 being the 
isofermion number. 

The corresponding squared operators give 

For SC multiplets (1]C1]T)2 is (_1)21, giving 

(C'G)2 = (lJC)2 = (_l)F.+FI. (4.11) 

It may be helpful to classify the previous results in 
order of decreasing generality. 

1. Relations true for arbitrary phases: 

C2 = 1, 

~2 = {(_I)F8 

exp [2i!pp(N - N)] 
) 

'G2 = (-I)Fs, 

(SC), 

(PC) 
(4.12) 

(C~)2 = (~C)2 = (_I)Fs, 

(~'G)2 = ('G~)2 = ( -1 )Fs. 

2. SC multiplets; extra relations: 

C~ = :re, 
~'G = (_I)F8'G~, 

C'G = (-I)F1'GC, 
(4.13) 

('GCl = (C'G)2 = (_I)F.+FI. 

3. PC multiplets; simple useful phase choices: 

{
~2 = 1, 

1]], = 1 => C~ = (-I)F·~C, 

~'G='G~, 

(1]C1]T)2 = 1 => feb = 'bC, 
(C'b)2 = (GC)2 = (_1)F.. (4.14) 

Now we discuss the C~'G transformation 0. It is 
important to consider the six distinct operations 0; 
corresponding to the permutations of the order of 
C, :f, and 'G. The six operators are 

0 1 = C~, 0 4 = 'G~C, 
O2 = 'GC~, 0 5 = ~eb, (4.15) 

0 3 = ~'GC, 0 6 = eb~. 

Under 0 1 , the general field transforms as 

011p~lx)0~1 = (-I)~s1p~~( -x)(PCT')j;1]C1]P1]T, 

PCT' = -iYoY1Y2Y3 = iys, 2S odd, (4.16) 

= 1, 2S even. 

Yb == yOy 1y2y3 is purely imaginary, symmetric, and 
anti-Hermitian; y~ = -1. 

Clearly, every 0 transformation can be written as 

0;1p~lx)0i1 = (-lfswi1p~( -X)(Oi)kj, (4.17) 

(eb)21p(C'G)-2 = (-1)28(1]i:n~)21p, 

('GC)21p('GC)-2 = (-1)28(1]c1]T)21p. 

where Wi is a product of C~ phases and ()i is the 
(4.10) matrix product of C, P, and T' in the same order as 
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e, ;r, and b occur in 0 i : 

()i = 1, 2S = even, 

()I = ()2 = ()6 = -()3 = -()4 = -()5 = iys, 

2S = odd. (4.18) 

The phase factors Wi are 

* * WI = W 2 = W3 = 'Y}P'Y}C'Y}T, 

* * * * W 4 = W5 = W6 = 'Y}P'Y}C'Y}T· (4.19) 

If we write 'Y}p = exp (icPp), etc., and Wi = exp (icp;), 
then two numbers (and their negatives) describe the 
general case 

CPA = CPP + CPc + CPT' 

CPB = CPP - CPc - CPT· 

The square of e~fb results in 

0~¥,0i2 = (W~)2¥,. 

(4.20) 

(4.21) 

For SC multiplets the w7 are completely fixed by 
Eqs. (3.20) to be (_1)21+28 independent of i: 

0~¥,0i2 = (-1 )2l+28¥" SC 

0~ = (_I)F s+FI. (4.22) 

The lack of any dependence on order can be surmised 
by inspection of Eq. (4.13). 

Equation (4.22) generalizes the usual result (see 
Ref. 12, for example) that 0 2 yields (-1)28 when 
applied to sets of Hermitian fields which define a local 
field theory. The case of selfconjugate isofermions 
(21 = odd) is not equivalent to a local linear com­
bination of Hermitian fields (see I, or the next section). 
We see that 0 2 provides a simple way to test a self­
conjugate field theory for locality. The authors of 
Refs. 6-8 dispose of selfconjugate isofermions by 
showing incompatibility with a "normal" 0 trans­
formation. On the surface it appears that the "global" 
test of the field using 0 2 might be more general than 
the local-causal properties of the field theory. How­
ever, it must be recognized that locality (rather, weak 
local commutativity) enters the discussion of 0 in a 
critical way. Both aspects of the problem are interest­
ing and should be studied. Besides providing a new 
type of nonlocal field theory for study, the SC iso­
fermions might even exist. Although the latter possi­
bility seems remote, one should not forget the history 
of "dubious" objects such as the two-component 
neutrino. 

Now we turn to the PC field. The phase Wi is quite 
general, and Eq. (4.21) indicates that the operators 
0~ are gauge transformations 

0; = exp [2icp;(N - N)], (4.23) 

where 

CPI = -CP2 = -CP3 = CPA' 

CP4 = -CPs = -CP6 = CPB 

[cf. Eqs. (4.19)-(4.20)]. It is of some interest that the 
product of two discrete 0 operations is equivalent to 
a continuous gauge transformation whose phase 
depends on the discrete phases CPo, cP p, and CPT. Only 
by making a special phase choice, or a physical 
assumption, can we make this phase definite. We 
stress this point because it is not always realized that 
the common choiceI4 0 2 = (_I)F, for all particles 
relies upon a special phase convention. 

The following remarks may clarify somewhat the 
nature of this convention and its relation to physical 
criteria. In particular, we have in mind the discussion 
of fermion parity by Yang and Tiomno.26 These 
authors required that two reflections be equivalent to 
a rotation by 0 or 27T. If this geometrical requirement 
is imposed on the parity operator, we obtain the 
additional constraint that 'Y}~ be unity. We want to 
show the following: If one W k is chosen to be real, 
then Wi = W k for all i, provided 'Y}~ = 1. With these 
assumptions, the transformation 0;¥,0;2 = (wn2¥, 

becomes independent of i, that is, of the permutation 
of the order of e, ;r, and b. For each spin w~ can be 
only ± 1, and the conventional choice (_1)28 is 
especially useful since it mirrors the (phase-inde­
pendent) constituent transformation 

The proof is easy; we give one specimen by assuming 
that wi = (_1)28. Equation (4.19) then shows that 
w~ = w~ = wi and further that ('Y}6'YJ~)2 = (-1)28'Y}~. 
The latter gives w! = (-1 )28 'Y}~. When 'Y}~ is unity, 
w; = (_1)28 for all i. Inspection shows that the 
result is independent of which initial w; is chosen to be 
(_1)28. 

It is very interesting that a converse theorem holds. 
If we require invariance of 0;¥,0;2 under e, ;r, b 
permutations, then we can deduce the Yang-Tiomno 
equation 'Y}~ = 1. If w~ is independent of i, Eqs. (4.19) 
show that all w; are real. Secondly, wi = (wi)2 implies 
the results 

'Y}~ = 1, 

('Y}C'Y}Tt = 1, 

w~ = ±1. 
(4.24) 

Again Wi = (_1)28 is a useful though special choice, 
and one can take 0 2 to be (_l)F •. Since the parity of 

'8 C. N. Yang and J. Tiomno, Phys. Rev. 79, 495 (1950). 
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a single fermion is generally regarded as unmeasur- to obtain 
able, the permutation invariance may be without w*(p, s) = (-1)1+8Tw( -p, -s), (A6) 
physical significance. 
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APPENDIX A: RARITA-SCHWINGER WAVE­
FUNCTIONS FOR HIGH SPIN 

In order to give a complete discussion of the dis­
crete symmetries we have to be able to relate the 
wavefunctions XI'(P, A) to other wavefunctions with 
spin or momentum reversed. We use a real metric 
with goo = I = -gii (i = 1,2,3) and Y matrices 

{Y/l'Yv} = 2g/lv, YoY:Yo = Yo' 

Yo= (~ ~I)' yk= (_Oak ~), (AI) 

where ak are the usual Pauli spin matrices. 
The spin state of a wavefunction usually refers to a 

fixed direction (the famous z axis) or to the_direction 
of momentum (helicity basis). Although we generally 
use the latter description, it is useful to review both 
for the spin-t case. Let XS (s = ±t) be the usual real 
two-component spinor quantized along the z axis 
(a.x. = 2SX.). [We write Xs(z) whenever a chance for 
confusion with helicity spinors occurs.] Then the 
Dirac wavefunction u(p, s) for a particle of momentum 
p and "spin" s is 

( ) _ ( cosh twX. ) up, s - , 
a . p sinh twX. 

(A2) 

where the parameter w is related to energy and mo­
mentum by E = m cosh w, p = m sinh w. The anti­
particle wavefunction is defined by 

( ) _ C -T( ) _ (_I)l-.(a' p sinh twx-s) v p, s - lU p, S - , 
cosh iwx-s 

(A3) 

where the phase of the charge conjugation matrix 
C1 = iYoY2 has been chosen in a natural way [v(P, t) -+ 

col. (0, X-1) when p -+ 0]. 
Inspection reveals the inversion formulas20 

u(p, s) = PuC -p, s), 

v(p, s) = -PvC -p, s), (A4) 

where P is the matrix Yo. To invert both p and s, we 
use the time-reversal matrix T = YaYl (chosen real) 
and the formula 

X-s = (-1 )1+Bia2x. (AS) 

where w stands for either u or v. 
To discuss the analogous properties of Dirac 

helicity spinors, it is useful to summarize the corre­
sponding properties of the two-component helicity 
spinors. The latter are defined by a rotation in the usual 
way, by rotation of a state with helicity A in the z 
direction. Let p and the rotation axis n be given by 

p = (sin () cox cP, sin () sin cP, cos (), 

n = (-sin cP, cos cP, 0). (A7) 

The state X;.(p) is then given by 

X;.(p) = exp (-in' a()/2)x;.(Z). (AS) 

The state X;.( -p) is conventionally reached by the 
rotation described by the angles (7T - fJ, cP + 7T) to 
avoid any confusion due to the double-valued ness of 
SU(2) transformations. 

The following three formulas are useful (only two 
are independent): 

xip) = ( -1 )1-;'e2iM'x_i - p), 
xip) = (-1)1-;'ja2x!;.(p), (A9) 

xip) = -e2i;'4>ia2X~( - p). 

The helicity spinor u(p, A) is given by 

u(p, A) = exp (- in . afJ/2)u (p = P., S = A) 

(
cosh twxip) ) 

= 2A sinh twxip) . 

The antiparticle helicity spinor is 

(AI0) 

v(p, A) = C1UT(P, A) = (_1)1-;. (-2A sinh twx-iP»). 
cosh twX-;.(p) 

(2A is the same as (_1)1-;' for spin t.) 
(All) 

The formulas corresponding to Eqs. (A4) and (A6) 
are 

u(p, A) = (_1)1-Ae2i;'4>pu( - p, -A), 

v(p, A) = -( _1)!-;'e-2iA4>pv( - p, -A), 

u*(p, A) = e-2iA4>Tu( - p, A), 

v*(p, A) = e2i;'4>Tv( - p, A). (A12) 

These results are somewhat more complicated than the 
"old-fashioned" ones, (A4) and (A6), but are more 
useful because of the physical significance of the 
helicity states. 

The vector helicity wavefunctions e/l(p, A) are 
obtained by rotation of the wavefunctions polarized 
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along the z axis: 

e"(p., ±1) = =F(O, 1, ±i, 0)/2i , 

e"(p., 0) = (p, 0, 0, E)/m. (A13) 

For arbitrary direction, one obtains by rotation 

e"(p, ±1) 
= =F (0, 1 - (1 - cos O)ri4> cos cp, 

± i(l ± i(l - cos O)ri4> sin cp), -sin Oe±i4», 

e"(p,O) = (p, E sin 0 cos cp, E sin 0 sin cp, E cos O)/m. 

(A14) 

The polarization vectors ell obey the orthogonality­
completeness relations 

p . e(p, A) = 0, 

e:(p, A)e"(p, A') = -bu" (AlS) 

~ eip, A)e:(p, A) = -g"v + p"Pv/m2. 
). 

A short calculation leads to the relations 

e,,(p, A) = (_1)1-).e2iAtP( - g",,)e,,( - p, -A), 

e:(p, J.) = e-2i ).4>g""ei - p, J.), 

e:(p, A) = (-l»).ei-p, -A). (A16) 

[A quicker way to derive these results is to identify 
e/2p, 2A) with V(p, A)Y"U(P, A) and then to use Eqs. 
(All) to reach (AI6).] 

The Rarita-Schwinger helicity wavefunctions for 
higher spin are easily found by combining spin-! and 
spin-l helicity wavefunctions using ordinary Clebsch­
Gordan coefficients.27- 29 For meson wavefunctions 
we have the recursion formula relating spin Sand 
spin S + 1: 

e~~;2 ... ",+1 (p, A) 

= ~ C(sls + 1; J.IA2A)e~1'" ",(p, A1)e",+1(p, A2)' 
k~ (Aln 

For fermions, we have the spin or-tensor (S = k + t) 

V!~~ . . "'+1 (p, J.) 
- C -s+1 T ( ~) 
- lU"l'" "'+l p, II 

= ~ C(sls + 1; .11A2A)V!1" . ",(p, A1)e:. l(P, .12), ). ). + 
12 (Al~ 

---
'7 P. Auvil and J. J. Brehm, Phys. Rev. 140, B135 (1965); 145, 

1152 (1966). 
•• D. Brudnoy, Phys. Rev. 145, 1229 (1966). 
•• P. Carruthers, Phys. Rev. 152, 1345 (1966). 

For spin !, the ordinary Dirac spinors u(p, A) or 
v(p, J.) appear on the right-hand side of Eq. (AIS) or 
(A19). 

For notational reasons we write XI'(P, A) for either 
the meson wavefunction e~l' ""'(P' A) or the fermion 
wavefunction U~l" .".(p, J.) and X~ for the generalized 
conjugate wavefunction e~~ ... ", for mesons, and 
C1UST .. " = v~ . ... " for fermions. The vector II. stands 

"1' ~k ~1 ~k r-
for the set of 4-vector indices fJ-i' in which XI' is totally 
symmetric and divergenceless. [P"'XI'(P' J.) vanishes; 
for fermions Y"'XI'(P' J.) also vanishes.] More details 
on the subsidiary conditions can be found in the work 
of Fronsdal and Behrends.3o•31 

The orthogonality conditions are easily found by 
use of the recursion formulas: 

e~*(p, A)eSI'(p, A') = (-1)"<5).).., 

u~(p, A )USI'(p, A') = (-1 y-i <5.1),' , 

v~(p, A)VSI'(p, A') = -( -ly-i<5).). .. 

(A20) 

Symmetry relations involving the change of sign of p 
or A follow easily from the recursion relations, using 
induction and Eqs. (AI2) and (AI6) for spin t: 

e~(p, A) = (_l)s-).e2iA4>TI( - g",,)e~( - p, - A), 

e~*(p, A) = e-2i).4>TI(g",,)e~( - p, A), (A21) 

u~(p, A) = (_Iy-).e2iA4>TI( - g",,)Pu~( - p, -A), 

u~*(p, A) = e-2iA4>TI(g",,)Tu~( - p, A), (A22) 

v~(p, A) = -( _1)S-).e-2iAtPTI( - g",,)Pv~( - p, -A), 

v~*(p, A) = e2iA4>TI(g",,)Tv~( - p, A). (A23) 

Again P and T are the real matrices Yo and YSYl, 
respectively. The products TI(±g",,) run over S or 
S - i factors g"t'" . 

All the preceding inversion formulas are sum­
marized by 

x~(p, A) = (_l)s-).e2i ).4>TI(_g",,)PXp.{_p, -A), 

X~*(p, A) = e-2i).4>TI(g",,) TXI'( - p, A), 

X:;(p, A) = Cd~T(p, A), (A24) 

provided we replace all matrices by unity for mesons. 
In order to write the field commutation relations in 

a neat form, it is useful to have projection operators, 
expressed in terms of the helicity wavefunctions. Here 
we mainly emphasize points not covered or stressed 
by Fronsdal and Behrends.so .31 The reader is referred 
to the latter papers for more information, and some 
explicit formulas. 

30 C. Fronsdal [Nuovo Cimento Suppl. 9, 416 (1958)] discusses 
these points in detail. 

31 R. E. Behrends and C. Fronsdal, Phys. Rev. 106, 345 (1957). 
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For spin i we have the well-known projection 
operators 

A '" - m+p'Y +(p) = £., u{p, A)U{p, A) = , 
A 2m 

A_{p) = - L v(p, A)V(p, A) = m - p . Y . 
A 2m 

(A25) 

For spin 1, we define a second-rank tensor projection 
operator: 

MIt.(p) = - L ejp, A)e:(p, A) 
A 

= gltv - PItPv/m2, (A26) 

MllvCp)MX(p) = Mlllp), 

For spin-S mesons, Eqs. (A26) generalize to 

M~v(p) = (-1)' L e~(p, l)e~ *(p, l), 
A 

M~..(p)M~V(p) = M~". (A27) 

Fronsdal and Behrends have given an explicit for­
mula31 for M~,,(P). For our purposes we only need to 
note that it is a real tensor constructed from an 
appropriate number of gllv and Pil factors. 

From Eqs. (A21) we find the symmetry relations 

M~ip) = 11( - gllll) 11 ( - gvv)M~i - p), 

M~:(p) = l1(gllll)l1(gvv)M~v( -p). (A28) 

Since the number of f-li equals the number of Vi' the 
minus signs cancel in the first of (A28), proving the 
reality of M;v: 

(A29) 

In addition, the first equation indicates that, when 
p changes sign, M~. transforms as an ordinary vector 
in each of its indices, thereby excluding pseudotensors 
from the construction of M~,,(P). 

For baryons of spin S, we write the projection oper­
ators as 

:f~l'vCp) = (_l)s-t L u~(p, l)u!(p, l), 
A 

:f~lLvCP) = -( -1)S-! L v~(p, A)V~(p, A). (A30) 
A 

In addition to the obvious relations 

:f:!:ILV(P):f:~(p) = :f~IL~(P)' 
:f~,..,,(p):f~"~.cp) = 0, (A31) 

(p. Y =f m):f±(p) = :f±(p)(p. Y =f m), 

and the subsidiary conditions deriving from the 
wavefunctions, we have the symmetry relations 
(P = Yo, T = Y3Yl) 

P:f,tlLip)P-l = TI( - glllt) 11 ( - gvv):f!,,..i -p), 

T:f~:v(p)T-I = l1(glllt)l1(gvv):f!'lLv( -p). (A32) 

Again, the left-hand sides of (A32) are equal. We 
also note the relations (Ys = yOy1y2y3) 

iY5U(P, A) = (-l)!+Av(p, -l), 

iY5V(P, A) = (_l)!-AU(p, -A), (A33) 

iY5:f~I',,(P)(iY5)-1 = :f~ .. ,,(p). 

The operators :f±ILV are to be constructed from the 
metric tensor Y

Il
; and Pili. The first equation of (A32) 

excludes pseudoquantities like Ys, and the second 
makes the coefficients of the independent tensors real. 
One can then write the projection operators in the form 

:f~IL"(P) = Al'vCp)A±(p) = A±(p)AlLvCp), (A34) 

where the A±(p) are given in Eq. (A25). The quantities 
AlLv(p) are then determined by the subsidiary con­
ditions. 

APPENDIX B. SPIN-t PARTICLE OPERATORS 

The Dirac field can be expanded in terms of wave­
functions and operators referring to a fixed axis or in 
terms of helicity wavefunctions and operators. We 
have the relations 

! a(p, s)u(p, s) = ! a(p, l)u(p, l), 
S A 

L b*(p, s)v(p, s) = L b*(p, l)v(p, A), (Bl) 
S ). 

where the wavefunctions were given in Eqs. (A2) and 
(A3), and (AIO) and (All). From the orthogonality 
relations we find 

a(p, A) = ! MASa(p, s), 
s 

b*(p, l) = L R1sb*(p, s), (B2) 
S 

where a little calculation gives 

MAS == u(p, A)U(p, s) = X~(p)x.cz), 
M).s = xl(z)eilloa6/2X.(z), (B3) 

R1s == (_l)A-Sv(p, A)V(p, s) = (-l)A-sl;.Cp)x_.(z), 

R;s = (xl(p), X.(2»* = M;s. (B4) 

We have used the second of Egs. (A9) to establish 
that R = M, i.e., that the particle and antiparticle 
helicity operators are related in exactly the same way 
to the fixed axis operators. The matrix MAS is given by 

M = eifioa6/2 = ( 
6 0", 6) cos - e-''Y sin -
2 2 

i ° 6 6 
- e '" SIn "2 cos "2 

CB5) 
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Thus the transformations (B2) are, not surprisingly, 
unitary and unimodular. 

Using the notation +, - for (A, s) = +t or -t 
and introducing subscripts hand s to distinguish 
helicity from z-axis operators, we have 

() 
() ( ) -i</>' () ( ) ah p, + = cos - as p, + + e sm - as p, - , 
2 2 

a,,(p, -) = _ei4> sin ~ aip, +) + cos ~ alp, -). 
2 2 

(B6) 

Corresponding expressions hold for the antiparticle 
operators. For -p, we obtain the appropriate 
relations by the substitutions e --+ 7r - e, cp --+ 7r + cp. 
These are useful in discussing the parity transforma­
tion. Using (B6), we can easily derive the e, G', and b 
transformations of the helicity operators from those 
of the z axis operators a(p, s) and b(p, s). Of course, 
an equivalent result can be obtained by requiring that 
the field has a well-defined transformation under 
these operations, once the inversion properties (AI2) 
are known. 
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Using a variation technique, two coupled equations are derived whose transition matrix is shown to 
describe multiple scattering. The resulting index-of-refraction equation differs from that obtained in 
previous theories by our inclusion of the effect of the scatterer on the target and certain constants of 
approximation. 

1. INTRODUCTION 

When a particle or wave comes upon a target 
involving many obstacles and is scattered by the 
obstacles one after the other, we say multiple scat­
tering has occurred. The importance of a satisfactory 
way of dealing with multiple scattering is obvious 
since experimentally one encounters scattering which 
is multiple, not single. This is the case whether the 
target is composed of atoms in a crystal or nucleons in 
a nucleus. 

Theories have been presented for multiple scattering 
by Bothe,! Williams,2 Goudsmit and Saunderson,3 
Moliere,4 Synder and Scott,5 Lax,6 Watson,7 Fano,s 
Ter-Mikayelian,9 Muhlschegel and Koppe,lO Wein­
berg,!! Gnedin and Dolginov, 12 and Kalashnikov and 
Ryazanov,13 to name only a few. The general proce-

1 W. Bothe, Z. Physik 54, 161 (1929). 
2 E. J. WiIIiams, Phys. Rev. 58, 292 (1940). 
3 S. Goudsmit and J. L. Saunderson, Phys. Rev. 58, 36 (1940). 
4 G. Moliere, Z. Naturforsch. 3a, 78 (1948). 
• H. S. Snyder and W. T. Scott, Phys. Rev. 76, 220 (1949). 
• M. Lax, Rev. Mod. Phys. 23, 287 (1951). 
1 K. M. Watson, Phys. Rev. 89, 575; 92, 291 (1953). 
8 U. Fano, Phys. Rev. 93, 117 (1954). 
• M. L. Ter-Mikayelian, Nucl. Phys. 9, 679 (1959). 

10 B. Muhlschegel and H. Koppe, Z. Physik 150, 474 (1958). 
11 S. Weinberg, Phys. Rev. 133, B232 (1964). 
12 Yu. N. Gnedin and A. Z. Dolginov, Zh. Eksp. Teor. Fiz. 45, 

1136 (1963) [Sov. Phys.-JETP 18, 784 (1964)]. 
13 N. P. Kalashnikov and M. I. Ryazanov, Zh. Eksp. Teor. Fiz. 

50, 117 (1966) [Sov. Phys.-JETP 23, 79 (1966)]. 

dure has been to use the Boltzmann transport equation 
or a geometrical-optics approach for high energies, 
perturbation techniques for low energies, and a self­
consistent field method for energies of neither extreme. 
Some of the more recent work in Russia makes use of 
the kinetic equation of Migdal,14 

The approach we propose starts from a variation 
principle. Assuming high energies and neglecting 
exchange terms, we proceed until results are obtained 
which agree closely with those of Lax and Watson. 

2. STATEMENT OF THE PROBLEM 

We expect the Hamiltonian for a particle incident on 
a group of N scatterers to be 

H = III d3r d3R d3R'1p+(r)cp+(R)cp+(R') 

X [(p2j2mN2) + (P2j2MN) + {G(R - R')j2} 

+ {V(r - R)j N }]cp(R')cp(R)1p(r), (1) 

where !p, p, m, and r refer to the incident particle, and 
cp, P, M, and R refer to the scatterers. G(R - R') is 
the interaction between scatterers, and VCr - R) is the 
interaction between the incident particle and the 

14 A. B. Migdal and N. M. Polievktov-Nikoladze, Dokl. Akad. 
Nauk SSSR 96, 49 (1954). 
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target. We take and 
(2) (13) 

(3) from Eq. (6) we have 

where at and ak are the creation and annihilation 
operators for the scatters, assumed to be fermions, 
and bi; and bk are for the incident particle, which may 
be a fermion or a boson. We have taken 

J "P+"P d3r = 1, J 4>+4> d3R = N. (4) 

If we assume the variation 

b(H - E)$ = 0, (5) 

where $ is a vector spanning the Hilbert space of 
both the incident particle and target, we obtain six 
equations, one from the variation of each functional. 
Each equation, however, may be reduced to one of 
the following two equations: 

[ (p2/2m) + HL + I at,akVk'k]"P$ = E"P$, (6) 
kk' 

{H" + (NP2/2M) + J d3R' 4>+(R)G(R - R')4>(R') 

+ N.! bt,bk Vk'k}4>$ = 4>$, (7) 
kk' 

where 

HL = J d3R4>+(R)(p2/2M)4>(R) 

+ J d3R ~R' 4>+(R)4>+(R') 

X ({G(R - R')}/2)4>(R')4>(R), 

H" = J d3r"P+(r)(p2/2m)"P(r), 

Vk'k = J d3R~t,(R) VCr - R)4>k(R), 

Vk'k = J d3r"Pt(r)V(r - R)"Pk(r). 

(8) 

(9) 

(10) 

(11) 

The coupled equations (6) and (7) form the basis 
of this approach to multiple scattering. If the initial 
wavefunction of the scatterers is known, HL and 
VK'K may be calculated (and hence "Pk) from the 
solution of (6). With this value of "Pk one calculates 
HfI and Vk'k and hence ~ from the solution of (7). 
This procedure is continued until self-consistent 
solutions are obtained. 

Letting 
(12) 

Ho"Po$ = E"Po$, 

where the total energy is equal to the sum of the 
initial energy of the particle ElI and the initial energy 
of the target E L: 

Wi! define k from 

(/i2k2/2m) = E", 

and since, in general, we know 

HL$=EL$, 

we further define q from 

(14) 

(15) 

(16) 

Note that k and q are equal when the target and scat­
tered particle are infinitely removed from each other. 
We choose the same direction for k and q. 

Consequently, We have the integral equation 

"P±(r)$ = "Po(r)$ + J d3q'(q2 - q,2 ± iE)-l"Poir ) 

x J d3r'''P:,(r'){2mv(r')//i2}r(r')$. (18) 

Adding and subtracting H L to the denominator, 
we represent Eq. (18) by 

"P(±)(r)$ = "Po(r)$ + (E - Ho ± iE)-lv(r)"P(±)(r)$. 

(19) 

3. THE TRANSITION MATRIX AND INDEX 
OF REFRACTION 

The transition matrix is 

Tk'k = ($"POk'; V"Pk$)· 

We choose diagonal elements 

where 

(20) 

(21) 

t~kK = ($"POk ai-aK VKK"Pk$)· (22) 

We denote "Pk as the solution of (6) when only one 
energy level of scatterers are present: 

[(p2/2m) + HL + a~aKVKK]"PK$ = E"Pk$. (23) 

We now define a transition matrix 

tkkK = ($"POK; a~aKVKK"PkK$)· (24) 

Using the technique of Watson,7 it is easy to show 
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that 

Tkk = ! tkllKt + ! tkkK/t.-ltkkK2 + ... 
Kt Kt*K2 

+ ! tkkKtIX-ItkkK2 ... IX-ltkkKn' (25) 
Kt*K2 "'*Kn 

where 
IX = E - Ho + iE. (26) 

Therefore, we see T is indeed the transition matrix for 
multiple scattering. The first sum in Eq. (25) is obvi­
ously scattering from each level by itself. The second 
term depicts the scattering-off of one level followed 
by a second scattering from another level. The next 
term depicts triple scattering. This continues until all 
possible combinations are accounted for. Since 
Kl 'i"= K2 'i"= Ks ..• , we see no level can scatter the 
particle again without being scattered in the mean­
time by another level. It was for this reason we 
stipulated in the beginning that the scatterers be 
fermions and, hence, that there only be one scatterer 
per energy level. 

The M011er operator may be written: 

o = 1 + IX-I! tKlO(KI), (27) 
Kt 

O(K1) = 1 + IX-I ! tK20(K2), (28) 
K2*Kl 

where O(K1) is the M011er operator for a group of 
scatterers with the KI level removed. Therefore we 
define C1 by 

(29) 

and not~ that the more scatterers there are, the closer 
C1 approaches one. Ifwe impose the impulse approxi­
mation 

(30) 

Eq. (28) becomes 

(31) 

Clearly, C1 and C2 may be estimated through the 
usual Neumann expansion. Further, if we renormalize 
for a possible shift L\k' 

L\k = E - E', (32) 
where 

Ho'V'oct> = E'1{'oct>, (33) 

(Ho + v)'V'ct> = E'V'ct>, (34) 
we have 

'V'R = Z-(!I'V' 
k p k' (35) 

cpR - Z-(!)cp 
K - L K' (36) 

As an estimate, we calculate that 

Z1' = I{l + [E - (Ho + L\) + iE)-l(V - L\) 

+ [E - (Ho + L\) + iE]-l 

X (v - L\)[E - (Ho + L\) + iE]-l + .. '}V'oct>12, 

(37) 
where 

(38) 

A similar expression holds for ZL' Thus, Eq. (32) 
becomes 

Z~!IOR = 1 + [E - H + iE)-ICIC2ZpZLTRDR, (39) 

where 

and 

From Eq. (39) Schrodinger's equation is 

[(p2j2m) + HL - E + CIC2Z~!IZLTR]V'Rct> = O. 

Since 
q2 = k 2 + (2mjli2)(EL - H L ), 

we have the index of refraction from 

(40) 

(41) 

k,2 = k2 + (2m/li2)(EL- HL) - 2mC1C2Z;!IZLT R. 

Comparing this result with Lax's, 
(42) 

k'2 = k2 - (2mCjli2)Taa , (43) 

we find his C is analogous to our C1 ; of course, since 
he does not consider the effect of the scattered 
particle on the target, he does not have the term 
(2m/h2)(EL - HL)' Comparing with Watson, we see 
that he has assumed the equivalent of our "C1 and 
C2 equal to one" for high energies. 

CONCLUSION 

Starting with a system of N identical fermions 
acting as scatterers, we have examined a variational 
approach to multiple scattering. Neglecting spin 
effects because of an assumed high energy of the 
incident particle, two coupled equations were found 
which give a transition matrix that describes multiple 
scattering. The resulting index-of-refraction equation 
parallels those of Lax and Watson. We assume that 
the theory may be applied to high-energy scattering of 
any system of fermions where the initial: wave function 
of the scatterers is known [as was discussed in con­
nection with Eqs. (6) and (7)]. Clearly the next step 
in the extension of this approach is to incorporate 
spin and exchange effects. 
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It is shown that, !f th~ superconvergence relations appertaining to a two-particle scattering process 
are saturated by an mfiDlte tower of resonances of mass mJ, where J is the spin, then mJ must increase 
less quickly than.J in all cases. With this observation, it is shown that the complex of all the super­
convergence relatIOns for. all the processes a,v,) :+- a(J2) --+ .a(J.) + a(J.), where a(J) is the spin-J member 
of the same tower of particles, possesses an mfiDlty of solutIOns for the coupling constants. It is concluded 
th~t t.he su,Perconvergence relations are incomplete, and need to be supplemented by some new physical 
pnnclple, If th.ey are to be of any practical use. A possible exception to this rule is when all but a finite 
num?er of resl?ues are co?strained .to be positive, with no negative coefficient from the isospin crossing 
matnces. In thiS case, a gIVen solutIOn may be unique if mJ increases not more quickly than Jt. 

1. INTRODUCTION 

The use of superconvergent sum rules for two­
particle scattering amplitudes has been attended by a 
certain number of practical successes. l The super­
convergence relations are generally evaluated by 
inserting only the resonance contributions, and these 
often in the "15 function approximation." The advan­
tage is that simple relations between coupling constants 
can be obtained and these sometimes agree with 
experiment. 2 However, there are cases where dis­
agreement has been found3 and the reason for this 
may be sought at different levels. The simplest possi­
bility is that an insufficient number of states has been 
added to the sum rule to "saturate" it; the hope may 
be entertained that the disagreement will disappear 
if a few more states are included. Indeed, a given 
superconvergence relation can always be saved by 
adding a few high-mass states whose couplings to the 
external particles are unknown experimentally. 

On the other hand, for a given superconvergent 
system, there exists in general an infinite number of 
sum rules; and the addition of higher states should be 
such as to be at least approximately consistent with 
this infinity of equations. Some interest has been 
evinced lately in such infinite systems with, corre­
spondingly, an infinite number of saturating states.4 

Interest may center on the algebraic structure of any 
solution,5 if such exists, or may concentrate rather 

• Present address: Rutherford High Energy Laboratory, Didcot, 
Berks., England. 

1 M. Gell-Mann, Phys. Rev. 125, 1067 (1962). 
• S~ Fubini, G. Furlan, and C. Rossetti, Nuovo Cimento 40A, 

1171 (1965). 
• M. B. Halpern, Phys. Rev. 160, 1441 (1967). 
4 K. Bardakci, M. B. Halpern, and G. Segre, "Perturbative 

Approach to Superconvergence Relations and Current Algebra," 
Berkeley Preprint, 1967; M. Gell-Mann, D. Horn, and J. Weyers, 
"Representation of Current Algebra at Infinite Momentum: 
Solution of the Case in which Isotopic Spin Factors Out," Cali­
fornia Institute of Technology Preprint, 1967. 

5 K. Bardakci and G. Segre, Phys. Rev. 159, 1263 (1967). 

upon finding a particular solution.4 In this latter case, 
the question of uniqueness is important. It has 
recently been shown6 that, if the saturating states have 
a mass spectrum that increases less rapidly than the 
spin, then the superconvergence relations for spinless 
external particles or for pseudoscalar-vector scattering 
yield equations between the couplings that have an 
infinite number of solutions. This suggests that the 
superconvergence relations, at least in the one­
particle Q-function approximation, may be empty, 
since the class of solutions is very wide. 

The hope remained that, when all the superconver­
gence relations corresponding to all possible external 
particles are taken into account, there may be a 
unique solution, or at least a small number of solu­
tions. The purpose of this paper is to investigate this 
complete system of superconvergence relations; the 
result is to dash the hope: the infinite set of super­
convergence relations still has aninfinity of solutions 
for the couplings in most cases. 

In greater detail, the model examirred in this 
paper is that of an infinite tower of particles char­
acterized by a mass spectrum mJ that increases 
indefinitely with the spin J. Let al, a2, a3, a4 be the 
spin Sl, S2, S3, S4 members of this tower. Then the 
superconvergence relations for the scattering al + 
a2 ->- a3 + a4 are considered in the approximation of 
saturation by the same infinite tower of resonances. 
All the relations, corresponding to all possible 
external particles a l , a2, a3, a4, are considered 
together as one complicated set of simultaneous 
quadratic equations for the couplings. 

In Sec. 2, the detailed structure of the super­
convergence relations for general external spins is 
given. These relations are saturated by the tower of 

• D. Atkinson and M. B. Halpern, "Construction of Solutions to 
Superconvergence Relations," Berkeley Preprint, 1967. 
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resonances-and it is shown that this leads to a set 
of equations for the coupling constants, each equation 
involving an infinite series which must sum to zero 
identically for a continuum of values of the momentum 
transfer. However, it is a physical requirement that 
the superconvergence relation should not hold for 
arbitrarily large (spacelike) momentum transfers, and 
this is interpreted as meaning that the infinite series 
over coupling constants must diverge for sufficiently 
large momentum transfers. However, this can only 
happen if the mass spectrum mJ increases less quickly 
than J, as is shown in Appendix E. Under these 
conditions, it is shown in Sec. 3 that for given 
external spins, an infinite number of solutions can be 
found for the couplings, in general. The proof relies 
on a theorem of P6lya, which is given in Appendix A. 
In Sec. 4, it is shown that, because of the extreme 
nonuniqueness of the solution for given external 
spins, it is possible to order the infinite set of sets of 
equations, corresponding to all the different external 
spins possible, in such a way that one can find solu­
tions of each set of equations which are consistent 
with all the other set of equations. 

The proof up to this point takes no account of 
any constraint of positivity which may occur, since, in 
some equations, some couplings occur as their squares, 
which must be positive or zero. However, there are 
cases where these squares of coupling constants are 
multiplied by positive isospin crossing-matrix elements, 
and where they always occur in conjunction with 
other squares of coupling constants, which are 
multiplied by negative crossing-matrix elements, in 
such a way that the whole term may be positive or 
negative. To these cases the proof applies without 
modification. In Sec. 5, it is shown that if there are 
sign restrictions on some terms, but in such a way 
that there should be an infinite number of positive 
and an infinite number of negative terms, then if 
there exists one solution of the system, there exists an 
infinite number of solutions. In Sec. 6, it is shown that 
this weakened theorem can even be extended to the 
case where every term is required to be positive, but 
in this case only if mJ increases more quickly than 
J!. 

If the members of the tower are imagined to lie on a 
Regge trajectory !X(t), then the results may be re­
phrased: In order that the superconvergence relation 
should not hold for arbitrary momentum transfer, 
!X(t) must increase more rapidly than t!. If !X(t) 
increases more rapidly than t! but less rapidly than t, 
then it has been shown in all cases that any solution of 
the complex of superconvergence relations cannot be 
unique. Except in the case of all positive terms, this 

restriction to a trajectory that increases less quickly 
than linearly need not be made. 

It would appear, then, that attempts at finding 
global solutions to superconvergence relations must 
be abandoned, unless these can be supplemented by 
new physical requirements that pick out one from the 
infinity of solutions. However, in this latter case, it 
would seem that the brunt of the restriction must fall 
on these new requirements, since the superconvergence 
relations are permissive to the point of vacuity. Indeed, 
one can adopt the view that, in passing from a 
crossing-symmetric dispersion relation to a super­
convergence relation, one has completely lost contact 
with the physical solution. 

A possible exception to these negative considera­
tions is provided if one takes seriously the failure of 
the proof in the case that !X(t) increases linearly (or 
faster) in t, and all the residues in some superconver­
gence relation are constrained to be positive. In this 
domain the possibility of a unique solution remains 
open. Indeed, the fact that a linear Regge trajectory 
is picked out as the slowest rate of increase that is 
compatible with the possibility of a unique solution is, 
perhaps, of some interest. 

2. SUPERCONVERGENCE RELATION FOR 
GENERAL SPINS 

It is the purpose of this section to set out the 
superconvergence relations that exist for a general 
scattering a1 + a2 --+ a3 + a4 , where the particle ap 

has spin sP' P = 1, 2, 3, 4.7 For definiteness, the 
particles may be supposed to lie on some Regge 
trajectory, although this is not necessary to the proof. 
It will be convenient to consider the ensemble of all 
possible two-particles to two-particle scattering within 
this Regge family. Let 

be a helicity amplitude for the reaction 

(2.2) 

where s is the invariant square of the energy, t is the 
invariant square of the momentum transfer, and 
Ap , P = 1, 2, 3, 4 are the helicities. For a fixed value 
of s, the amplitude (2.1) has, in general, certain zeros 
and singularities, in the complex t plane, of a purely 
kinematical nature, which may be removed by dividing 
by the factor 

[cos (8s/2)]IA'Hfl . [sin (8s/2)]ll,-lfl, (2.3) 

7 T.L. Trueman and G.C.Wick, Ann Phys. (N.Y.) 26,322 (1964); 
T. L. Trueman, Phys. Rev. Letters 17, 1198 (1966); L. L. Wang, 
Phys. Rev. 142, 1187 (1966). 
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where 
(2.4) 

and where 

cos () = 2st + S2 - SM2 + (m~ - m~)(m~ - m:) 

s {[s - (m1 + m2)2][s - (m1 - m2)2][s - (ma + m4)2][s - (ma - m4)2])!' 
(2.5) 

Here mp is the mass of particle ap , p = 1, 2, 3, 4, and 

M2 = m~ +m~ + m; + m~. (2.6) 

In the unphysical region of reaction (2.2) s R:! 0, 
t -- 00, one expects the asymptotic behavior 

f(s, t; A)""'" ta!s), (2.7) 

where ~(s) is identified as the location of the right-most 
singularity in the angular momentum plane associated 
with the partial-wave helicity amplitude. Now the 
kinematical factor (2.3) has the asymptotic behavior 
(1--00) 

t1A,H/1/2 . t IA,-AII/2. (2.8) 

This may be written t a , where 

(J == max [iAl - A21, IAa - A41]. (2.9) 

Collecting these results, one sees that the following 
amplitude is free from kinematical singularities: 

[cos «()s/2W IA,H/I . [sin «()s/2)]-IA,-AII. f(s, t; A), (2.10) 

and that it has the asymptotic behavior ta(s)-a for fixed 
sand t -- 00. Particular interest attaches to the cases 
where 

(J > ~(s) + 1 (2.11) 

for the same range of s values including s = O. By 
the Froissart theorem, one has ~(O) ~ 1, and in some 
cases, where no particle with the quantum numbers of 
the channel (2.2) exists, it may be the case that ~(O) 
is much less than unity. However, in such a case the 
leading singularity may not be a pole, but a many­
particle angular-momentum branch point. Neverthe­
less, in a reaction involving high spins, either in the 
initial or in the final states (or both), it will generally 
be possible to find some helicity amplitudes for which 
the maximum helicity flip (J is so large that (2.11) is 
satisfied. For such a choice of helicities, one may 
apply the Cauchy theorem to the amplitude (2.10) 
in the complex t plane at fixed s: 

fr dt[cos «()./2)]-I AiH/I . [sin «()./2)]-I Ai-A/I • f(s, t; A), 

(2.12) 

where the contour r is shown in Fig. 1. The right-hand 
cut comes from the t channel, 

(2.13) 

and the branch point 10 is given by 

to = [lowest two-particle threshold in I channel]. 

(2.14) 
The left-hand cut comes from the u channel, 

iia + a2 -- iiI + a4, 

and the branch point Uo is 

(2.15) 

Uo = M2 - S - [lowest two-particle threshold in 

u channel]. (2.16) 

In some cases it is possible that Uo is larger than to, so 
that the cuts overlap, but this alters none of the 
arguments. In writing Eq. (2.12), it was assumed that 
there were no bound states. If these do contribute to a 
particular amplitude, the right-hand side of Eq. (2.12) 
will be the sum of the residues of all these bound-state 
poles. The subsequent proof is scarcely altered, and 
all the results apply. 

The condition (2.11) implies that the integrand of 
(2.12) decreases more rapidly than t-1-< for some 
€ > 0, so that the contour r may be deformed to 
infinity, and the only remaining contributions are the 
integrals of absorptive parts over the I and u cuts. It 
will be convenient to concentrate attention first upon 
the contribution from the t cut, viz., 

r <Xl dt 1m {[cos «()./2)tIA,Htl 
Jto 

X [sin «()s/2)]-IA,-AII . f(s, t; A)}. (2.17) 

With s R:! 0, the integrand is in an unphysical region 
for reaction (2.2), but a physical (or mainly physical) 
region for reaction (2.13). Thus it is necessary to use 
the helicity crossing matrices to express the s-channel 
amplitudes in terms of the I-channel amplitudes. Let 

F(s, t; !-la, !-ll; !-l4, !-l2) == F(s, t;!-l) (2.18) 

be a helicity amplitude for the reaction (2.13). Here t 
is the invariant energy square, s is the square of the 

FIG. 1. Contour of 
integration for super­
convergence relation. 
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momentum transfer, and f-l'P' P = 1,2,3,4, are the 
helicities. The connection between (2.18) and (2.1) is 

l(s, t; A) = f3 I K(s, t; A; f-l)F(s, t; f-l). (2.19) 

all possible t-channel helicities, f-l1' f-l2' f-la, f-l4' and K 
is the helicity crossing matrix, viz., 

4 

K(s, t; A; f-l) = II d~~,;..cX'P)' (2.20) 
'P~1 

Here f3 is the isospin crossing matrix, the sum is over where 

with 

[~~l ~ [~ 
1 0 

~l[~} 0 0 

0 0 

0 1 

[fJ ~ [~ 
0 

m~J 0 0 

0 0 

0 

and where d~,;. is the standard representation of the 
rotation group, which can be written 

dB ( ) = [(S + a)! (s - a)!r [cos ( /2)]P.+/l1 
/l,J. X (+)' ( _ )' X ST. ST. 

X [sin (X/2)]I;'-/l1 . pl~-;;/l','H/l'(cos X), (2.22) 

where 
a = max (1.1.1, If-ll), 

T = min (1.1.1, If-ll), 

and P,:/(x) is the Jacobi polynomial defined by 

pa/(x) = 2-J f (J + IX) (J + (3) 
m~O m J-m 

(2.21) 

X (x - l)J-m(x + l)m. (2.23) 

The t channel amplitude F(s, t; f-l) can be expanded 
in partial waves: 

F(s, t; f-l) = I (2J + l)d~'/l,(et)F At; f-l), (2.24) 
J 

where 
(2.25) 

where FJ(t; f-l) is a partial-wave amplitude, and where 

2st + t2 - tM2 + (m~ - m~)(m; - mi) 
(2.26) 

For the sake of simplicity, it will be supposed that 
there is just one resonance in each partial-wave 
amplitude FAt; f-l), namely, the spin-J member of the 
same Regge family to which the external particles 
belong. (For simplicity, no account will be taken of 
the fact that a given Regge family only contributes to 
alternate partial waves. This point can be allowed for 
very easily.) However, it is easy to extend the treatment 
to the case of more than one resonance in each wave. 
Moreover, any particular resonance may be suppressed 
by letting its coupling to the external particles tend to 
zero. The contribution of the graph of Fig. 2 to the 
partial-wave helicity amplitude may be written 

y(S2' S4' J)y(Sl' Sa, J)C(t;f-l; J)/(m~ - t), (2.27) 

where yea, b, c) is the coupling at the vertex formed 
by the particles of spin a, b, c and where C(t; f-l; J) 
is a kinematical factor that depends on the helicities, 
f-l1' f-l2' f-la, f-l4' Lastly, mJ is the mass ofthe resonance, 
i.e., the mass of the spin-J particle. This mass, is, 

strictly speaking, complex, but the "t5-function 
approximation" consists in writing the imaginary 
part of (2.27) as 

7Ty(S2' S4' J)y(Sl' Sa, J)C(f-l; J)t5(t - m~), (2.28) 

where mJ is now the real mass, and where C(f-l; J) == 
C(m~ ; f-l; J). This is the only contribution to the 
superconvergence relation that is retained. 

In general, of course, there can be more than one 
coupling constant at a vertex (a, b, c), say, and these 

i 
t 

FIG. 2. Exchange of spin-J particle in 
t channel. 
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FIG. 3. Exchange of spin-J particle in 
u channel. 

couplings will contribute with different kinematical 
factors to the different helicity amplitudes. However, 
it is not the case that there are as many couplings as 
there are helicity states of the external particles. 
Indeed, in some cases there will be no possible 
couplings, if only zeroth and first derivatives of the 
field operators are allowed in the Lagrangian. In this 
paper, it is proposed to show that there exist an 
infinite number of solutions to the superconvergence 
relations for the nonzero couplings. For thi&. purpose 
it will be sufficient to select a vertex (a, b, c) for which 
at least one coupling is possible, and to set all the 
coupling constants except one to zero. It will be shown 
that an infinite number of solutions exists even with 
this severe constraint. It is to be expected that there 
are eyen more solutions when this artificial require­
ment is removed. 

The t contribution to the superconvergence relation, 
Eq. (2.17), reads 

f3 I (2J + 1) I [cos (Os/2)]-I).i+Atl[sin (Os/2)]-I).;-).tl 
J /l 

X K(s, t; A; fl) . d~'/l/Ot)Y(S2' S4' J) 

X Y(SI' S3' J)C(fl; J)/t=mJ" (2.2~) 
There is a similar contribution from the u channel 
(i.e., the left-hand cut in the complex t plane, at fixed 
s), viz., 

y I (2J + 1) I [cos (Os/2)]-I).'+).fl[sin (0s/2)]-I).'-'\tl 
J v 

x K(s, u; A; v)d~,v/Ou)y(S2' S3,]) 

X Y(SI, S4 ,])C( v; J)/u=mJ" (2.30) 

where VI' v2 , V3 , V4 are the helicities in the u channel 
and 0 u is the same function of sand u == M2 - S - t 

as Ot is of sand t [Eq. (2.26)]. Here y is the isospin 
crossing matrix from the s to the u channel. 

For those combinations of AI' A2 , A3 , A4 for which 
the superconvergence condition (2.11) holds, the sum 
of the two contributions (2.29) and (2.30) is zero. 
Notice first that the relation may only hold for some 
of the possible isospin states in the s channel, since 
a(s) certainly depends on the isospin. Secondly, some 

of the relations may be trivial, due to cancellation of 
the t and u contributions. This occurs, for instance, 
if all four external particles are the same scalar, 
isoscalar boson, and in many other cases also. In 
other cases, the t and u channels are identical, but add 
constructively, as in the s-channel isospin-zero super­
convergence relation for the elastic scattering of 
identical scalar, isospinor bosons. 

These detailed considerations are not of immediate 
concern. It is the present purpose to consider all the 
nontrivial superconvergence relations for given exter­
nal particles aI, a2, a3, a4. In general, there will be a 
set of relations between the coupling constants 

Y(S2' S4' J), Y(SI' S3, J), Y(S2' S3' J), Y(SI' S4, J), 

for all physical J, corresponding to the various 
superconvergent combinations of s-channel helicities 
and isospin. Some of these couplings may be the same, 
if some of the external particles are identical; and 
some couplings will certainly be the same, if the 
internal particles belong to the same family as the 
external particles, for example, 

Y(S2' S4' J) = y(J, S4' S2), 

and these equalities must be taken into account. 
The superconvergence relation, for a given s­

channel isospin I and given helicities A may be 
written 

I {I AAs; A; fl)g~ + I BJ(s; A; V)h j } = 0, (2.31) 
J /l v 

where 

AAs; A; fl) == [cos Os/2rl)';+Atl[sin 0s/2rl).;-).tl 

x K(s, t; A; fl)C(fl, J)d~'l'lOt)/t=m}' (2.32) 

BAs; A; v) == [cos Osf2]-I).i+Atl[sin Os/2]-I).;-)./1 

X K(s, u; A; v)C(v, J)d~,v!(Ou)/u=m/' (2.33) 

I - '" f3 (2J + 1) 1'( ) 1'( ) gJ = £., 1,1' Y S2' S4' J Y SI' Sa , J, (2.34) 
I' 

h~ == I YI,1'(2J + l)yI'(S2' S3' J)y1'(SI' S4' J). (2.35) 
I' 

The superconvergence relation is assumed to hold in 
some neighborhood of s = 0, so that Eq. (2.31) is 
equivalent to an infinite number of equations for the 
quantities g5 and h5 . 

It is convenient to set to zero separately the t­
channel and u-channel contributions, when these are 
distinct. Thus 

I g~ I AAs; A; fl) = 0, (2.36) 
J /l 

I h~ I BAs; A; v) = O. (2.37) 
J v 
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This is not necessary, but it will simplify the ensuing 
algebra. The fact that it is possible to find solutions 
of Eqs. (2.36) and (2.37) indicates how very far the 
equation (2.31) is from possessing a unique solution. 
It will in fact only be necessary to consider Eq. (2.36) 
for all possible external spins Sl' S2' Sa, S4' since this 
will then entail all Eqs. (2.37). 

It is necessary now to convert Eq. (2.36), which is 
valid for a continuum of values of s, into a discrete 
infinity of equations. This can be done by expanding 
LI' AAs; Il; fl) about a point S = So, at which it is 
analytic, in a Taylor series, say 

00 

L AAs; Il; fl) = L An.J(Il)(s - so)n. (2.38) 
I' n=O 

Thus Eq. (2.36) may be written 

<Xi 

L (s - sot L g~An.AIl) = 0. (2.39) 
n=O J 

Since this series converges uniformly for Is - sol 
small enough, it follows that each coefficient of 
(s - so) must vanish independently, i.e., 

L g~An.AIl) = 0, (2.40) 
J 

for n = 0, 1, 2, ... , and all permissible I, Il. 
It is the purpose of this paper to study the solubility 

of Eq. (2.40). This depends upon the asymptotic 
behavior of An All) as J -+ 00, as will be shown in the 
next section, ~nd so it is of interest to calculate this 
explicitly. If it is assumed that the mass spectrum 
increases indefinitely, i.e., 

m~ ----+ 00, (2.41) 
J-+oo 

then, from Eq. (2.32), this limit may be calculated 
explicitly to be 

Anjll) f"o"J EnCll)[JjmJ]2nF All), (2.42) 
J-+oo 

where E and F are two functions that are given in 
Appendix C. The important point is that En(ll) does 
not depend on J and FAA) does not depend on n. 
Hence 

lim [An.AIl)j Ano.AIl)] 
J-+(f) 

= [En(ll)jEnP)] lim [mJfJr<no-nl. (2.43) 
J-+oo 

If no > n, this limit is zero only if 

lim [mJfJ] = 0. (2.44) 
J-+ 00 

This is a key equation, the derivation of which was the 
goal of this rather long section. 

3. SOLUTION FOR GIVEN EXTERNAL SPINS 

In this section it will be shown how Eq. (2.40) 
can be solved for the g~ , for any given mass spectrum 
mJ that satisfies (2.41) and (2.44). It will then be 
shown that, once the g's are known, the coupling 
constants yea, b, c) can be obtained from Eq. (2.34). 
All this applies to the superconvergence relations 
appropriate to given external spins Sl, S2' Sa, S4' 

In Sec. 4, it is shown that simultaneous solutions for 
all external spins can be constructed. 

F or a given s-channel isospin I and helicity state 
1.., Eq. (2.40) reads 

(f) 

L a(n, J)g(J) = 0, n = 0, 1,2, ... , (3.1) 
J=O 

where 
a(n, J) == An,AIl) (3.2) 

and 

g(J)==g}, (3.3) 

and where, according to Eqs. (2.43) and (2.44), 

lim [a(n, J)ja(no, J)] = 0, all n < no. (3.4) 
J-+oo 

In Appendix A, it is shown that, under these condi­
tions supplemented by the observation that a(O, J) ¥: ° 
for an infinite number of values of J, an infinite 
number oflinearly independent, absolutely convergent 
solutions g(J) exists. The proof was originally invented 
by P6lyaB thirty years ago. 

It is the case, then, that one can find a solution for 
given s channel helicities. The question now is whether 
solutions g(J) can be found which simultaneously 
satisfy Eq. (2.40) for all permissible values of the 
helicities Il. The fact that this is possible hinges upon 
the observation that, for given spins Sl' S2, sa, S4' 

there is only a finite number of possible helicity 
combinations Il. Suppose that these combinations are 
ordered in some way, and set 

(3.5) 

where q takes on the values q = 1, 2, ... , Q, say, 
thus exhausting all the permissible ways of combining 
the S channel helicities. For any value of q, the corre­
sponding condition (3.4) holds. This means that the 
equations 

00 for L a(n, J; q)g(J) = 0, 
J=O and 

can be reordered as 

00 

n = 0, 1,2,' ", 

q = 1,2,'" ,Q; 
(3.6) 

L A(n', J)g(J) = 0, n' = 0, 1,2, .. " (3.7) 
J=O 

8 G. P6Iya. Commentarii Math. Helvetici 11, 234 (1938-9). 
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where A(n', J) is equal to one of the a(n, J, q), in such 
a way that each of the distinct equations (3.6) occurs 
once, and only once, in (3.7), and such that 

lim [A(n, J)/A(no, J)] = 0, (3.8) 
J .... oo 

for all n < no. It is, strictly speaking, not clear that 
one can preserve the P6lya condition (3.8) when 
interleaving the different equations (3.6), since one 
might find two of Eqs. (3.6) with the same asymptotic 
behavior, say 

a(n1' J; Q1)/a(n2, J; Q2) ~ const (3.9) 
J .... oo 

or perhaps this ratio might oscillate, with no definite 
limit. This point is taken up in Appendix D, where it is 
shown that, even if this happens, one can find an 
equivalent set of equations (3.7) for which this 
"coincidental" asymptotic behavior does not obtain. 
It follows then that one can construct an infinite set 
of absolutely convergent solutions g(J) to Eq. (3.7), 
that is to say, to the complete set (3.6). 

It remains to be shown that, given a set of solutions 
gj, according to Eq. (2.34), viz., one can always solve 
for the individual y's: 

I ~ l' I' gJ = (2J + 1) k {J I,I'Y (S2' S4' J)y (Sl' Sa, J). (3.10) 
l' 

However, this is very straightforward, for the crossing 
matrix satisfies 

{J2 = 1 (3.11) 

so that (3.10) can be inverted to give 

(21 + 1)yl'(S2' S4 ,J)yl'(Sl' S3,J) = I {JI"Ig~. (3.12) 
I 

It may be that not all values of I yield superconver­
gence relations (this depends on the detailed dynamical 
assumptions), but in that case there are more y's than 
g's, so that Eq. (3.10) can again be solved for the 
y's, this time nonuniquely. 

4. SOLUTION COMBINING ALL 
EXTERNAL SPINS 

It has been shown that, for given external spins 
Sl' S2' Sa, s" solutions can be found to the super­
convergence conditions (2.40), where gS is given by 
(2.34). These equations may be written 

I I An,AI, I'; A)yI'(S2' S" J)yI'(Sl' S3' J) = 0, (4.1) 
J l' 

where 
An,J(/' I'; A) ;: (21 + 1){JI,I'An,J(A). (4.2) 

The problem now is to show that solutions of the 
whole set of Eqs. (4.1), for all possible external spins, 
can be found which are consistent with one another. 

Suppose first that the complete set of sets of equa­
tions be ordered as follows: 

(a) 
Sl =S2=S3=S,=0, so that (4.1) involves only 

[yl'(O, 0, JW; 

(b) 

Sl=I{S2=0=S, involving yI'(I, 0, J)yl'(O, 0, J), 

S3=0 s2=1, s,=O involving [yI'(1, 0, J)]2; 

(c) 

r~o~s' involving yI'(2, 0, J)yI'(O, 0, J), 
sl=2 involving yl'(2, 0, J)yl'(1, 0, J), -0 s2=1, s,=O S3-

s2=2, S4=0 involving [yI'(2, 0, J)]2; 

(d) 

r~o~s' involving l'(I, 1, J)yI'(O, 0, J), 

sl:1 s2=1, s,=O involving yI'(1, 1, J)yl'(l, 0, J), 

1'( l' s3- 1 s2=2, s,=O involving y 1,1, J)y (2,0, J), 

s2=1, s,=1 involving [yl'(1,1,J)]2; 

and so on. 
By this method, all sets of equations are enumerated. 

The difficulty is that, for example, once yl' (1, 0, J) 
has been determined by the first equation (b) above, 
it must then be shown to be consistent with the last 
equation (b), the second equation (c), and so on, and 
similarly for all the other couplings, each of which 
occurs an infinite number of times. Moreover, even in 
determining yl' (1, 0, J) from (b), not every term is 
free, since yI'(I, 0, 0) must agree with yI'(O,O, 1), 
determined at stage (a), in the solution for yl'(O, 0, J). 

Nevertheless, it can be shown that these strin­
gent cross-consistency conditions can be more than 
matched by the extreme indeterminacy of anyone 
equation, in such a way that in fact there exist an in­
finity of solutions for the entire system. To show this, 
one should recall that a given set of equations can, 
in general, be solved even if an infinite set of the cou­
plings are set identically equal to zero, so long as an 
infinite set are left free. 

Let Sq represent the infinite set of integers 

Sq;: {q, 2q, 22q, 23q, ... }, (4.3) 

where q is a prime number. Evidently there exists an 
infinite set of disjoint sets Sq corresponding to all the 
prime numbers q. Suppose now that a particular 
solution be constructed for yl' (0, 0, J), from stage (a) 
above, in which every yI' (0, 0, J) is set equal to zero, 
except for those values of J belonging to Sa. This is 
possible because S3 is an infinite set. Next, yI' (1, 0, J) 
is determined from the first equation (b), where 
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yI' (0,0, J) is already known, and thus is part of the 
coefficient. Moreover, for a given nonzero yI' (0, 0, J), 
the P6lya condition for the system reads 

lim [An.AI, I'; A)YI'(O, 0, J)]/ 
J .... oo 

[Ano,J(I, 1'; A)yI'(O, O,J)] = ° (4.4) 

for n < no, and the coupling yI' (0, 0, J) cancels out, 
giving 

lim [An.J(I, I'; A)/Ano.AI, 1'; A)] = 0, (4.5) 
J .... oo 

which is implied by Eq. (2.44), as has already been 
indicated. Hence, an absolutely convergent solution 
of (b) can be obtained, for those yI'(1, 0, J) which 
multiply nonzero yI' (0, 0, J). All the other yI' (1, 0, J) 
are left arbitrary, and this is the crucial point, for now 
the last equation (b) can be solved for yI' (1, 0, J) by 
first injecting the known values for J belonging to S3' 
This gives a known inhomogeneous term in the 
equations. It is convenient also to set all yI' (1, 0, J) 
to zero, except when J belongs to S3 and S5' Then the 
last equation (b) can be solved for the unknown 
/ (1,0, J), for J in S5' The presence of the inhomo­
geneous term does not alter P6lya's proof at all; the 
presentation in Appendix A is given for a completely 
arbitrary inhomogeneous term. 

The next steps should be clear. The first equation 
(c) serves to determine yI'(2, 0, J) for J belonging to 
S3' and the second for J belonging to S5' The last 
equation is satisfied by setting yI' (2, 0, J) equal to 
zero, except for J belonging to S3' S5' S7' and thus 
determining the coupling for J in S7' Then / (1, 1, J) 
is determined for J in S3' S5' S7 , successively, from the 
first three equations (d), and then for J in S11 from the 
last equation, with yI' (1, 1, J) = ° for all other values 
of J. This process can be continued indefinitely. 

Three comments may be added. It is the case that, 
when one solves a given equation for a coupling con­
stant yI' (S1' S3' J), for J belonging to a given set S'I>' 
not all these couplings are free, since yI' (S1' S3' J) = 
yI' (S1' J, S3), for example, and, for small enough J, 
the latter quantity may already have been determined 
at an earlier stage. However, it is easy to see that, at 
each stage, there is only a finite number of such terms. 
These then can be added to the inhomogeneous term, 
leaving an infinite number of couplings with which to 
solve the equation. 

The second point concerns the convergence of the 
infinite series constituting the inhomogeneous terms 
that are present at the last steps of each of the stages 
(b), (c), (d),···. In stage (c), for instance, it is 
necessary to find a solution yI' (2, 0, J) at the first step 
that converges so quickly that the corresponding 

inhomogeneous term at the second and third steps 
also converge. However, since series solutions can be 
constructed that converge arbitrarily quickly, there is 
no difficulty in ensuring this. No further convergence 
requirements are made on yI' (2,0, J) after stage (c), 
since, at later stages, this coupling is always multiplied 
by some new coupling, which can be constructed to 
satisfy the later convergence requirements. 

The third point is that the purist might object that 
an enumeration of the infinite set of infinite sets of 
equations has not been given, since it seems that one 
must first solve an infinite set of equations at stage (a) 
before starting stage (b), and so on. However, this 
objection can be overcome by solving first a finite 
number of the equations at stage (a), a la P6lya, then 
a finite number at stage (b), using only those values of 
yI' (0,0, J) already determined, then some more 
equations (a), some more (b), and a first set (c), and so. 
This technique involves a slight generalization of the 
P6lya technique, since the inhomogeneous terms at the 
later steps of stages (b), (c), and (d) are never com­
pletely known. This paper will not be burdened by the 
details of this generalization, which is straightforward 
and is left to the reader. 

5. SIGN RESTRICTIONS ON RESIDUES 

Up to this point, no account has been taken of any 
possible requirement of positivity of squares of 
couplings. For instance, if S1 = S2, and S3 = S4' so 
that the t channel scattering is elastic, then Eq. (2.34) 
becomes 

(5.1) 

If the particles are isoscalars, {Jo,o = 1, and there is 
the strong requirement that all the g~ must be positive 
(or zero). This would generally not be observed by the 
solutions constructed by the P6lya method. On the 
other hand, if the particles were isospinors and a 
superconvergence relation existed only for the I = ° 
channel, then one would have 

g~ = (2J + l){ -HyO(S1' S3' J)]2 + t[y'(S1' S3' J)]2} 

(5.2) 

and there would be no sign restriction for the g~, so 
that the analysis of the preceding sections would 
a pply directly. Similarly, if the particles were iso­
vectors, and the superconvergence relation arose for 
the 1= 2 channel, one would have 

g~ = (2J + 1){![yO(s1' S3' J)]2 - t[y1(S1' S3, J)]2 

+ -Hy2(S1' S3' J)]2}, (5.3) 

and again there is no sign restriction. 
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If, further, SI = Sa and the initial and final particles 
in the t channel are identical, then the Pauli principle 
is operative. Thus, in the isospinor example, only odd 
partial waves contribute to the state I = 0 and only 
even waves to 1= 1, if the particles are bosons (the 
reverse obtaining for fermions). In this case one would 
have 

° {!(2J + l)[y\sl' SI, J)]2 for J even, 
g = (54) 

J -i(2J + l)[yO(sl' SI, J)]2 for J odd, . 

and here the constraint is that g~ must be positive/ 
negative for J even/odd. Similarly, in the isovector 
case (again for bosons), one has 

{

(2J + l){t[yO(sl' SI, J)]2 

g~ = + i[y2(SI' SI, JW} for J even, 

-(2J + l)t[yl(SI' SI, J)]2 for J odd, 
(5.5) 

and so the same sign restrictions apply. 
It can be shown in some of these cases that solutions 

exist that satisfy the sign restrictions. 6 However, 
what will be shown in this section is slightly weaker 
than an existence theorem, but for practical purposes 
it is equivalent. It will be shown that, if an infinite 
number of the g~ are constrained to be positive (or 
zero), and an infinite number negative, as in the 
examples (5.4) and (5.5) above, then, if one solution 
exists, so do an infinite number of solutions. Thus there 
is an infinite number of solutions or there are none 
at all. The more difficult case that all the g5 are con­
strained to be positive, as in the isoscalar example, 
will be taken up in the next section. 

If one solution G5- of the system 
00 

L An.AA)G5 = 0 (5.6) 
J=O 

exists, that satisfies the positivity constraints, then it is 
shown in Appendix B that an infinite number of 
solutions exists. This proof depends on the assumption 
that An.J(A) becomes positive-semidefinite for J 
sufficiently large. In the present case, this is true, since 
the analysis of Appendix C shows that An,J(A) has a 
definite limiting behavior. Should this limit have the 
wrong sign for a given n, the equation (5.6) for that n 
can be multiplied throughout by -1. The proof of 
Appendix B then applies. It proceeds by showing 
first that an intermediate solution g~ exists, satisfying 

00 

L An.AA)g5- = 0, (5.7) 
J=O 

and such that, for every J, either g5 has the required 
sign or, if not, then Ig51 < IG51. Under these circum­
stances, it is easy to see that 

G'j == G5 + g5 (5.8) 

is a new solution that satisfies the sign requirements. 
There exists an infinite number of such solutions. 

Next, it must be shown that the analysis of Sec. 4 
carries through, so that if one solution exists when all 
the different superconvergence relations are taken into 
account, then one can find an infinite number of such 
solutions. Let rea, b, c) be the given coupling constant, 
where the isospin superscript I' has been dropped, and 
consider the enumeration of equations given in Sec. 4. 
Instead of finding a solution [yeO, 0, J)]2 at stage (a) 
in which every term is zero unless J is in class Sa, one 
first sets [yeO, 0, J)]2 = - [reo, 0, J)]2 for all J not in 
Sa. This constitutes an inhomogeneous term in the 
stage (a) equation, which can then be solved for the 
remaining [yeO, 0, J)]2, i.e., for J in Sa, by the method 
of Appendix B, such that, within Sa, [yeO, 0, J)]2 
either is positive or it is less than the corresponding 
[reO, 0, J)]2. Then 

[r'(0, 0, J)]2 = [reO, 0, J)]2 + [yeO, 0, J)]2 (5.9) 

is a new solution of the stage (a) equation; moreover, 

r'(O, 0, J) = 0 for J not in Sa. 

The first equation of stage (b) is solved for the 
product r'(1,o,J)r'(O,O,J), where r'(O,O,J) is 
known, thus determining r' (1, 0, J) for J in Sa. 
A solution y(l, 0, J) of stage (b), step 2, is obtained 
by setting 

[y(l, 0, J)]2 

= {[r'(I,O,J)]2- [r(1,0,J)]2 forJinSa, (5.10) 
- [r(1, 0, J)]2 for J not in Sa, Ss 

as the inhomogeneous term, and solving for 

[y(I,0,J)]2, 

J in Ss, as in Appendix B, such that this quantity 
either is positive or is smaller than the corresponding 
[r(1, 0, J)]2. Then the following solution satisfies the 
positivity requirements. [Since the particles are not 
identical in this case, possessing different spins, there 
would be no Pauli principle, and so no sign restriction, 
since [y(l, 0, J)]2 would always occur in isospin 
combinations like Eqs. (5.2), (5.3). However, there are 
cases in which the special construction of this section 
would be necessary-for example, stage (d)]: 

[r'(l, 0,J)]2 = [r(1, 0,J)]2 + [y(1, 0,J)]2. (5.11) 

Note that this definition agrees with the solution of 
stage (b), step 1, for fin S3, and that r'(l, O,J) = 0 
for J not in S3' Ss. Hence stages (a) and (b) have been 
completely satisfied, and one can then treat stage (c) 
in a similar manner, and so on. This completes the 
proof that if one solution of the complete system 
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exists, then one can construct an infinite number of 
solutions. 

6. POSITIVE-DEFINITE RESIDUES 

In this section the purpose is to study a system where 
all the residues g~ are constrained to be positive. 
Examples are any of the diagonal terms for isoscalar 
scattering, the 1= 1 componentofisospinorscattering, 
the 1= 0 component of isovector scattering. In any 
given situation, not all of these cases might yield 
superconvergence relations, but there are certainly 
some high spin amplitudes that should do so. 

Suppose, then, that gJ is to be positive or zero, 
and is to satisfy 

~ An,AA)gJ = O. (6.1) 
J 

It is easy to see that no nontrivial solution is possible 
if all the An,J(A) are positive. However, when the 
external particles have spin, a finite number of the 
coefficients are negative. 

A proof of nonuniqueness is often possible along 
the lines of the previous section. Thus, if one solution 
exists 

(6.2) 

one can attempt to find another gJ' such that IgJI ~ 
IGJI, and then 

(6.3) 

is a new solution that satisfies the positivity require­
ment. The difference between this case and that of 
Sec. 5 is that there is no guarantee that such a solution 
gJ can be found. The reason lies in a rather subtle 
shortcoming of the P6lya proof. Although solutions 
g J can be constructed that cause the series 

~ IAn,J(A)gJI (6.4) 
J 

to converge arbitrarily quickly, it is not the case that 
gJ' considered as a function of J, can be made to 
decrease arbitrarily quickly with J. In fact, there is a 
limiting behavior for this function. If the given 
solution G J tends to zero less quickly than this 
"P6lya limit," then an infinite number of solutions 
may be constructed, as in the preceding section. If, 
on the other hand, the given solution does not tend to 
zero less quickly than this, then it may be unique. 
At any rate, the P61ya construction cannot be used to 
find new solutions. 

What is shown in this section is that, if 

lim [J!/mJ] = 0, (6.5) 
J-+oo 

then, if one solution exists, so do an infinite number 
of solutions. If one thinks of the states as lying on a 

Regge trajectory, then condition (6.5) is equivalent to 
asserting that the solutions are nonunique if the 
trajectory increases less rapidly than linearly in t. 
If the trajectory increases more rapidly than this and a 
solution exists, then it may be unique. 

In Appendix E it is shown that, if the mass spectrum 
has a power-law dependence 

(6.6) 

then, in order that the superconvergence relation 
should not hold for arbitrarily large s (which consti­
tutes a physical requirement), one has 

a < 2, (6.7) 

that is, the Regge trajectory !X(t) must increase more 
quickly than tl. (This fact was first pointed out by 
Grodsky et aJ.9) If condition (6.7) is satisfied, then a 
solution GJ of (6.2) must satisfy 

G J "" exp [ - K/-a
/
2

] , (6.8) 
J-+ 00 

where K is a positive constant. This is also shown in 
Appendix E. 

In Appendix F it is shown that the fastest rate of 
decrease of a P6lya solution GJ , when (6.7) is satisfied, 
is 

gJ "" exp [-BJ!], (6.9) 
J-+oo 

where B is a positive constant. Evidently (6.9) is a 
faster rate than (6.8) whenever 

a> 1, (6.10) 

i.e., whenever the Regge trajectory increases less 
quickly than linearly. Under these circumstances, any 
given solution cannot be unique. 
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APPENDIX A: POLYA'S THEOREM 

In this appendix, it will be shown that the system of 
equations 

00 

L a(n, J)g(J) = ben), n = 0, 1,2, ... , (AI) 
J=O 

has an infinity of linearly independent solutions g(J) 
if the coefficients a(n, J) satisfy the condition 

lim la(n, J)/a(no, J)I = 0, for no = 1, 2, 3, ... 

and all n < no, (A2) 

• I. T. Grodsky, M. Martinis, and M. ~wi~cki, Phys. Rev. Letters 
19,332 (1967). 
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and if the first row a(O, J) contains an infinity of non­
zero elements. Moreover, all the infinite sums in 
Eq. (AI) can be made absolutely convergent. That is, 

00 

! la(n, J)g(J)1 (A3) 
J=O 

exists for n = 0, 1, 2, .... The sequence of numbers 
ben), n = 0, 1, ... , can be quite arbitrary. 

The proof follows closely that given by Cooke10 ; 

but it is hoped that the presentation given here will be 
more readily comprehensible. The method of proof is 
by construction. 

A particular solution g(J), J = 0, 1, 2, ... , is built 
up successively by partially satisfying more and more 
of Eqs. (AI), until eventually all the equations are 
completely satisfied. It is a most important observa­
tion that any number, even an infinite number, of the 
g(J) can be set equal to zero, on condition that an 
infinite number are nonzero. 

The zeroth stage in the construction of a typical 
solution consists in picking two integers e and Jo such 
that e < Jo, and a(O, e) =F 0, a(O, Jo) =F 0. Then gee) 
is given any arbitrary value and g(Jo) is determined 
by the equation 

a(O, e)g(e) + a(O, Jo)g(Jo) = b(O), (A4) 
i.e., 

g(Jo) = [b(O) - a(O, e)g(e)]/a(O, Jo). (AS) 

To avoid triviality, it is required that the term in 
square brackets be nonvanishing. Thus, it is conven­
ient to pick gee) = ° if b(O) =F 0, and gee) =F ° if 
b(O) = 0. Lastly, one defines g(J) = ° for all J that 
satisfy 0::;;; J::;;; Jo, except for J = e and J = Jo• 
Then it is clear that the n = ° equation has been 
partially satisfied, viz., 

Jo 
! a(O, J)g(J) = b(O). (A6) 
J=O 

The first stage consists in determining a number J1 

with J1 > Jo, and the values of g(J) for J = Jo + 1, 
Jo + 2, ... ,J1 , such that Eq. (AI) is partially satisfied 
up to J = J1 for n = ° and n = 1, i.e., 

J1 

! a(n, J)g(J) = ben), for n = 0, 1. (A7) 
J=O 

This is done without altering the g(J) , J = 0, 1,2, ... , 
Jo, that were determined at the zeroth stage. In the 
second stage, the first three equations, those for 
n = 0, 1, 2, are satisfied up to some J = J2 (J2 > JJ, 
and so on. Eventually any given equation is satisfied 
up to an arbitrarily high order. 

The Nth stage will be described in detail. This then 
constitutes an inductive construction for the entire 

10 R. G. Cooke, Infinite Matrices and Sequence Spaces (MacMillan 
and Co., Ltd., London, 1950). 

sequence {g(J)}. At the (N - l)th state, a number 
J N-l has been determined such that 
I n-1 

! a(n, J)g(J) = ben), for n = 0, 1, ... , N - 1. 
J=O 

(A8) 

The Nth stage consists in determining J Nand g(J), for 
J = I N- 1 + 1, I N- 1 + 2, ... ,IN , such that 
IN 

! a(n, J)g(J) = ben), for n = 0, 1, ... ,N, (A9) 
J=O 

i.e., such that one more equation is partially satisfied. 
It follows, by subtraction of Eq. (A8) from Eq. (A9), 
that 

IN 

! a(n, J)g(J) = 0, for n = 0, 1, ... , N - 1, 
J=JN-1+1 

(AI0) 
and 

IN 

! a(N, J)g(J) = beN). (All) 
J=O 

There are here (N + 1) equations and, in general, it 
would be possible to satisfy them by introducing 
(N + 1) new g(J) , which would then be determined by 
the equations. However, it is convenient to introduce 
(N + 2) new g(J)-one more than necessary-in order 
to expedite the proof of absolute convergence, as will 
appear. 

It will be shown how to choose (N + 1) numbers, 
ko, kl' k2' ... ,kN, such that 

I N- 1 < ko < kl < ... < kN < I N , (AI2) 

and such that 
N 

! a(n, k1»g(k1» = -a(n, J N)g(J N), 

and 
N 

1>=0 

! a(N, k1»g(k1» 
1>=0 

IN-1 

for n = 0, 1, 2, ... , N - 1, (A 13) 

= beN) - ! a(N, J)g(J) - a(N, J N)g(J N). (AI4) 
J=O 

It can be seen that Eq. (A13) and Eq. (AI4) are 
equivalent to Eq. (AW) and Eq. (All), if one defines 
g(J)=O for IN_1<J<JN, except for J=k1>' 
p = 0, 1, 2, ... , N. 

The crucial step in the whole proof is t9 define 
g(JN ) so that the right-hand side ofEq. (AI4) vanishes. 
That is, one sets 

{ 

IN-1 } 
g(J N) = [a(N, J N)]-l beN) - J~O a(N, J)g(J) . 

(A1S) 

Thusg(JN) is defined in terms of the g(J), J = 0, 1, 
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2, ... ,J N-I' that have already been determined at 
earlier stages. 

With this definition, Eq. (A13) and Eq. (AI4) take 
the form 

N 
L a(n, kp)g(kp) 
p~o 

and 

= - [a(n, J N)/a(N, J N»){ beN) - :~: a(N, J)g(J)}, 

for n = 0, 1, ... , N - 1, (A16) 

N 

L a(N, kp)g(kp) = 0. (AI7) 
p=o 

This is a system of (N + 1) inhomogeneous equations, 
which can be solved for the unknown g(k p ), P = 
0, 1, ... , N, on condition that the matrix 

a(O, ko) a(O, k l ) a(O, k N)-

a(I, ko) a(l, k l ) a(1, kN) 

A= (A18) 

_a(N, k o) a(N, kN) 

has a nonvanishing determinant. The first task is to 
show that k o, kl' ... , k N can always be chosen so 
that this is indeed the case. 

The determinant would be zero if one row were a 
constant multiple of another. However, this is only a 
sufficient, not a necessary, condition for the vanishing 
of the determinant. A necessary and sufficient condi­
tion is that a line.ar relation exist between the rows, 
that is, 

coa(O, k p) + c1a(I, k p) + ... + cNa(N, k p) = 0, 

for all p = 0, 1, ... ,N, (AI9) 

where not all of the cn ' n = 0, 1, ... , N, vanish. It 
will be shown that the kp can be chosen so that no 
such relation (AI9) exists, so that in fact the deter­
minant of A [Eq. (AI8») can be made nonzero. 

The only way in which a relation of the form (A19) 
could be inescapable would be if a relation of the form 

coa(O, J) + c1a{l, J) + ... + cNa(N, J) = ° (A20) 

were to exist for all J > J N-I , for otherwise one could 
choose, say, kN such that (AI9) were violated for 
p = N. It will be shown that (A20) cannot hold for all 
J> I N - 1 , unless Co = C1 = ... = cN = 0. This con­
stitutes the proof that the kp can be chosen such that 
det A #- 0. 

With any J for which a(N, J) #- 0, one can write 

Eq. (A20) as 

CN = coa(O, J)/a(N, J) 

+ ... + C N-1a(N - 1, J)/a(N, J). (A21) 

Because of condition (A2), it follows that the right­
hand side of this equation tends to zero as J - 00; 
therefore, if (A2l) is to hold for all J > I N- 1 , it is 
clear that the only possibility is cN = 0. Hence Eq. 
(A20) reduces to 

coa(O, J) + c1a(1, J) + ... + CN_1a(N - 1, J) = 0. 

(A22) 

In the same way, it may be shown successively that 

CN-I = 0, CN-2 = 0, ... , C1 = 0. (A23) 

Finally, since it was originally assumed also that the 
first row a(O, J) contains an infinity of nonzero mem­
bers, and therefore certainly a nonzero member for 
J> J N-I' it follows that Co = 0. This completes the 
proof that the kp can be chosen so that the system 
[(AI6) and (AI7») is nonsingular (i.e., det A #- 0). 

With a suitable choice of kp, the solution of Eq. 
(AI6) and Eq. (AI7) can accordingly be written 

g(ko) r a(O, J N)/a(N, J N) 

a(l, J N)/a(N, J N) 

a(N - 1, J N)/a(N, J N) 

° 
X {b(N) - :~: a(N, J)g(J)}, (A24) 

where the inverse matrix A-I exists and is independent 
of the value of I N , which has not yet been chosen. 
Because of the condition (A2), it is possible to make 
the column vector in Eq. (A24), and hence the g(kp), 
arbitrarily small; and in particular one can, by 
making I N large enough, cause the sum 

N 

L la(n, kp)g(kp)1 
p~o 

to be as small as one pleases for any given n. Lastly, 
g(JN ) was defined by Eq. (AI5), so that one has 

la(n, J N)g(J N)I 

= la(n, J N)/a(N, J N)I 'ib(N) - :t1a(N, J)g(J)i 

(A25) 

and this also can be made arbitrarily small by making 
J N large enough, but only for n = 0, I, ... , N - 1. 
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In fine, it has been shown that, given any EN > 0, 
numbers ko, kl' ... , k N, J N, exist, such that, if 
Eq. (A8) holds, then Eq. (A9) is true; moreover, 

IN 

I la(n, J)g(J)1 < EN, n = 0, 1, ... ,N - 1, 
J=JN-l+l 

(A26) 

where it should be recalled that g(J) has been set to 
zero forJN_1 < J < IN,J~ kp,p = 0, 1,···, N. 

This completes the description of the Nth state in the 
construction of a solution. It is only necessary to 
choose the sequence {EN}, N = 0, 1,2,···, to be 
such that the series 

(A27) 

converges, in order to be sure that the sum (A3) 
exists for any n, for then 

<Xl <Xl 

I la(N, J)g(J)1 < I Em 
J=JN+l m=N+l 

for N = 0, 1, 2, . . .. (A28) 

It should not be necessary to labor the point that the 
construction is nonunique, that there exist, in fact, 
an infinity of linearly independent, absolutely con­
vergent solutions. 

APPENDIX B: POSITIVITY CONSTRAINTS 

In this section it will be shown that the system of 
equations (AI) for which condition (A2) holds, 
possesses either no solution or an infinite number of 
solutions when the following positivity condition is 
satisfied by the coefficients: 

(i) For any n, there exists a I n , such that 

a(n, J) ~ 0, for all J > I n ; 

and when the following" constraint is imposed on the 
solutions: 

(ii) g(ap) ~ 0, g(Tp) ~ 0, for p = 0, 1,2,··· , 
where {a p }. {Tp} are two infinite disjoint sets that 
exhaust the set of nonnegative integers. 

For suppose that at least one solution {G(J)} 
satisfies constraint (ii), so that 

<Xl 

I a(n, J)G(J) = ben), n = 0, 1,2, . . .. (BI) 
J=O 

Then one may proceed to construct a solution of the 
system 

<Xl 

I a(n, J)g(J) = 0, n = 0, 1,2, ... , (B2) 
J=O 

after the manner of Appendix A, but with ben) = 0. 
At the zeroth stage, c is chosen to be ao and g(c) is 
given an arbitrary positive value. If a(O, ao) > 0, then 
Jo is chosen to be T b ; but if a(O, ao) < 0, Jo is chosen 

to be ab , where b is chosen to be so large that a(O, Jo) > 
0. Then g(Jo) is given by 

a(O, c)g(c) + a(O, Jo)g(Jo) = ° (B3) 

so that g(c) and g(Jo) satisfy constraint (ii). As in 
Appendix A, one requires 

g(J) = 0, for ° ~ J < Jo, J ~ c. (B4) 

As the Nth stage of the construction, as in Eq. 
(AI5), one has 

IN-l 

g(J n) = - [a(N, J N)]-l I a(N, J)g(J). (B5) 
J=O 

Now J N can be chosen to be T d or ad' depending on 
whether 

IN-l 

I a(N, J)g(J) (B6) 
J=O 

is positive or negative, where d is so large that 

a(N,JN ) > 0, (B7) 

which is always possible [condition (i)]. Then g(JN ) 

satisfies constraint (ii). [Note that, if expression (B6) 
is zero, I N may be chosen to be Td or ad.] 

It can easily be shown that the infinite matrix 
a(n, J) does not have finite rank, so that an infinite 
number of the G(J) in Eq. (BI) must be nonzero. 
Hence kp, P = 0, I, ... , N, in Eqs. (AI3) and (AI4), 
with beN) = 0, may be chosen so that 

G(kp ) ~ 0, for p = 0, 1,2, ... ,N. (B8) 

Then Eq. (A24) shows that I N may be made so large 
that the g(kp ) are arbitrarily small, in particular, so 
that 

Ig(kp)1 < 'G(k p )" p = 0, I, ... ,N. (B9) 

Thus an absolutely convergent solution of Eq. (B2), 
g(J), can be constructed, each term of which satisfies 
one of the following three conditions: 

Either 
(a) g(J) = 0, or 
(b) g(J) satisfies constraint (ii), or (BlO) 
(c) 'g(J) , < 'G(J)'. 

Then, since Eqs. (BI) and (B2) imply 
<Xl 

I a(n, J)[G(J) + g(J)] = ben), n = 0, 1,2, ... , 
J=O 

it follows that 
G' (J) = G(J) + g(J) 

(Bll) 

(BI2) 

is another solution of Eq. (BI) that satisfies the 
constraint (ii). 

It is obvious, then, that if one solution of (Bl) 
exists, then so do an infinite number of solutions. 
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APPENDIX C: ASYMPTOTIC LIMITS 

The problem in this appendix is to convert Eq. 
(2.36), viz., 

00 

L gJ L AAs; A; f-t) = 0, (Cl) 
J=O fl 

where 

AJ(s; A; f-t) = [cos (Os!2)]-I)';Htl[sin (Os/2)]-I).;-).tl 

X C(f-t, J) . K(s, t; A; f-t)d;'.fl,(Ot)lt=m} (C2) 

and which holds for a continuum of s values in a 
neighborhood of s = 0, into an infinite set of discrete 
equations of the form 

(C3) 

and to study the behavior of An,AA) as J -- 00. 

Basically, the problem is reduced to an expansion 
of AAs; A; f-t) about some regular point in the com­
plex s plane; and s = ° is the obvious candidate for 
such a point. The difficulty is that there are some 
"kinematical" singularities at s = 0. While these can 
be factored out for finite J, it turns out that there are 
other singularities in the limit J -- 00, which cannot be 
so factored. In view of these difficulties, which are of a 
purely formal nature, and have no fundamental 
significance, the easiest procedure is to expand about 
another fixed point s = so, close to s = 0, at which 
AAs; A; f-t) is analytic. A series expansion 

00 

L AAs; A; f-t) = L An,J(A) . (s - so)n (C4) 
fl n=O 

can be made which will converge for Is - Sol sufficiently 
small. Then Eqs. (CI) and (C4) imply 

L (s - so)n L AnjA)gJ = 0, (C5) 
n J 

and since this must hold identically in s, for Is - Sol 
small enough, it follows that Eq. (C3) must hold. 

The asymptotic behavior lim An.AA) may be most 
J~OO 

easily studied by considering the limit J -- 00 of the 
left-hand side of Eq. (C4), and then by expanding in 
this limit, since the convergence is uniform with re­
spect to J. 

In the limit J -- 00, one has m} -- 00, and the first 
two terms in (C2) become 

[cos (Os/2)]-I).;Htl 

X [sin (Os/2)]-I).;-).t1It=m} r-...; pes; A)(m~)-a, (C6) 
J-+oo 

where 

p(s; A) = (-l)I).;-).tl{[s - (m! + m2)2][s - (m! - m2)2] 

x [s - (m3 + m4)2][s - (m3 - m4)2]js2}"", (C7) 

with 
(C8) 

The third term in (C2) , the helicity crossing­
matrix K(s, t; A; f-t), which is given explicitly in Eq. 
(2.20), will be studied next. Now 

cos Xplt=m} 

~ (-l)2'(s + m; - m;) 
J-+oo {[s - (mp + mp)2][S - (mp - mp)2])! ' 

p = 1, 2, 3, 4. (C9) 

Thus Xplt=mJ' nas a definite limit. This must be true 
also for the whole crossing matrix, so that one may 
write 

K(s, m~; A; f-t) ~ K(s; A; f-t), (ClO) J-+oo 

where the J-independent quantity on the right is 
defined by this relation, 

The fourth term in (C2) may be written 

d;',flt(Ot)lt=m} 

= [(J + M)! (J - M) !Ji [cos (0 /2)]lfl;+fltl 
(J + N)! (J - N)! t 

X [sin (0 /2)]lfl;-fltlplfli-fltl,lfli+fltl(cos 0)1 • t J-M t t=mJ' 

where 
M = max (If-til, If-ttl), 

N = min (If-til, I f-tt I). 

(Cll) 

Each of these four terms will be considered in turn. 
The limiting behavior of the first term may be evaluated 
by using Stirling's formula. This gives 

[
(1 + M)! (J - M)!Ji~ 1 (e12) 
(J + N)! (J - N)! J-+oo . 

The second and third terms give 

[cos (Ot/2)]I!li+fltl [sin (Ot/2)]IIIi-II,llt=m} 
r-...; (_s)IIIi-IItI/2(m~)-IIIi-IItI/2. (C13) 

J-+ 00 

The Jacobi polynomial has the expansion 

plfli-IItl,IIIi+lltl(cos 0)1 • J-M t t=mJ 
J-.'II 

r-...; L Bn,Af-t)( -st(m~)-n, (C14) 
J -+00 n=O 

where 

B () = (J - M + If-ti - f-ttl) 
n,J f-t J _ M - n 

X (J - M +nlf-ti + f-ttl). (CI5) 
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It is necessary to re-expand (CI4) about s = so, 
which can be done, using 

(-s)" = (_1)n i (n,)s~-n'(s - so)'" (C16) 
,,'=0 n 

to give 

p'l'i-I'I' ' Il'i+l'll(cos 8)1 2 J-M t t=m" 

J-M 
"" Z Bn,Aflo; SO)(S - so)", (e17) 

J .... oo n=O 

(C18) 

Thus, in the limit J ---+ 00, one has 

AAs;A;flo) 
I"0o"I pes, A)( -S)'l'i-I'II/2K(s; A; flo) . (m~)-a-ll'i-"/1/2 

J .... oo 

J-M 
X Z Bn.Aflo; so)(s - so)". (C19) 

n=O 

For sufficiently small Is - sol, there is a convergent 
series expansion 

00 

pes, A)( -s)'I';-1'11/2K(s; A; flo) = Z D,(A; flo; so)(s - soY, 
r=O 

(C20) 

where it is not necessary to calculate the coefficients 
Dr; the essential point is that they are independent of 
J. Hence Eq. (CI9) becomes 

00 

AAs; A; flo) I"0o"I (m~)-a-II"-1'11/2C{f1o, J)Z(s - soY 
J .... oo ,=0 

J-M 

X Z Bn.Aflo; so) Dn_r(A; flo; so)· (C2l) 
n=r 

This limiting form can be inserted into (CI) to give 
the limiting form of (C3), with the result 

An,J(A) "" Z (m~)-a-II"-1'11/2C(flo, J) 
J .... oo I' 

J-M 

X Z Br,Aflo; so) Dr_..(A; flo; so)· (C22) 

The object now is to show that the expression (C22) 
satisfies the P6lya condition, namely, 

lim IAnj)")/AnojA)1 = 0, (C23) 
J .... oo 

for all n < no. This will be shown to hold if 

lim [mJ/J] = O. (C24) 
J .... oo 

From (CIS) one finds that 

B
7I
jflo) "" J2n+ll'i-l'fl[n! (n + Iflo; - flofl)q-l. (C2S) 

J .... oo 

Hence (CI8) yields 

Bn.Aflo; so) "" J~M (n') ( -1)'" s~'-n J'I';-I'I' 
J .... oo n'=n n 

X [n'! (n' + Iflo; - flofl)q-l[J/mJ]2n'. (C26) 

Because of the inverse factorials, the first term in the 
series dominates (since J/mJ cannot increase faster 
than J), i.e., 

Bn.Aflo; so) "" (-1)" J'I"-I'I' 
J .... oo 

x [n! (n + Iflo; - flofl)!]-1[J/mJ]2n. (C27) 

Again, in (C22) the first term, corresponding to 
r = n, dominates, giving for the asymptotic value of 
the expansion coefficients 

An.A),,) I"0o"I (m~)-C7[J/mJ]2n-I"(-1)"[n! (n + flol)!]-l 
J .... oo 

where flo' = min Iflo; - flo,l for all possible t-channel 
helicities, and where Z~ means a summation over all 
I-channel helicities consistent with Iflo; - flo,! = flo'· 

The final result follows: 

IA (A)/A (A) I "" [m /J]2(n -n) no! (no + flo')! 
.. ,J .. o,J J '( + ')' J .... oo n. n flo. 

(C29) 

and, by (C24), this tends to zero as J ---+ 00, for any 
n < no. 

APPENDIX D: REORDERING THE EQUATIONS 

In Sec. 3, the set of sets of equations 

00 

Z A ... AAq)g(J) = 0, n = 0, 1, 2, .. " (DO 
J=O 

where q = I, 2, ... , Q, corresponding to the different 
permissible helicity states in the s channel, is re­
ordered as a single set of equations 

00 

Z A(n', J)g(J) = 0, n' = 0, 1,2, .. '. (D2) 
J=O 

With a mass spectrum 

m~ "" r, 0 < a < 2, (D3) 
J .... oo 

and fixed helicities A, formula (C28) shows that 

for any n < no. In reordering (DI) in the form (D2), 
it is clear that the corresponding condition 

lim IA(n', J)/A(n~, J)I = 0 (DS) 
J .... oo 
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can be maintained for any n' < n~, aside from possible 
coincidences in asymptotic behavior of An.J(Aq) for 
different values of q. The maximum order of coinci­
dence is Q, the number of distinct, permissible helicity 
states. The purpose of this appendix is to show that an 
equivalent system of equations (D2) can be defined 
for which all the coincidences have been removed, 
so that (DS) holds without exception. 

Consider the asymptotic expression (C28) for 
An.J(A). There will be coincident asymptotic behaviors, 
e.g., 

(D6) 

for two different values of the maximum helicity flip 
a [defined in Eq. (2.9)], say for a = a l and a = a2, 
only if 

a 
ni - n2 = -- (al - ( 2). (07) 

2-a 

But this will be possible only if the right-hand side of 
(D7) is an integer. For a general value of a, this will 
not be so, and so there will not be any coincidences 
between different values of a. To be quite certain 
about this, it is enough to require a to be irrational. 

However, a glance at Eq. (C2S) shows that all the 
coefficients corresponding to the same value of a will 
have degenerate asymptotic behaviors. Suppose that 
there are Q' such coefficients which have the behavior 

AnjAq) J:'oo A~.J(a>[l + %IKn.r(Aq)rnJ2r} (OS) 

q = 1, 2, ... , Q', where A~.J( a) is the leading term, 
common to all the Aq which have the same value of a, 
and which is given in (C2S). The higher terms are 
obtained by expanding AJCs; A; f-l) [Eq. (2.32)] in 
inverse powers of m~. Since this involves expanding 
the helicity crossing matrix K(s, t; A; f-l) in powers of 
l/t with t = m} -+ 00, it is clear from Eqs. (2.20)­
(2.23) that coefficients Kn./Aq) in Eq. (DS) will be 
different for each of the four helicities AI, A2 , A3 , A4 • 

This means that the Q' sets of equations 

(D9) 

q = I, 2, ... , Q', which have the degenerate behavior 

A (A. ) ,...., j<2-a)(n-I'"/2)-aC7" C(I/. J)D (A.' 1/.' s ) 
n,J q k .' 0' 1" 0, J-+oo I' 

(D10) 

can be replaced by Q' linear combinations, one of 
which has the asymptotic behavior (DlO), i.e., that 
of A~.J(a), one of which behaves like miA~.J(a), 
one like m-4A~.J(a), and so on, until the last one 

behaves like mJ2(Q"-1)A~.J(a). Let these linear 
combinations be labeled An.AAq; a), q = I, 2, ... , 
Q', starting with the one that tends to infinity least 
quickly. Then the system 

(Dll) 

q = 1, 2, ... , Q', is equivalent to (D9), and it 
satisfies 

IA (it· a)/A (A' a)1 ,...., J-Iqo-qla (012) n,J a' no,J a' , J-+OC) 

which tends to zero as J -+ 00 for any q < qo. More­
over, if a is irrational, it is guaranteed that there is no 
degeneracy of asymptotic behavior between different 
values of n or different values of a. 

Hence a complete ordering of the system (D1) in the 
form (D2), with strict observance of condition (DS), 
is possible. Notice that this is so because there is only a 
finite number of infinite sets of equations (D1),so that 
the recursive redefinitions of degenerate coefficients 
involve only a finite number of steps. 

It is clear that the restriction that "a," the exponent 
of the mass-spectrum power law, be irrational need 
not be taken seriously. This was only necessary to 
avoid the possibility of accidental coincidences 
between different n and a; since any rational can be 
approximated arbitrarily well by an irrational, for 
practical purposes this restriction may be neglected. 

APPENDIX E: PHYSICAL CONVERGENCE 
LIMITATIONS 

A typical superconvergence relation, Eq. (2.12), 
is supposed to hold only for a limited range of s 
values. This means that the infinite sum (2.36), viz., 

00 

I gJ I AJCs; A; f-l) = 0, (E1) 
J=O I' 

must converge for only a limited range also. There 
must be an So such that the infinite J sum in (E1) 
converges for s < So and diverges for s > so. In this 
appendix, it will be shown that this simple requirement 
implies a powerful restriction on both the mass 
spectrum and upon the asymptotic dependence of 
the gJ. 

From Appendix C, one has the following asymptotic 
expression for the coefficients: 

I AJCs; A;f-l) 
I' 

,....." pes, it)( _s)""/\rn~)-C7-I'"/2 
J-+oo 

x " K(s' it- II.)C(II.· J)pll'i-l'fl.llli+l'/l(cos ()\ 2 
£., "r r' J-llI t HmJ . 
I' 

(E2) 
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In the large-J limitll 

P,:"/(cosh u) ,....., teJu exp [(<X + fJ + l)uj2] X (7TJ)-* 
J--+oo 

X [sinh (u/2)]-(~+i)[cosh (uj2)]-(P+!), (E3) 

so that (E2) reduces to 

.2 AAs; A; fJ,) ,....., ts-!p(s, A)[m~]-a+!(17J)-* 
JL J--+oo 

Suppose now that the mass spectrum mJ increases 
faster than J: 

lim [JjmJ ] = O. (E5) 
J--+oo 

Then the exponential term in (E4) reduces to unity, 
and the series (El) becomes, asymptotically, 

ts-tp(s, A).2 gAm~]-a+t(17Jri. (E6) 
J 

Since the s and the J dependences have factored, it is 
clear that if this series converges for any s, it converges 
for all s, and so there cannot be an So such that (El) 
converges for s < So and diverges for s > so. Hence 
the class of mass spectra (E5) must be rejected on 
physical grounds. The same reasoning applies if 
JjmJ tends to a finite limit, for then the exponential 
factor in (E4) tends to a function only of s, and there 
is again factorization between J and s. 

Hence, in place of (E5) one must have 

lim [mJfJ] = 0, (E7) 
J--+oo 

which means that the Regge trajectory <x(t) must rise 
more rapidly than fi. Suppose that the mass spectrum 
obeys the powerlaw 

(E8) 

with a < 2. Then (El) has the asymptotic form 

117-*S-t pes, A) .2 gJJ-Q(a-t)-i exp [2si Jl-aI2]. (E9) 
J 

If this series is to converge for s < So and diverge for 
s> So, then gJ must have the asymptotic behavior 

gJ '"'-' exp [-2st· Jl-aI2]. (E10) 
J .... oo 

This formula is of use in Sec. 6. 

APPENDIX F: LIMITING BEHAVIOR OF 
POLYA SOLUTIONS 

It may not be immediately obvious, from the 
P6lya proof (Appendix A), that there is a limiting 
asymptotic behavior for the solutions g(J) of Eq. 
(AI). At the Nth stage in the construction, g(ko) , 
g(k1), ••• ,g(kN), can certainly be made as small as 
one pleases for fixed ko, kl' ... , k N simply by making 

11 Bateman Manuscript Project, Higher Transcendental Functions, 
A. Erdelyi, Ed. (McGraw-Hill Book Co., New York, 1953). 

I N large enough. Moreover, if a(n, J) ---+ 00 as J ---+ 00, 

as in the cases of interest in this paper, then g(JN ) 

defined by (AI5) can be made indefinitely small 
simply by making I N large enough. However, this 
does not mean necessarily that g(JN ) decreases 
arbitrarily quickly as a function of J N . 

Consider Eq. (AI5) in the homogeneous case 
ben) == 0: 

IN-l 

g(J N) = - [a(N, J N)]-l .2 a(N, J)g(J). (Fl) 
J~O 

The asymptotic behavior will be governed by g(JN ), 

N ---+ 00. From Eq. (2.42), and the power-law mass 
spectrum 

m~ ,....., r, 0 < a < 2, (F2) 
J--+oo 

one has 
a(N, J) '"'-' j<2-a)N. (F3) 

In order to solve (FI) asymptotically, it is now neces­
sary to know how J N depends on N. It is clear that the 
more quickly J N increases with N, the less quickly N 
increases with I N , and so the less quickly g(J N) 

decreases as a function of J N' Hence, to obtain the 
most rapid possible decrease of g(J N) with J N' one 
must choose J N to increase as slowly as possible with 
N. Now the smallest possible J N, consistent with 
the formal P6lya construction, is tN2 + 3N + 2, so 
the following class of I N dependences will yield the 
minimal g(J N) : 

(F4) 

where K is a constant satisfying K2 > t. With this 
expression the term in (Fl) corresponding to J = I n = 
K 2n2 has the asymptotic behavior 

(Njn)-(2-a)N gUn). (F5) 
The ansatz 

g(J) ,....., exp [- 2 - a J i ] (F6) 
J--+oo K 

satisfies Eq. (FI) asymptotically, for then the largest 
term of the form (F5) occurs for n = N - 1, when 
one has 

exp {(2 - a)Nlog (1-~) - 2; a K(N -l)} 
'"'-' exp {- 2 - a Jt}, (F7) 

N--+oo K 
which is consistent. Thus the most rapidly decreasing 
solution that one can construct by the P6lya method 
has the behavior (F6). It is not difficult to show that 
the full proof of Sec. 4 remains valid for a J N depend­
ence as in Eq. (F4), with K sufficiently large, although 
the disjoint sets Sa need to be chosen more carefully 
than those defined by Eq. (4.3). 
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This paper considers the one- and two-dimensional Green's functions associated with electromagnetic 
radiation in a moving medium. The medium is assumed to be lossless, to have constant permittivity and 
permeability, and to move with constant velocity with respect to a given inertial coordinate system. For 
each source (line source or plane source) both the time-dependent and the harmonic Green's functions 
are found. The results are obtained by means of special transformations which convert the equations to be 
solved into standard forms. The significance of the results, in terms of one- and two-dimensional 
Cerenkov radiation, is discussed. 

1. INTRODUCTION 

Electromagnetic radiation from a point source in a 
simple moving medium has been discussed in several 
recent papers. Tail, Lee and Papas,2 in independent 
works, discussed the fields radiated by a harmonic 
point source in a moving medium, and Compton3 has 
given the time-dependent Green's function for such a 
medium. The Fourier transform relation between the 
time-dependent and harmonic solutions has also been 
discussed in a short note by Tai.4 

In this paper, we solve for the one- and two-dimen­
sional Green's functions for electromagnetic waves in a 
moving simple medium. That is, we will find the 
Green's functions associated with radiation from an 
infinite line source and from an infinite plane source. 
For each source, both the time-dependent and time­
harmonic Green's functions will be found. A knowl­
edge of these functions will allow us to discuss various 
interesting problems (e.g., two-dimensional Cerenkov 
radiation) and will complete our catalog of Green's 
functions for simple moving media. 

In the previous paper by the author,3 a Fourier 
integral method was used to construct the solution 
for the three-dimensional Green's function. As was 
remarked in that paper [see Eq. (37) of Ref. 3], 
however, the solution can also be found by an alter­
nate method making use of an affine transformation 
of coordinates that converts the differential equation 
to be solved into the standard time-dependent wave 
equation. It turns out that this method is the simpler 
of the two, and a second purpose of this paper will be 

* Present address: Department of Electrical Engineering, Ohio 
State University, 1320 Kinnear Road, Columbus, Ohio 43212. The 
work reported in this paper was performed while the author was in 
tenure as a National Science Foundation Postdoctoral Fellow. 

1 C. T. Tai, IEEE Trans., AP-I3, 322 (1965). 
2 K. S. H. Lee and C. H. Papas, J. Math. Phys. 5, 1668 (1964). 
3 R. T. Compton, Jr., J. Math. Phys. 7, 2145 (\966). 
• c. T. Tai, J. Math. Phys. 8, 646 (1967). 

to illustrate this procedure in detail. Tai,l in solving 
for the three-dimensional harmonic Green's function, 
makes use of a special transformation with which he is 
able to cast his differential equation into a two­
dimensional Klein-Gordon equation, whose solution 
is known. As will be apparent below, the transforma­
tion used by Tai and the affine transformation suitable 
for solving the time-dependent equation are closely 
related in the frequency and time domains. For the 
one- and two-dimensional Green's functions studied 
here, the use of an affine transformation in the time 
domain and a transformation similar to Tai's in the 
frequency domain will allow us to find the solutions 
quickly, with no integrals to evaluate. 

2. FORMULATION OF THE PROBLEM 

We consider a lossless medium with constant 
permittivity e and permeability f-t (both measured in a 
reference frame attached to the medium) that moves 
with constant velocity v = vz with respect to a given 
inertial reference frame. [For a detailed derivation of 
Eqs. (1)-(10) of this section, the reader is referred to 
Eqs. (1)-(37) of Ref. 3.] The electromagnetic fields, as 
measured in the given frame, satisfy the Maxwell­
Minkowski equations 

a 
Do x E = - at (f-ta • H), (Ia) 

a 
DoxH=-(ea.E)+J, (lb) at 

Do' (ea. E) = p + n . J; (Ic) 

Do ·(f-ta. H) = 0, (ld) 

where Do is the differential operator 

a 
Do =v -n-, at (2) 

1865 
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cx is the dyadic with components, for ~ and'¥ are then given by 

[

a 0 0] 
cx=OaO, 

001 
and where 

Ao(r, t) = -fta IIII J(r', t')G(r, t I r', t') dr' dt', (9a) 

'¥(r, t) = :€lIIII[p(r', t') + n. J(r', t')] 

(3a) 

a = (1 - /32)/(1 - n2/32), 

n = [(n2 - l)/3lc(l - n2/32
)] i, 

/3 = vic, 

(3b) X G(r, t I r', t') dr' dt', (9b) 

(3c) and the fields may be found from Eqs. (4) plus the 
(3d) constitutive relations 

and 

(3e) 

100 and fto are the permittivity and permeability of 
free space, and c = (€ofto)-1 is the velocity of light in 
free space. E, H, B, D, p, and J are the Maxwell 
fields and sources in the usual notation, and all 
quantities are measured in rationalized MKS units. 
We assume also that n > 1. 

Equations (1) can be solved by defining a vector 
potential function ~ and a scalar potential function 
'¥ such that 

H = .! cx-1
• Do X (cx-1

• ~), (4a) 
ft 

E = _cx-1 • aAo - DP. 
at 0 

(4b) 

(cx-1 denotes the inverse of cx.) If the potentials are 
chosen to satisfy the gauge relation 

D 2a'¥ 
o·~ = -€fta -, 

at 
(5) 

then it is found that they satisfy the following wave 
equations: 

where 

a2A 
(Da • Do)Ao - €fta ------!- = -ftaJ, 

at 
(6a) 

a2,¥ p+n.J 
(Da • Do)'¥ - €fta -2 = - , (6b) 

at a€ 

Da = .! cx· Do = x ~ + y ~ + i(.! ~ - Q~). 
a ax ay a az a at 

(7) 

D = €cx· E + n x H, (lOa) 

B = ftcx • H - n x E. (lOb) 

In this paper we will study the Green's functions 
appropriate for solving Eqs. (6) when the source 
terms are one- and two-dimensional. That is, we 
study the equation 

. a2G 
(Da • Do)G - Efta -2 = source term, (8') 

at 

where the "source term" is a one- or two-dimensional 
delta function, having either impulsive or harmonic 
time dependence. 

It will simplify matters if, before we begin, we 
rotate the coordinate system so the velocity v is at an 
arbitrary direction with respect to the coordinate axes. 
We may then let the line source or plane source lie on 
the coordinate axes. Eq. (8'), when written out in 
scalar form, is 

We first relabel the coordinate axes so that 

y=w 

Eq, (11) for G is then 

z = u. 

( 
a2 a2 1 a2 0 a2 

ax2 + aw2 + ~ au2 - 2 -;; atau 

0 2 a2 ( 2
) + - 2 - Efta 2 G = source term. 

a at at 

(11) 

(12) 

(13) 
In the previous work,s we solved Eqs. (6) by defining 
the time-dependent Green's function G as the solution 
to 

Now we consider a second coordinate system xyz, 
where the y and z axes are rotated by an angIe cp with 

(8) respect to the wand u axes, as shown in Fig.!. From 
the chain rule of differentiation, it is readily found 
that 

(Da • Do)G - €fta a
2
G = b(r - r')b(t - t'), 

at2 

where b(r - r')o(t - t') is a delta-function source 
occurring at r = r', t = t'. [G is the solution to Eq. 
(8) that satisfies the causality condition.] The solutions 

oG oG. oG - = cos cp - + sm cp - , 
au az ay 

(14a) 
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w y where 
b = COS2 cp + (lla) sin2 cp, (18a) 

c = 2(n sin cp)la, (18b) 

d = Efta - (DNa). (18c) 
u 

As mentioned above, we may solve this equation by 
_____ --::::: ..... ::::.-___ "--__ z making an affine transformation of variables to 

FIG. I. xyz and xwu coordinate systems. 

iJ2G iJ2G. iJ2G. iJ2G 
- = cos2 cp'- + 2sm cpcos cp-- + sm2 CP-2' 
iJu2 iJz2 iJziJy iJy 

(14b) 

iJ2G 2 iJ2G. iJ2G. 2 iJ2G - = COS cp- - 2sm cpcos cp-- + sm cp-, 
iJw2 iJy2 oyoz OZ2 

(14c) 

and hence the differential equation for G in terms of 
the xyz axes is 

iJ2~ + (cos2 cp + ~ sin2 cp) iJ2~ 
iJx a iJy 

- 2 1 - - sin cp cos cp -( 1) 02G 
a iJyiJz 

( 
1 ) iJ

2
G + sin2 cp + - cos2 cp -2 

a iJz 

12. 02G 12 iJ2G 
- 2-sm cp- - 2-cos cp-

a iJtiJy a iJtiJz 

122 iJ2G 02G + - - - €fta - = source term. (15) 
a ot2 ot2 

This equation will simplify considerably for the types 
of sources discussed below. 

3. TWO-DIMENSIONAL TIME-DEPENDENT 
GREEN'S FUNCTION 

For this Green's function we assume an infinite 
line source parallel to the z axis, with an impulsive 
time dependence. That is, 

source term = b(x - x')b(y - y')b(1 - t'). (16) 

The solution for G then has no z dependence, and 
Eq. (15) simplifies to the following: 

iJ2G iJ2G iJ2G 02G 
-+b--c--d-
iJx2 iJy2 oyiJt ot2 

= b(x - x')b(y - y')b(t - t'), (17) 

eliminate the mixed derivative and then comparing 
the resulting differential equation with the standard 
equation for the two-dimensional Green's function. 
Specifically, suppose we define new variables 11 and Y1 
by 

y = Y1 - All} or {Y1 = Y + At 
1=11 11 =1, 

(19) 

where A is a constant, as of yet unspecified. Then, by 
the chain rule, we find that 

iJ2G 02G 
-=-, 
iJy2 oyi 

(20a) 

iJ
2
G = A2 iJ

2
G + 2A iJ

2
G + 02G 

iJt2 iJyi iJyliJt1 oti' 
(20b) 

iJ2G 02G iJ2G 
-=A-

2 
+--. 

iJliJy iJY1 iJY1iJtI 
(20c) 

In terms of X'YI' and 11' the differential equation (17) 
becomes 

iJ
2
G + (b _ cA _ dA2) iJ

2
G 

iJx2 iJyi 
iJaG 02G 

- (c + 2Ad)-- - d-
OYliJtI iJti 

= b(x - x')b(YI - Ati - y')b(1 - t') 

= b(x - x')b(YI - At' - y')b(t - I'). (21) 

We see that we may eliminate the mixed derivative by 
choosing the constant A such that 

A = - ~ = 12 sin cp = (n
2 

- 1){Jc sin cp. 
2d 122 - €f1a 2 {J2 - n2 

The coefficient of iJ2GliJy~ then becomes 

c2 

b - cA - dA 2 = b + -
4d 

(22) _ 

= cos2 c/> + - 1 + sin2 c/> 1[ 122Sin2c/>] 
a €f1a 2 _ 122 

= cos2 cp + [n2(1 - (J2)] sin2 cp. (23) 
n2 - {J2 

Also, from Eq. (18c), we find 

d = [(n2 - {J2)/c2(1 - (J2)], (24) 
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and hence Eq. (21) becomes 

(}2G 1 (}2G 1 1 (}2G 
-+------
(}x2 K2 (}y~ c2 y2 (}t~ 

= o(x - X')O(YI - At' - y')O(tl - t'), 

where we let 

- = cos2 
,I. + f' sin2 1> 1 [n2(1 - R2)] 

K2 'Y n2 _ (32 

= 
n2(1 - (32) + (n 2 

- 1)(32 cos2 1> 

(25) 

(26a) 

(26b) 

Because we assume n > 1 and because (3 < 1, K2, 
and y2 are always positive, and we may define 

Yo = KYI (K > 0), 

to = ytl (y > 0), 

and then Eq. (25) becomes 

(}2G (}2G 1 a2G 
-+----
dx2 (}y~ c2 (}t~ 

(27a) 

(27b) 

= KYO(X - x')o(Yo - KAt' - Ky')r5(to - yt'). (28) 

We want the solution to Eq. (17) which satisfies the 
causality condition, viz., it is zero before t = t'. 
lt is not difficult to check that this boundary condition 
carries over to the same causality condition for Eq. 
(28), namely, G must be zero for to < yt'. Hence 
Eq. (28) for G and the boundary condition satisfied 
by G are formally identical with the problem of the 
two-dimensional free-space Green's function5 and we 
may write down the solution to Eq. (28) immediately: 

where 

P < CT, 
(29) 

P> CT, 

T = to - yt', (30a) 

p = [(x - X')2 + (Yo - KAt"- Ky')2]!. (30b) 

By substituting back for to, Yo, K, y, and A by means 
of Eqs. (19), (22), (26), and (27), this result is found 
to be 

_ !5...{(t _ t')2 _ [1 - ((3/:)2J (Ro)2}-! , 
27T 1 - (3 Vo 

G= 
(t _ t') > [1 - ((3/~)2J Ro , (31) 

1 - (3 Vo 

0, (t _ t') < [1 - ((3/~)2JRo , 
1 - (3 Vo 

6 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hill Book Co., Inc., New York, 1953), p. 842. 

where 

Ro = {(X - X')2 

+ K2[y - y' - (n~2 __ 1~C sin 1>(t - 1')J1*, 
(32a) 

Vo = (,u€)-! = (c/n). (32b) 

Vo is the phase velocity of a wave in the medium, as 
measured from a reference frame attached to the 
medium. 

The interpretation of Eq. (31) is similar to that of 
the three-dimensional time-dependent Green's func­
tion.3 The field is nonzero only inside an elliptical 
cylinder parallel to the z axis, with center at the point 

, , (n
2 

- 1)(3c '.J.( ') (33) x = x, Y = Y + 2 2 sm 'Y t - t . 
n - (3 

The outer limit of the elliptical cylinder in the xy 
plane is defined by 

[ 
1 - (32 ] ' Ro = 2 vo(t - I). 

1 - ((3/n) 
(34) 

By manipulating Eqs. (32) and (34), one can show that, 
if the velocity of the medium is small, the elliptical 
cylinder propagates away from the source point in all 
directions in the xy plane, as shown in Fig. 2. If the 
velocity is very high, the cylinder propagates away 
from the source on one side only, remaining at all 
times inside and tangent to a wedge-shaped region 
defined by half-angle 00 , where 

[ 
1 - (32 J! cos 00 = 1 - -----'---

(n2 - 1)(32 sin2 1> 
(35) 

as shown in Fig. 3. In this case the source point 
(x', y') is outside the cylinder, and we note that a 
source at (x', y') can never produce any fields outside 
the wedge-shaped region. 

The critical velocity between these two cases is 

given by 

(3 = Vc = [ 1 J!, (36) 
c C (n2 - 1) sin2 1> + 1 

x 
FIELD NONZERO ONLY 

IN SHADED REGION 

------~~~~----y 
SOURCE POINT 

FIG. 2. Low velocity case: P < Pc. 
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FIELD NONZERO ONLY 
IN SHADED REGION 

(X',Y', " 
--~~~~~~~~---------Y 

SOURCE POINT/ 

" FIG. 3. High velocity case: {3 > (3c. 

and when v > "c we have the case of two-dimensional 
Cerenkov radiation. 

4. TWO-DIMENSIONAL HARMONIC GREEN'S 
FUNCTION 

For this Green's function we assume an infinite line 
source parallel to the z axis, the same as above, but 
now with harmonic time dependence. In Eq. (15), we 
put 

source term = r5(x - x')r5(y - y')eiwt
, (37) 

where w is the radian frequency. The solution for G 
again has no z dependence, and by writing 

(38) 

we find from Eq. (15) that g satisfies 

02g + b 02g _ jwe og + w2 dg = r5(x - x')b(y _ y'). 
ox2 oy2 oy 

(39) 
To solve for g, we make the transformation 

(40a) 

where oc is a constant to be specified. [This oc has 
nothing to do with the dyadic a defined in Eq. (3a).] 
Then 

ag = ago e«Y + ocg eay (40b) 
oy oy 0 , 

02 02 a J = ~ eay + 2oc~ eay + oc2g eay (40c) 
oy! oy! oy 0 , 

and Eq. (39) becomes 

02go + b 02go + (2boc _ jwe) ago 
ax2 ay2 oy 

+ (boc2 - jweoc + w2d)go 

= e-«lIb(x - x')b(y - y') 

= e-«II'b(x - x')b(y - y'). (41) 

Hence, we may eliminate the first derivative by 

choosing 

jwe 
oc=-

2b 

jwQ sin cP 
=-~---'--

a cos2 cP + sin2 cP 

_ jw(n2 - 1){J sin cP 

- e(l - (J2) cos2 cP + e(l - n2{J2) sin2 cP . 

The coefficient of go in Eq. (41) becomes 

boc2 
- jweoc + w2d 

= w2d _ (jwe)2 
4b 

2 w2Q2 w 2Q2 sin2 cP = w Ep.a - -- + 
a a2[cos2 cP + (l/a) sin2 cP] 

(42) 

= W2[n2(1 - (J2) + (J2(n
2 

- 1) cos
2 cPJ = k~ (43) 

e2 1 - n2{J2 + (J2(n 2 - 1) cos2 cP - , 

and Eq. (41) is 

The above transformation is analogous to the one 
used by Tail in the three-dimensional case, and is 
closely related to the affine transformation in Eq. (19) 
for the time-dependent case. 

Before solving this equation, we must examine the 
signs of the coefficients band ki. From Eqs. (3b) and 
(18a) we find 

b = 1 - (J2[(n2 - 1) sin2 cP + 1] 
1 - {J2 ' 

(45) 

so b is positive for 

{J < {Jc = [(n2 - 1) sin2 cP + l]-! (46) 

and negative for {J > {Jc' Similarly, from Eq. (43), we 
have 

k2 = W2[n2(1 - (J2) + (J\n
2 

- 1) cos2 cPJ 47 
I e2 1 - (J2[(n2 - 1) sin2 cP + 1] , ( ) 

so ki also changes sign at {J = {Jc' being positive for 
{J < {Jc and negative for {J > Pc. It is obvious from the 
discussion of the time-dependent Green's function 
above that we would expect the behavior of the 
harmonic solution to change completely at the critical 
velocity Vc = e{Jc. Hence it is not surprising that the 
coefficients band k; change sign at this velocity. 

Knowing the signs of band k; , we can now discuss 
the solution of Eq. (44). We have: 

Case I: {J < {Jc' Then b > 0, k; > 0, and if we let 

Yo = b-!y (b! > 0), (48) 
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we have 

~;: + ~;20 + k~go = b~ e-«Y'b(x - X')b(yo - ~~). 
(49) 

From the form of the time-dependent Green's function 
for fJ < fJc, it is clear that waves propagate away from 
the source in all directions, and hence the boundary 
condition for Eq. (49) is that go must represent 
outward-going waves at infinity. Therefore the 
problem of solving Eq. (49) is identical with the 
problem of the ordinary two-dimensional harmonic 
Green's function; from the known solution6 we have 
immediately 

j -«'Y'H(2)(k) go = --1 e 0 IP , 
4(b~) 

(50a) 

where 

P = [(x - X')2 + (Yo - Ylb1)2]l, (50b) 

and where H~2) is the Hankel function of the second 
kind. Finally, substituting back for Yo and b, and 
using Eq. (40a) to find g, we have 

'ez(Y-Y') 
g = ] H(2)(k p) (51a) 

4[cos2 4> + (lla) sin2 4>]1 0 1 , 

where 

P = [(X - x,? + 24> a+ . 24> (y - y')2J1, 
a cos sm 

(51b) 

where at is given in Eq. (42) and kl in Eq. (43) (k1 > 0). 

Case II: fJ > fJc' Then b < 0, ki < O. If we define 

(52a) 
and 

k= = -(lIb) (ka > 0), (52b) 

then Eq. (44) is 

o2go _ l o2go _ k2g = e-«Y' b(x - x'){)(y _ y') 
ox2 k~ oy2 2 0 , 

(53) 

which is a one-dimensional Klein-Gordon equation. 
The boundary condition for go may be obtained from 
our previous remarks about the time-dependent 
Green's function. It is clear from Fig. 3 that the fields 
produced by a harmonic source at (x', y') are nonzero 
only inside the wedge-shaped region of half-angle ()o. 

• Reference 5, p. 811. We have the opposite time convention from 
that of Morse and Feshbach. 

FIG. 4. g = 0 contours in xy plane. 

Since 

t () _ (1 - cos2 ( 0)1 
an 0-

cos 00 

[ 
1 - fJ2 1 

= n2fJ2 - 1 - fJ2(n2 - 1) cos2 4>J 
= ka, (54) 

go is zero everywhere except in the region Ix - x'i =:;:; 
ka(y - y'). The solution of Eq. (53) subject to this 
boundary condition is mathematically identical to 
the problem of solving an ordinary one-dimensional 
Klein-Gordon equation 

02tp 1 02tp 2 " 
-;---2 - "2 -;2 - 'fJ tp = {)(x - x )()(t - t), (55) 
uX e ut 

subject to the causality condition, namely, 

tp == 0 for Ix - x'i > e(t - t'). (56) 

Since Eq. (55) has the solution7 

tp = -(e/2)Jo{'fJ[e2(t - t')2 - (x - x')2]1} 

X u[(t - t') - Ix - x'l/e], (57) 

where Jo is the Bessel function of zero order and 
u( e) is a unit step function at e = 0, we find 

go = -e-«II'(ka/2)Jo{k2[k~(y - y')2 - (x - X')2]!} 

x u[y - y' - Ix - x'lIka], (58) 

or finally, from Eq. (40a), 

g = -!e"(II-'Y')kaJo{k2[k~(y - y'l - (x - x')2]1} 

x u[y - y' - Ix - x'l/ks]' (59) 

It is interesting to note that this Green's function, 
unlike the harmonic Green's function for the three­
dimensional case,! is finite everywhere in the xy plane, 
even on the wedge surface at angle 00 , It is, of course, 
discontinuous at the wedge, so the fields, which are 
obtained from derivatives of g, have singularities there. 

7 This result is easily derived using the method shown in Ref. 5, 
pp. 8~4-857. The integral which must be evaluated to find"P in Eq. 
(57) IS equal to one-half of the integral for h(R,7) given in Eq. 
(7.3.37) of Morse and Feshbach. 
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Furthermore, g is zero whenever 

k2[k~(y - y')2 - (x - X')2]t = Xn , n = 1,2, .. " 

(60) 

where x n ' n = 1, 2, ... , are the zeros of the Bessel 
function 

(61) 

That is, g is zero on a family of hyperbolas in the 
xy plane, as shown in Fig. 4. 

5. ONE-DIMENSIONAL TIME-DEPENDENT 
GREEN'S FUNCTION 

For this case we assume a source term in Eq. (15) 
of the form 

source term = (l(y - y')(l(t - t'), (62) 

i.e., an infinite plane source parallel to the xz plane. 
(There is no need to rotate the velocity vector of the 
medium into a more arbitrary direction than that 
shown in Fig. l. For any velocity of the medium and 
orientation of the source plane, coordinate axes may 
always be chosen so the source plane is parallel to the 
xz plane and the velocity vector lies in the yz plane.) 
For such a source term, the solution for G has no 
x or z dependence, so Eq. (15) simplifies to 

()2G ()2G ()2G 
b- - e- - d- = (l(y - y')t5(t - t') (63) 
ol oyot ot2 ' 

where b, c, and d are defined in Eqs. (18). To solve 
Eq. (63), we may use the same affine transformation as 
was used above to solve Eq. (17). Repeating the steps 
of Eqs. (19)-(26), we find that the Green's function 
must satisfy 

1 o2G 1 1 o2G 
"2;-Z - "2 "2 --;--2 = (l(YI - At' - y')t5(t1 - t'). 
K UYI C I' utI 

(64) 

Since, as before, K2 and 1'2 are always positive, we may 
solve this equation by comparison with the standard 
one-dimensional time-dependent Green's function 
equation. Again making the substitution of Eq. (27), 
we find 

o2G 1 o2G 
ay~ - ~ at~ = Kyt5(yo - KAt' - Ky')(l(to - yt'), 

(65) 

SOURCE PLANE ___ ~Y" G NONZERO ONLY 
IN SHADED REGION 

FIG. 5. Low-velocity case: {J < {J, . 

where u(~) is a unit step function. Substituting back 
for Yo, to, and A, finally gives 

G = - - u - (t - t') KyC [cr 
2 K 

-I y - y' - (n:2-_1~e sin cf>(t - t') Il (67) 

The meaning of this result is easy to see. The 
Green's function consists of a square pulse of ampli­
tude -(Kye/2) centered at the point 

(n 2 
- l)(1e 

y = y' + sin cf>(t - t') (68) 
c n2 _ (12 ' 

and extending over the region 

(n 2 
- l)(1e . , ey , 

-'----~ sm cf>( t - t ) - - (t - t ) 
n2 

- (12 K 

~ Iy - y'l 

(n2 
- l)(1e . ey 

~ 2 2 sm cf>(t - t') + - (t - t'). (69) 
n - f3 K 

Outside this region, G is zero. As time progresses, 
the edges of the pulse propagate away from the 
center of the pulse. If the velocity of the medium is 
low, the pulse edges travel away from the source plane 
on both sides, as shown in Fig. 5. On the other hand, 
if the velocity of the medium is high enough, the pulse 
lies entirely on one side of the source plane, as shown 
in Fig. 6. The transition velocity between these two 
cases is found by setting the left-hand side of Eq. (69) 

x 

subject to the causality boundary condition, and ( x', Y'l 
hence8 -.....:...:.;...!...!.4--f;..c7-~:::;...~4-y 

G 
Kye [( , SOURCE 

= - 2 u e to - yt) - Iyo - KAt' - Ky'I], (66) PLANE---

~G NONZERO ONLY 
~ IN SHADED REGION 

8 Reference 5, p. 843. FiG. 6. High-velocity case: {J > fl,. 
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to zero. This gives 

f3c = [(n2 - 1) sin2 r/> + 1]-t, (70) 

which is the same as in Eq. (46). For f3 < f3c we have 
the result shown in Fig. 5, and for f3 > f3c we have the 
case in Fig. 6. The case f3 > f3c might be caIled one­
dimensional Cerenkov radiation. 

6. ONE-DIMENSIONAL HARMONIC GREEN'S 
FUNCTION 

For this Green's function we choose an infinite 
plane source the same as in the previous section except 
with harmonic time dependence: 

source term = dey - y')eirot
. (71) 

G again has no x or z dependence, and making the 
substitution of Eq. (38), we find from Eq. (15) that g 
satisfies 

b o2g . og 2 d ~( ') 
-2 - )WC - + w g = u y - y . 
oy oy 

(72) 

We solve this equation with the same transformation 
as in Eqs. (40)-(43). Thus we find go satisfies 

b o2go + k~go = e---<l:lI'd(y - y'). (73) 
oy2 

Since both b and k~ change sign at f3 = f3c' as discussed 
below Eq. (44), we again have two cases: 

Case "I.' f3 < f3c. Then b > ° and ki > 0, and 
making the substitution of Eq. (48) gives 

o2go k2 1 -~II'~( yl) - + 19O = ! e u Yo -! . 
oy~ b b 

(74) 

From the time-dependent Green's function in Eq. (67) 
and the fact that for the case f3 < f3c the wave fronts 
propagate away from the source plane in both 
directions, it is clear that the boundary condition for 
Eq. (74) is that go represent outward-going waves at 
Yo -- ± 00. Hence the solution is 

go = - e t exp - jkl Yo - Y t ' -~II' ( 1 1 I) 
2jk1(b ) b 

(75) 

or, after substituting for Yo and using Eq. (40a) for g, 
we have 

g = _ e~(II-II') exp (_j k11y _ yll). (76) 
2jk1(b

t ) bt 

Case II: f3 > f3c. Then b < 0, k~ < 0, and we may 
again make the substitutions of Eq. (52). Equation 

(73) then becomes (k3 > 0, k2 > 0): 

or, with 

1 o2go k2 -~II' ~( ') - - + 2g0 = -e u y - Y 
k~ oy2 

Y2 = k 3y, 

o2go 2 k ---<1:11' ~ 1 

-2 + k2g0 = - 3e u(Y2 - k3y ), 
OY2 

(77) 

(78) 

(79) 

the same type of equation obtained in Case 1. For this 
equation, however, we must be careful to note that 
the boundary condition is different than for Case 1. 
From the behavior of the time-dependent Green's 
function for f3 > f3c, it is clear that the boundary 
condition for Eq. (79) is 

go == 0, for Y2 < k3y' (for y > y'), (80a) 

since a source at y = y' cannot excite any fields to the 
left of the source plane (see Fig. 6). Since o2goloy~ 
has a delta-function singularity at Y2 = k3y', go itself 
is continuous at Y2 = k 3y', and hence it is also 
required that 

(80b) 

The solution for Eq. (79) subject to Eqs. (80) is 

( 

k -~y' 

g _ - L- sin k2(Y2 - k3y'), Y2> k3Y" 
0- k2 

0, Y2 < k3y', 

(81) 

or, from Eqs. (40a), (52), and (78), 

( 

e~(II-II') J¥2 
_ - -- sin J (y - y'), 

g - (bki)t b 

0" 

y > y', (82) 

y < y'. 

Here we again find that g is finite everywhere, and 
also has zeros at 

(kVb)t(y - y') = n7T, n = 0, 1,2, .. " (83) 

i.e., on planes spaced equidistant from the source 
plane. 

CONCLUSION 

The one- and two-dimensional Green's functions 
have been found and are given in Eqs. (31), (51), (59), 
(67), (76), and (82). As in the three-dimensional case, 
it is found that the transition between ordinary 
radiation and Cerenkov radiation occurs when the 
velocity is high enough that the time-dependent 
Green's function lies entirely on one side of the source. 
In that case, a harmonic source produces wavefronts 
which interfere, thus causing the harmonic Green's 
function to have a standing-wave behavior. Below the 
Cerenkov velocity, the harmonic Green's function 
exhibits the usual traveling-wave behavior. 
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Diffusion Length and Criticality Problems in Two- and Three-Dimensional, 
One-Speed Neutron Transport Theory. I. Rectangular Coordinates 

M. M. R. WILLIAMS 
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Several problems in linear transport theory have been solved involving more than one dimension. We 
have considered the diffusion-length problem in a slab system and have studied how the flux in the trans­
verse direction varies as a function of distance from the source. The solution is found to consist of an 
asymptotic term, composed of a finite number of harmonics, plus a transient which is nonseparable in the 
x and z coordinates. When the slab is sufficiently thin only the transient term survives and the concept of a 
diffusion length loses its value. A method for overcoming this difficulty is presented. In another problem, 
the thickness of the slab is allowed to become semi-infinite and the effect of decay in the z direction on the 
emergent angular distribution and surface flux are assessed. By approximating the flux in the y and z 
directions by a function of the form exp {iB.y + iB.z} and solving the resulting one-dimensional problem 
in the x direction exactly, it has been possible to obtain a statement of the critical conditions in a bare 
rectangular parallelepiped system. The application of this method to the diffusion length problem in a 
system with a rectangular cross section is discussed. Finally, by comparison with the exact solution for 
the slab, we estimate the accuracy of a reduced Boltzmann equation deduced by the author in a previous 
publication. 

1. INTRODUCTION 

In the field of one-dimensional, one-speed linear 
transport theory, nearly every conceivable problem 
has been or can be solved exactly. The Wiener-Hopf 
technique,I·2 the oldest method for dealing with these 
problems, has been employed in the past, although 
more recently the method of singular eigenfunctions 
devised by Case3 has assumed importance. We will 
not list the many papers dealing with applications of 
Case's technique, but simply refer the interested 
reader to the publications of the past five years 
appearing in Annals of Physics (New York) and Journal 
of Mathematical PhYSiCS. 

Once we leave the one-dimensional problem, and 
consider simultaneously the effect of particle-density 
variation in another direction, the problem becomes 
exceedingly complex. Progress has been made, how­
ever, by attempting to reduce the three-dimensional 
transport equation to a pseudo-one-dimensional 
one.4 This reduction may be achieved if the spatial 
variation in two of the three orthogonal directions is 
approximated by a known function; for example, by 
the asymptotic flux exp {i(3. r} or exp {-vz}. The 
Boltzmann equation may then be reduced to one in a 
single space coordinate, the effect of the other direc­
tions entering via a single parameter, e.g., a transverse 
buckling or a spatial-decay constant. 

In a previous publication,4 we have considered this 
problem quite generally, including the effect of 
energy transfer. As an example we obtained an 

1 G. Placzek and W. Seidel, Phys. Rev. 72, 550 (1947). 
• S. Frankel and S. Goldberg, Atomic Energy Commission 

Document 2056 (\945). 
3 K. M. Case, Ann. Phys. (N.Y.) 9. 305 (\967). 
• M. M. R. Williams. Nukleonik 9,305 (1967). 

exact solution for the one-speed Milne problem in a 
finite prism, the transverse leakage being allowed for 
by a buckling. This problem has also recently been 
solved by Kaper5 who used the equation derived in 
Ref. 4 but employed the techniques of the theory of 
generalized analytic functions. Mitsis6 has solved 
critical problems in infinite cylinders and spheres, and 
some problems in two dimensions have also been 
considered by Smith7

•
8 in connection with certain 

radiative-transfer situations. 
Progress has also been made in the general energy­

dependent problem (and as a special case the one-speed 
problem) of the diffusion-length experiment.9 It has 
been demonstrated that a diffusion-length, i.e., a 
discrete eigenvalue, ceases to exist when the transverse 
dimensions of the system are sufficiently small. 

Apart from one or two special problems of point 
sources,lo.n the discussion given above appears to 
summarize the progress to date on solutions of the 
transport equation in more than one dimension. In 
this paper, we propose to extend the work described 
above to include criticality and diffusion-length 
problems in rectangular parallelepipeds. The criticality 
problem is solved approximately by assuming an 
asymptotic exp {i(3. r} variation in two of the orthog­
onal directions and treating the other one exactly 

5 H. Kaper, "Elementary Solutions of the Reduced Three­
Dimensional Transport Equation." Submitted to J. Math. Phys. 
(to be published). 

6 G. Mitsis, ANL 6787, 1963. 
7 M. G. Smith, Proc. Cambridge Phil. Soc. 60.909 (1964). 
8 M. G. Smith and G. E. Hunt, Proc. Cambridge Phil. Soc. 63, 

209 (1967). 
• M. M. R. Williams:'Symposium on Neutron Thermalization and 

Reactor Spectra!'Ann Arbor, Mich. (1967), paper SM 96/3. 
10 J. P. Elliott, Proc. Roy. Soc. (London) A228, 424 (1955). 
11 R. C. Erdmann, J. Math. Phys. 8, 1040 (1967). 
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(this will also include the pulsed-neutron problem). 
The diffusion-length problem will contain no approxi­
mations for the case of a slab with exponential decay 
parallel to its surfaces, but to obtain tractable expres­
sions we shall have to make one or two reasonable 
assumptions. Our method of attack is based upon a 
replication property discussed by Casel2 of the 
integral form of the neutron-transport equation which 
reduces the problem to the solution of certain singular 
integral equations. 

2. THE BASIC EQUATION AND PROBLEMS 
UNDER DISCUSSION 

The neutron density per) in a non-re-entrant body 
is described by the following integral equationl3

: 

per) =fdr' exp {-Ir -,r:\} {ep(r') + S(r')}, (1) 
41T Ir - r I 

where distance is measured in units of total mean 
free path I and c = I/Is, Is being the scattering mean 
free path. S(r) is a source. 

Consider now Eq. (1) when the body is infinite, in, 
say, the z direction, and of arbitrary shape in the x and 
Y directions. Let the source S(r) be of the form 

S(r) = Q(x, y)t5(z) 

and take the infinite-medium Fourier transform of (1). 
Then,6 

'J"(;, k) = J... { d;' {I Ko[l; - ;'1 (1 + 'Ih2)!Jd: 
21T JA Jo 'P 'P 

X [c'J"(;', k) + Q(;')], (2) 

where; is a vector in the x-y plane and 

'J"(;, k) = L: e-ikZp(r) dz. (3) 

Ko(x) is a modified Bessel function. 
We consider Eq. (2) in two specific geometries: 

(A) for a slab of width 2a, infinite in the y direction 
(i.e., no spatial variation in the y direction); (B) a 
rectangular parellepiped of width 2a in the x direction, 
and in which the flux shape in the other two directions 
is approximated by the form exp {iBvY + iBzz}. 

In Case (A), we can integrate Eq. (2) over y( - 00, 

(0) to obtain 

'J"(x, k) 

1 fa 'II exp { -Ox - x'IM(1 + 'P2ka)!} d'P 
= - dx ! 

2 -a 0 (1 + 'P2k2) 'P 

X [e'J"(x', k) + Q(x')]. (4) 

12 K. M. Case, Developments in Transport Theory, E. Inonu and 
P. Zweifel, Eds. (Academic Press Inc., New York 1967). 

13 B. Davison, Neutron Transport Theory (Oxford University 
Press, London, 1957). 

In Case (B), which we consider only from the point 
of view of criticality, the equation becomes homo­
geneous but otherwise it is identical to Eq. (4) with 
k2 = B2 + B2 = (J2 B2 and B2 being the bucklings 

OJ z 'OJ • 

in the y and z directions, respectively; i.e., 

Bv = 1T/[2(b + Yo)], 

B. = 1T/[2(c + zo)], 

(5) 

(6) 

where 2b and 2c are the widths of the system in the 
y and z direction, respectively. Yo and Zo are the 
corresponding extrapolated end points, about which 
we shall have more to say later. 

We also consider briefly the diffusion-length problem 
in which the flux distribution is treated exactly in the x 
direction and approximated by the function exp {iBlIY} 
in the Y direction. 

3. REPLICATION PROPERTY OF EQUATION (4) 

From the symmetry of the problem it would seem 
profitable to seek solutions of Eq. (4) as a super­
position of terms of the type 

cosh {~(1 + V2k2)!}. (7) 

Operating on this function with the integral 
operator defined by Eq. (4), we see that 

e fa 11 exp {-Ix - x'i (1 + v2k2)!/v} d'P 
- dx' -
2 -a 0 (1 + v2k2)! 'P 

X cosh {:' (1 + ji2k 2)!} 
= cosh (~x)e e d'P 

V Jo 'P2(1X2/'P2 _ OC2/V2) 

e 11 d'P -arz/v h (IXX) - - - e cos -
2 0 VIX V 

X [ e-aii./i + e
aa

/
i 

] ' (8) 
IXlv + oc/ji IXI'P - oc/ji 

where IX = (1 + 'P2k2)! and oc = (1 + ji2k 2)1. 
Thus, the action of the operator reproduces the 

original function, plus a distribution of it over 'P 
between (0, 1). 

If we take the spatial variation of the source in the 
x direction to be a constant, i.e., Q(x) = Qo, then we 
can look for a general solution to Eq. (4) in the form 

'J"(x, k) = S + ao cosh {~(1 + 'Pgk2)!} 

+ f4>('P) cosh {~(1 + 'P2k2)!} d'P. (9) 
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Inserting this expression into (4) and collecting 
coefficients of cosh (XIX/V), cosh (XIXo/VO)' and the 
constant term, we find 

s = Qo(1/k) tan-
I 

k , (10) 
1 - (c/k) tan-I k 

(11) 

which defines Vo, and finally the integral equation 
for cp(v): 

A(v)'I/'(v) + - 'I/'(V') - - - - dv' c II 1 (IX IX')-I 
2 0 VIX V v' 

+ c II ( ') 1 (IX IX')-l -2a~'/v' d ' - 'l/'v --+- e v 
2 0 VIX V v' 

+ [cao / v
2 e: -:D ] [COSh ev:o) + :~ sinh (av:

o
) ] 

+ [Qo/(l + v2k2
) (1 - t tan-I k) ] = 0, (12) 

where cp(v) = e-<la:/v'l/'(v). 
Let us now define a new variable 

We also note that k (the Fourier-transform variable) 
is, in general, a complex number, thus w also is com­
plex. In the case under consideration, '¥(x, k) is 
analytic in the k plane when it is cut from i to i 00 

and -i to -ioo, apart from some poles at k = ±ikn 

(n = 0,1, ... ,N), where kn < 1. For Ikl < 1, 
therefore, w is entirely real and varies from zero to v 
as k n varies from unity to zero. In our analysis we 
assume that w is real and deal with the analytic 
continuation to complex w (or k) later. 

Equation (14) is a standard singular integral 
equation which we write as 

Ao(w)lI>o(w) + E. e w'lI>o(w') dw' = 'I/"(w), (17) 
2 Jo w' - w 

where 11>0 = gil> and Ao = A/g. '1/" represents the 
inhomogeneous term on the right-hand side of (14). 

4. SOLUTION OF THE INTEGRAL EQUATION 

Following the method used by Case,3 the solution 
of (17) may be written down directly as 

1 e y(w')'I/"(w') do/ 

X-(w)[Ao(w) + tC1Tiw]Jo w' - w 
v(1 + k2)! 

w = ! or v = wg(w) 
(1 + v2k 2

) 

(13) (18) 

in terms of which Eq. (12) becomes 

A(wg)$(w) + E. (I w'g(w')II>(w') dw' 
2 Jo w' - w 

= _ E. (I w'g(w')II>(w') exp {-2a(1 + k2)!/w'} dw' 

2Jo w' + w 

_ caowo [exp {a(1 + k2)!/WO} 

2(1 + k2
) Wo - w 

+ exp {-a(1 + k2)!/WO}] 

wo+ w 

In Eq. (14) we have defined 

and 

A(wg) = 1 _ E. fIWg(w') dw' , 
2 -1 W - w' 

g(w) = {I + k2(1 - (2)}-!, 

lI>(w) = g(w)'I/'[wg(w)], 

(14) 

(15) 

(16) 

together with the side condition 

The following notation is employed: 

X(w) = (1 - W)-I exp {r(w)}, 

r(w) = _1_ (lIn G(w') dw' 
21Ti Jo w' - w ' 

G(w) = Ao(w) + tC1Tiw . 
Ao( w) - tC1Tiw 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

X-(w) is the value of X(w) as we approach the cut 
(0, 1) from below. 

It may readily be shown that 

1 _ Ao(w)go(c, w) 
X-(w)[Ao(w) + tC1Tiw] - X(w) (25) 
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and hence that Eq. (18) reduces to 

(1 + k2)ct>0(W)g(w) 

= -tcgo(c, w)X( -w)[1 - (cjk) tan-I k](w~ - ( 2) 

X [aowo{ X(wo) exp (a(I + k2)!jwo) 
Wo - w 

+ X( -wo) exp (-a(I + k2}fjwo)} 
Wo + w 

+ (1 + k2) [I w'X( -w')ct>(w') 
Jo w' + w 

X exp {-2a(I + k2)!jw'} dW} (26) 

with w = '11(1 + k2)!j(1 + v2k 2)!. Equation (19) simp­
lifies to 

Qo 
1 - (c/k) tan-1 k 

+ tcaowo[-X(wo) exp {a(I + k2)!jwO} 

+ X( -wo) exp {-a(I + k2)!jwO}J 

+ tc(I + k2) fct>o(W')W'X( -w') 

{
-2a(I + k2)!} d ' 

X exp w. 
w' 

Substituting for w, (27) becomes 

Qo 
I - (cjk) tan-1 k 

(27) 

cao(I + V~k2)! [1 - v~(1 - C)]! 

+ [1 - (cjk) tan-1 k]! 2(v~ - 1) 

X cosh {(a + xo)(1 + V~k2)!jvo} 
+ £. [I ('II') '11'(1 + k2

) X( -w') 
2 Jo "P (1 + v,2k2) 

X exp {-2a(1 + v'2k2)!jv'} dv', (27') 

where we have defined xo as 

-X(wo)jX(-wo) = exp {2xo(1 + k 2)!jwO}. (28) 

In arriving at Eq. (27') we have used the relation 

X(w)X( -w) = [1 - icwg(w) log {Wg(w) + I}] 
wg(w) - I 

X [(1 - ~ tan-I k)(W~ - ( 2)rI 

and the limit of this as w --+ Wo, i.e., 

X(wo)X( -wo) 

(1 + V~k2)2 [1 - v~(1 - C)] 
= - [1 - (cjk) tan-I k]v~(1 + k2) 2(v~ - 1) . 

(29) 

Equation (9) together with Eqs. (26) and (27) 
constitute the Fourier transform of the neutron 
density in the z direction. 

5. INVERSION OF THE TRANSFORM 

The complete spatial distribution p(x, z) is given by 

p(x, z) = - eikz,¥(x, k) dk. I foo 
27T -00 

(30) 

Inserting Eq. (9), we note the appearance of poles 
at the roots of 1 - (cjk) tan-I k = 0, i.e., k = ±i/vo, 
where 

1 - lcvo log ('110 + 1) = 0. 
'110 - I 

It is readily verified, however, that "P(vo) == 0, and 
also that 

lim {S + ao(k) cosh (x(I + V~k2)!jvO)} = 0, 
k .... ±i/Vo 

hence the residue is zero, as we expect, since '110 is the 
diffusion length of the infinite-medium problem and 
not of the finite medium one considered here. 

Direct inversion of'¥(x, k) is difficult because it is 
not possible to obtain explicit expressions for ao or 
"P(v). We resort, therefore, to an approximate method 
and neglect the terms involving "P(v), which are small 
because of the term exp {-2a(1 + v2k 2)!/v}. Such a 
procedure is not as accurate as in the one-dimensional 
critical problem. This is due to the' fact that k is 
imaginary, i.e., it is a Fourier-transform variable 
that runs along the imaginary axis; thus k = ±i Ikl. 
We see that '¥(x, k) has a finite number of poles 
k = ±ikn (n = 0,1, ... ,N), where k n < 1. Thus, as 
k n --+ 1, the approximation becomes less accurate, but 
still valid because the small'll values in the integrand 
remain effective. For Ikl > 1, the integral, which 
becomes multivalued, must be split as follows: 

Ikl-1 

50 ... exp { - 2a(I - '112 IkI2)! jv} dv 

+11 ... exp {-2ai(v2 Ikl 2 
- 1)!jv} dv. 

Ikl-1 

For Ikl near unity, the second term is expected to 
be small and both may still be neglected. For larger 
values of Ikl, where the second term may become 
appreciable, the contribution to the transient part of 
p(x, z) is small anyway. On these nonrigorous, but 
plausible, arguments we neglect "P(v) entirely. This 
means, of course, that we cannot obtain information 
near the surfaces x = ±a, but this defect will be 
remedied in due course. 
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-R 
FIG. 1. Singularities in the k plane and inversion contour. 

We find now that ao is given by (27) with 1jJ(v) = 0, 
and hence 

( ) 
Qo fOCI ikZ{ (l/k) tan-l k 1 p X,z =- e -
271' -00 1 - (elk) tan-l k e(l + V~k2) 

[ 1 + V~k2 Jl[ 2(v~ - 1) Jt 
X 1 _ (e/k) tan-l k 1 - v~(1 - e) 

X cosh {(x/vo)(l + V~k2)t} } dk. (31) 
cosh {[(a + xo/vo)](1 + V~k2)l} 

We are interested in p(x, z) for z > 0, hence we 
look for singularities in the upper half of the k plane. 
The integrand in Eq. (31) is single-valued in the upper 
half-plane if a cut is introduced from i to iw. In 
addition, there are some simple poles given by the 
roots of the equation 

cosh {[(a + xo)/vo](1 + V~k2)!} = 0. (32) 

The general picture of these singularities is shown in 
Fig. l. The roots of Eq. (32) are given by 

[(a + xo)/vo](1 + V~k2)! = i(n + !)7T. (33) 

Setting k = ik,., we find 

(34) 

where 
(35) 

xo(ikn } is the extrapolated end point associated with 
the transverse buckling B! of the nth mode; it is 
defined by Eq. (28) and may be written out explicitly 
as 

xoCk) = Vo log [vo(1 + k2)t + (1 + V~k2)tJ 
2(1 + V~k2)! vo(1 + k2)t - (1 + V~k2)! 

v~ll {}(v)dv 
- - (36a) 

71' 0 (1 + lh2)t(V~ - v2
) , 

with 

fJ(v) = tan-1 { cml2 } 
1 - tcvlog [(1 + v)/(1 - v)] . 

From the numerical point of view it is more convenient 

to integrate (36a) by parts to get 

(k Vo I [vo(1 + k2)! + (1 + V~k2)!J 
Xo ) = 4(1 + V~k2)! og vo(1 + k2)t _ (1 + V~k2)t 

+ v~ e fJo(v) dv (36b) 
71' Jo (1 + v2e)t(v~ - v2) , 

where 

fJo{v) = tan-1 f~ _ 1:. log (1 + V)}. 
l7TCV 71' 1 - V 

Hence 

( .k ) Vo t -1 {(V~k; - 1)t} Xo t n = ~ an ~ 
2(vgk; - 1)2 vo(1 - k~)2 

v2 t fJ (v) dv 
+ -; Jo (1 _ V2~~)t(V~ _ 'liZ)· (37) 

It has been shown9 that discrete decay constants of 
the diffusion length problem must be less than unity. 
Furthermore, Eqs. (34) and (37) constitute a relation­
ship between k n and 2a, and therefore it may be 
confirmed from these equations that, for a given a, 
we find a finite number (N) of roots k n less than unity. 
As a decreases, the number N decreases, until finally 
only a single discrete root ko remains. On decreasing a 
still further, even this root disappears, which is in 
agreement with the theorem proved in Ref. 9. 

The exact value a
1
t at which the Nth decay constant 

disappears is given by (34) and (37) with k n = 1. Thus 

a~ = (N + t)7TVO(V~ - l)-! - xo(i), 
where 

( .) _ 7TVo + v~ 11 IJoCv) dv 
Xo I - 1-

4(v~ - 1)" 71' 0 (1 - V2}t(V~ - v2) • 

(38) 

(39) 

As an example, Fig. 2 shows 2a: as a function of 
K = VOl. It is clear that at small values of absorption, 
the "critical thickness" for the existence of a diffusion 
length is about one mean free path; with increasing 
absorption, a: increases accordingly. 

3 2a: 

2 

0.5 1.0 
FIG. 2. Slab width at which the fundamental mode disappears. 
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It should be remembered that Eq. (34) is only 
approximate since we have neglected "P(v). The 
question arises then: What is the effect on a: of this 
approximation? To assess this error we have found 
values of a: directly from the homogeneous part of the 
integral equation (4). An eigenvalue problem for k n 

results and is solved by a variational technique. It is 
found that Eq. (38) is extremely accurate and therefore 
we can have some confidence in our results. 

Associated with the poles k n are the residues. These 
may be obtained directly from (31); thus denoting the 
contribution to p(x, z) from the residues by Pasy(x, z) 
we find 

( ) _ Qo[ 2(v~ - 1) J! ~ exp (-knz) 
Pasy x, z - £." 1 

C 1 - 'II~(1 - c) n=O BnDil + B~v~)lr 

where 

and 

X cos (Bnx ) t' (40) 

{~ log (
1 + kn) - 1 } 

2kn 1 - kn 

Dn = [BnXn + (n + t)1TB;2] 

Xn = .i dxo(k) I . 
k n dk ik .. 

From Eq. (36) we find 

Xn = 2(1 - k~i(v~k! - 1) 

v~ -1 {('II~k! - ot} - tan 
2(v~k! - I)! "0(1 - k!)! 

+ v_~ il f,,'l·f)ofJl) dp, 
1T 0 (1 - k!p,2)i('II~ - p,2) • 

(41) 

We note that for a < a: ' Pasy(X, z) == O. 
The contribution to p(x, z) from the integration 

around the contour is more difficult. However, by 
considering the closed contour C in Fig. 1, and 
allowing R - 00, we find that 

p(x, z) = P9IliX, z) + Ptrans(x, z), (42) 
where 

Ptran.(X, z) = J.. (too eikz(Ca - C5) dk. (43) 
21T Ji 

Ca and Cs represent symbolically the values of the 
integrand in Eq. (31) along Ca and Cr;. Seyeral of the 
terms in Eq. (31) take on different values at each 
side of the cut. For example, setting k = is, we find 
along Ca 

1 - E tan-1 k = 1 _ ~ tanh (1.) + i1T 
k s s 2s 

i1T 
= 1 - cX + -, 

2s 
(44) 

(1 + "~k2)! = i("~S2 - I)!, (45) 

xo(k) = xl(s) - ix2(s), (46) 

cosh {(a :0 xo) (1 + "~k2)t} 

where 

{(V~S2 - 1)l } 
= cos "0 (a + Xl - ix2) 

= P + iQ, (47) 

P = cos A cosh B, 

Q = sin A sinh B, 

A = 1. (V~S2 - 1)t(a + Xl)' 
'110 

B = .!. (V~S2 - 1)tx2' 
Vo 

Along C5 these functions take on their complex 
conjugate values. 

Inserting (44)-(47) into (43), and using considerable 
algebra, we obtain 

1 roo ds e-SZ 

Ptrallf.(X, z) = "2 JI -; (1 _ CX)2 + (1T2C2/4s2) 

x [1 + J(s) cos {(V~S2 - 1)!x/vo}], (48) 
where 

J(s) = 2s [ v~ - 1 Jt 
C71' 1 - ,,~(1 - c) 

{Q(s)[T(s)t - 1 + cX]t - P(s)[T(s)t + 1 - cX]!} 

X ("~S2 _ l)t(P2(s) + Q2(s» 

and 
T(s) = (1 - CX)2 + 71'2c2/4s2. 

More explicitly 

pes) = cos {:o (V~S2 - 1)!(a + Xl)} 

X cosh {( V~S2 - 1)! ::} , 

Q(s) = sin eo (J!~2 - 1)t(a + Xl)} 

x sinh {( V~S2 - 1)! ::} , 

p2 + Q2 = cos2 {:o (v~S2 - 1)t(a + Xl)} 

+ sinh {(V~S2 - 1)t ::}. 

(49) 

(50) 

We note that Ptrans reduces to the well~known 
infinite-medium result when a - 00. 
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The rather complicated expressions arising in Eq. 
(49) are due mainly to the square-root term in Eq. (31), 
and also because xo(k) is discontinuous across the 
cut. Let us now demonstrate how x1(s) and x2(s) are 
to be obtained in terms of real integrals. 

Along C3 we find that 

+ 'J!~ e {fo(t-t) dt-t 
1T Jo 

X [('J!~ - t-t2)(ljt-t + s)t(s - Ijt-t)!eiU
/
2t 1

• (51) 

Simplifying the first term, and splitting up the 
integral term into t-t ~ Ijs, we obtain 

We note that X2(S) increases uniformly from zero at 
s = I, goes through a maximum, and eventually 
tends to zero as s -+ 00. x1(s) on the other hand is 
equal to xo(i) at s = I, then it goes through a maxi­
mum in the neighborhood of s = I, eventually tending 
to zero as s -+ 00. Table I lists some values of X2(S) 
for two values of K. In Fig. 3 we have plotted xoUko) 
from ko = 0.91 to 1.0. xo(iko) appears to be an extrem­
ely weak function of ko below 0.9. In the same figure 
we also give x1(s) for s = 1.0 to 2.0. 

TABLE I. Values of x.(s) for K = 0.1, 0.5. 

S K = 0.1 K = 0.5 

1.0 0 0 
1.01 0.0310 0.0423 
1.03 0.0658 0.0893 
1.05 0.0932 0.1259 
1.08 0.1278 0.1709 
1.1 0.1478 0.1964 
1.2 0.2256 0.2909 
1.5 0.3477 0.4218 
1.8 0.3975 0.4653 
2.0 0.4126 0.4753 

1.3 

1.2 

X.(ik.) 
1.11:-_--:-­

/(=0.7 

1.0 

0·9 

0.8 

0.7 

A:'=0.1 

k. 5 0.6L..-__ 1....-.....J..---.JL-I-L...L.l...L.l.._=-----L._...J 

0·91 0.95 1.0 2.0 
FIG. 3. Extrapolated endpoint as a function of buckling and 

absorption. Xt(s) is the continuation for ko > 1. 

6. SURFACE DISTRIBUTIONS 

The expression for p(x, z) given by Eq. (31) is an 
asymptotic one, in the sense that it neglects the effects 
of transients induced by the surfaces x = ±a. For 
example, p(±a, z) is not given at all accurately by 
Eq. (31). We can, however, remedy this and obtain 
an expression for p(±a, z), which is accurate to 
O{exp (-2an, directly from the integral equation 
(26). 

Let us consider Eq. (9) rewritten in terms of the 
w variable 

'J"(x, k) = Qo(1jk) tan-1k 
1 - (elk) tan-1 k 

+ ao(k) cosh {x(1 + k2)!jwo} + (I + k2) 

X f exp { - a(1 + k2)! jw }<po(w )g(w) 

X cosh {~ (1 + k2)!} dw. (53) 

Thus the surface distribution at x = -a is given by 

'1"( -a, k) = Qo(1jk) tan-
1 

k 
1 - (ejk) tan-1 k 

+ aoCk) cosh {a(1 + k2)!jwO} 

+ HI + k 2
) f<po(W)g(W) 

X [1 + exp(-2a(1 + k2)!jw)]dw. (54) 

Neglecting the terms O{exp (-2a· .. )} in (54) and 
(26) and substituting <Dog from (26) into (54), we 
obtain 

'1"( -a, k) = Qo(1jk) tan-
1 

k 
1 - (ejk) tan-1 k 

+ ao(k) cosh {a(1 + k2)t jwo} 

- tao[T(wo) exp {a(1 + k2)tjwO} 

+ T(-wo)exp{-a(1 + k2)!jwo}], (55) 
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where where 

elI COo dco T(coo) = X(COo) - . 
2 0 (coo - co)X-(co)[Ao(co) + lie7Tco] and 

(56) 
Using the integral,14 

.£. XC-co) e t dt 
2 )0 (t + co)X-(t)[Ao(t) + ti7Tet] 

= X( -co)(l + co) - 1, (57) 
we readily find that 

T(coo) = 1 - X(coo)[_l- - cooJ. (58) 
X(O) 

Then, with ao from (27), we obtain the very 
simple result 

'¥(-a, k) = Qo[tanh {(I + Y~k2)!(a + xo)/Yo} - IJ. 
e {1 - (e/k) tan-1 k}! 

(59) 

Observe that the zeros of the denominator at ±i/Yo 
are exactly cancelled by those in the numerator. 

We do not invert the transform (59) completely but 
simply give the asymptotic part, viz., 

Qo N (_)n 
pasy(-a, z) = - I ! 

e n=O Dn{1 + Y~B~) 
x exp (-knZ){~ log (1 + kn) - 1}-!. (60) 

2kn 1 - kn 

We also note that for k = 0 and a ---+ co, Eq. (59) 
reduces to the well-known half-space constant­
source value of 

'¥( - co) = (Qo/e)[(1 - c)-! - 1]. 

This completes our mathematical analysis of the 

Bo = 7T/[2(a + xo(iko»]. (62) 

Experimentally, we would measure ko, guess a 
value of xoUko) and hence obtain Yo. It should be 
noted, however, that xoUko) is itself a function of ko 
and so a little iterating is necessary. This technique is 
a fairly standard one for diffusion-length measure­
ments. What happens, however, when a < a!? 
In this case Pasy = 0 and p(x, z) = Ptrans(X' z). The 
question remains as to how Yo is to be extracted from 
this nonexponential function. 

A possible way out of this dilemma stems from the 
observation that, for a < ari, /(s) » 1 and also, for a 
not very much less than ari, /(s) has a sharp peak near 
s = 1. This sharp peak arises from the fact that we can 
find a root s = So of pes) = 0, and at the same time 
Q(so) is small. Thus, in the neighborhood of so, J(s) 
can be approximated by the following expression: 

where f}*(so) is a constant and we have expanded 

P2(S) ~ a2(so)(s - SO)2 

and set 

So is the root of 

cos {[(Y~S2 - l)! /Yo](a + Xl(S»} = 0 
or 

(64) 

diffusion-length problem in a slab. where 

7. PHYSICAL CONSIDERATIONS 

It is of some interest to consider Eq. (42) from a 
physical point of view. If, for example, our problem 
represented some experimental situation to measure 
the diffusion length Yo, we would make measurements 
at distances from the source such that Ptrans was 
negligible. Then, allowing the higher spatial harmonics 
in Pasy to decay, our final density distribution would 
be of the form 

( ) Qo[ 2(Y~ - 1) J! P x, z ,....,- 2 
e 1 - Yo(1 - e) 

exp (-koz) cos (BoX) 
x !, 

Bo(1 + Y~B~)! Do{~ log (1 + ko) - I} 
2ko 1 - ko 

(61) 
14 A. Leonard and T. W. Mulliken, "Solutions to the Criticality 

problem for Spheres and Slabs," Rand Corp. Report RM-3256-PR, 
1962. 

(65) 

We are interested in the smallest PN, viz., Po. 
It is clear, therefore, that for So ~ 1, but slightly 
greater than it, we can write 

wheretJi = {}* /2so . /(so)' 
If y is sufficiently small, the Lorentzian function 

can be approximated by a delta function l'J(s - so) 
and 

Ptran.(x, z) ,...., const e-soz cos (Pox). (67) 

Equation (67) is similar in form to the asymptotic 
solution given by Eq. (61). The main difference is that 
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{Jo has replaced the conventional buckling Bo. Again, 
the only difference between (Jo and Bo is Xl (So) and 
xo(iko), respectively. From Fig. 3 we note that Xl (So) 
is the apparent continuation of xo(iko) for values of 
ko > 1 (whether it is the analytic continuation is not 
yet clear). It would appear then that, even if the 
dimensions of the system are too small to sustain an 
asymptotic solution, the neutron density maintains a 
pseudo-asymptotic character but with a modified 
transverse buckling. Of course, this approximation 
cannot be carried too far and breaks down if y is not 
sufficiently small. In that case, the flux distribution 
does not fall off exponentially from the source, but 
progressively changes in shape in the x direction as z 
increases. 

It is worth noting that these remarks about the 
pseudo-asymptotic nature of the transient term also 
apply for energy-dependent problems where the value 
of 2ari may be significant, e.g., of the order of one 
meter.9 The concept of a pseudo-asymptotic distri­
bution is also discussed by Corn gold and Durgun15 

in connection with the pulsed-neutron experiment. 

8. ANGULAR DISTRmUTIONS 

The angular distribution in our slab system may be 
obtained from the original integro-differential form 
of the Boltzmann equation, i.e., 

[1J l.. + (1 - 1J2)t{COS 0l.. + sin 0l..} + 1J fer, Q) 
ax oy oz 

= (1/47T)[cp(r) + S(r)], (68) 

where per) = S dQf(r, Q), fCr, Q) being the angular 
flux defined more explicitly as 

fer, Q) = f(x, y, z, 1J, 0). 

The angular coordinates 0 and 1J = cos {} are shown 
in Fig. 4. 

Remembering that there is no variation in the y 
direction and taking the Fourier transform in the 
z direction, Eq. (68) becomes 

[1J l.. + 1 + ik(1 - 1J2)! sin 0]j(x, k, 1J, 0) 
ax 

= O/47T)(C'F(X, k) + Qo), (69) 
where 

lex, k, .. -) = L:e-ikZf(X, z, ... ) dz. (70) 

Equation (69) may be integrated with respect to x, 

15 N. Corngold and K. Durgun, Nuc!. Sci. Eng. 29, 354 (1967). 

x 

z 

y 

FIG. 4. Angular coordinates of the neutron motion. 

when we find 

j(x, k, 1J, 0) 

1 JX =- dx' 
47T1J -a 

X exp {- (x ~ x') [1 + ik(1 - 1J2)! sin 0]} 

X [c'F(x', k) + Qo], 1J > 0, all 0, (71) 
and 

j(x, k, 1J, 0) 

= __ 1 ra

dx ' exp {(x' - x) [1 + ik(1 _ 1J2)! sin 0]} 
47Tt] J x 1J 

X [c'F(x', k) + Qo], 1J < 0, all 0. (72) 

Setting c'F(x, k) + Qo = <I>(x, k), we see from the 
definition of the Fourier transform that 

f(x, z, t]. 0) 

1 IX =- dx' 
47T1} -a 

X e-<x-x' l/q<I>[ x', z - (x ~ x') (1 - 1J2)! sin 0 } 

1J > 0, all 0, (73) 

and a similar expression for 1J < 0. <I>(x, z) is the 
Fourier inverse of <I>(x, k). We see therefore that the 
angular distribution may be expressed directly in 
terms of p(x, z), which we have already obtained. 

The angular distribution at the surface x = a 
comes from Eq. (73) and is 

f(a, z, 1J, 0) 

= _1_ ra 
e-<a-X)I'I<I>[X, Z _ (a - x) (1 _1J2)t sin 0J dx, 

47T1} J-a 1J 

1J > 0, all 0. (74) 

The angular distribution within the prism may be 
obtained ifEq. (42) is substituted into (73). Evaluating 
the integral involving Qo, we find 

j(x, z, 1J, 0) = !sex, z, 1J, 0) + fM(X, z, 1J, 0), (75) 
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where Is is the contribution from the uncollided 
neutrons coming directly from the source, viz., 

f'(x, z, 'Yj, G) 

= 47T(1 - ~~)! sin G exp {- (1 - 'Yj2;! sin G}' 

o < z < (a + x) (1 - 'Yj2)! sin G, 
'Yj 

= 0, otherwise. (76) 

The limit on Is is a mathematical statement of the 
physical fact that uncollided neutrons, leaving the 
source plane at position x and angular coordinates 
(0, G), will not be found for 

z > (a + x)(1 - 'Yj2)! sin GI'Yj. 

This value of z is just the distance from the source 
plane at which the neutron emerges from the body. 
f M is the contribution from multiply-scattered 

neutrons. Its form is rather complicated but a concise 
expression can be obtained if we write 

N 

the angular distribution, as described by the integral 
term in (78), exhibits a marked anisotropy along the 
z axis. 

When the fundamental term n = 0 exists, and is 
well established, the angular distribution will be of the 
following asymptotic form: 

f ( G) 
e Aoe-kOZFo('Yj, G, x) 

111 x, Z, 'Yj, " "" - ! . 
47T [1 - ko{l - 'Yj2) sin G]2 + 'Yj2B~ 

(80) 

9. THE HALF-SPACE PROBLEM 

If the origin of coordinates is shifted so that x = 0 
and x = 2a are now the surfaces of our slab, we may 
obtain the half-space results very easily. The situation 
is then of a half-space with spatial decay parallel to its 
free surface. 

The form of the flux in this problem is as follows: 

'P'(x, k) = S + bo exp (-x~ojvo) 

+ f 4>('11) exp (-xrxjv) dv. (81) 

p(x, z) = I Ane-k .. Z cos Bnx Use of the replication property then leads to the 
n~O following singular integral equation for 4>('11): 

+j'loo A(s)e-SZ[1 + /(s) cos p(s)x] ds (77) il '<II ( ') d ' 

in an obvious notation. Then we find, for 'Yj > 0 
and all G, that 

fM(x, z, 'Yj, G) 

= e ~ AJn('Yj,G,x)exp(-knz) 

47T n~O [1 - kn{l - 'Yj2)! sin G]2 + 'Yj2B~ 

+-e 100 A(s)e-·Z 

47T 1 [1 - s(1 - 'Yj2)! sin G] 

X [1 - exp (- (a ~ x) {I - s(l- 'Yj2)! sin G}) ] ds 

+ ~ roo A(s)/(s)F.('Yj, G, x) exp (-sz) ds, (78) 
47T Jl [1 - s(1 - 'Yj2)! sin G]2 + 'Yj2p2 

where 

Fn('Yj, G, x) 

= [1 - kn(l - 'Yj2)! sin G] cos Bnx + 'YjBn sin Bnx 

- [(1 - kn{l - 'Yj2)! sin G) cos Bna - 'YjBn sin Bna] 

X exp {- (a ~ x) [1 - kn{l - 'Yj2)! sin G]}. (79) 

For F. we simply replace kn by sand Bn by pes) in (79). 
When there are no discrete roots the term involving 

the summation is absent. It may then be verified that 

<1>o(w)Ao(w) + £ WOW W 
2 0 w' - w 

(1 + k2)[1 - (ejk) tan-1 k] 

where g34>(wg) = <1>0' 
This equation may be solved exactly, the result 

being 

bo = Qo 1 (83) 
1 - (ejk) tan-1 k ewoX(wo) 

and 

(1 + k2)<1>0(w) = -iQogo(e, w)X(-w)(wo + w). 

(84) 
Hence we have 

'P'(x, k) = Qo(1jk) tan-
1 

k 
[1 - (ejk) tan-1 k] 

X {1 + _k_ exp {-x(1 + k2)!jWO}} 
tan-1 k ewoX(wo) 

- !QoL
1

go(e, w)X( -w)(wo + w) 

X exp {-x(1 + k2)! jw} dw. (85) 
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Similarly we can obtain the surface flux 

'Y(O, k) = :o[{ 1 - ~ tan-1 kr! - 1} (86) 

and the emergent angular distribution 

J(O, k, 1],0) 

= Qo -1 
47T [1 - (e/k) tan-1 k] 

-1 1 

X [~wo + 1](1 + k2)!] X[ -(1]/~)(1 + k2)!] , 

where ~ = 1 + ik(l - 1]2)! sin 0. 

(87) 

Clearly, as x -+ 00, 'Y (x, k) goes over to the well­
known infinite-medium resu1tl3 given by the first 
term in Eq. (85). For x near the surface, this simple 
expression is modified by leakage. We demonstrate 
the effect by performing the inversion of 'Y(O, k) 
which we write in the form 

p(O, z) = ~ foo eikZ{[ k
2 

+ vo2 J! 
27T0< -00 1 - (elk) tan-1 k 

X 1 - 1} dk, (88) 
(k

2 + vo2i 
where k = ±i/vo are the roots of 

1 - (ejk) tan-1 k. 

Vo is, of course, the conventional diffusion length. 
The quantity in the square brackets in the integrand 

of Eq. (88) has no poles or zeros for -1 < 1m (k) < 
1, but, due to the arc tangent, it has branch points at 
k = ±i. The function may be made single-valued, 
however, by introducing two cuts in the k plane 
extending from ito ioo and -i to -ioo. Let us denote 
the function by F(k) and its inverse by fez). The other 
factor in (88), i.e., (k2 + v(2)-! has the Fourier inverse 
Ko(zjvo), where Ko(x) is a modified Bessel function. 
From the convolution theorem, therefore, we may 
write (88) for z ;;6. 0, as 

p(O, z) = Qo (00 Ko(~) [f(lz + z'l) + f(lz - z'l)] dz', 
7Te Jo Vo 

(89) 
where 

fez) = ..!. fOO eikZF(k) dk. (90) 
27T -00 

Performing the integration leads to 

fez) = ioolo(S)e-SZ ds, (91) 

where 

lo(s) = .J2(S2 _ ~)l (1 _ eX + Tl)!rl. (92) 
7T Vo 

Insertion of (91) into (89) leads to 

No simple expression can be obtained for (93). 
We note, however, that the second term dominates 
after about one mean free path from the source and 
decays at least as fast as exp (-zjvo). It is interesting 
to note also that, although the total flux far from the 
free surface (i.e., large x) behaves asymptotically for 
large z as exp (-zjvo), the corresponding surface flux 
does not. Thus the ratio p(x, z)j p(O, z) does not 
become independent of z as z -+ 00. It must be 
concluded, therefore, that the nature of the source 
affects the surface flux (and angular distribution) of 
the half-space for all z. This is not the case in the finite 
slab for which the ratio discussed above becomes 
constant provided ko exists. 

10. CRITICAL PROBLEM 

As we discussed in Sec. 2, the present method can 
be used to obtain approximate criticality conditions 
in rectangular systems. The critical problem for a 
rectangular parallelepiped of sides a, b, e and in which 
the distribution in the y and z directions can be written 
exp (iBIIy + iBzz) is described by the following eigen­
value problem: 

'Y(x, (3) = - dx' e fa 
2 -a 

X (1 exp {-Ix - x'i (1 + v2
(32) /v} dv'Y(x' (3) 

Jo (1 + v2(32)1 v' , 

(94) 
where {32 = B~ + B;. 

Equation (94) may be solved directly by the method 
described in Sec. 4. Indeed, the solution of Eq. (14) is 
simply carried over with k 2 = (32 and Qo = 0. Then 
the flux distribution is given by 

'Y(x, (3) = ao cos {x (~ - (32 )!} 
+ f 1>(v) cosh {x(1 + v2(32)! /v} dv, (95) 

where we have taken Vo = i IVol because e > 1 for 
criticality. 



                                                                                                                                    

1884 M. M. R. WILLIAMS 

At the same time, the criticality condition is given 
by 

cao(1 - Y~P2)t [y~(c - 1) - I]! 
[1 - (cjP) tan-1 P]t 2(1 + Y~) 

x cos {(a + xo)(~ - P2t} 

+ E. e (v') Y'(1 + P
2

) X( -w') 
2 Jo 1p (1 + y'2P2

) 

X exp {-2a(1 + y'2(32)!jv'} dy' = 0, (96) 

with an analogous expression for 1p(v) obtained from 
Eq. (26). 

In the end-point approximation, the criticality 
condition is simply 

cos {(a + xo)(h - (3 2)t} = 0 

or 

Recalling the definitions of By and BZI we see that 
Eq. (97) constitutes a relationship between the 
dimensions of the system and its nuclear properties. 
The greatest uncertainty in (97) lies in the extrapolated 
end points Yo and Zo. Even this can be removed, 
however, if we assume a cubic system a = h = c, 
for then Xo = Yo = Zo. It is also interesting to note 
that the correct extrapolated end-point to use in the 
definition of Bx is that corresponding to B; + B;, 
i.e., XO [i(B; + B;)t]. Similarly, Yo is defined as 
xo[i(B~ + B;)t] and Zo as xo[i(B~ + B;)!]. Thus Eq. 
(97), together with the definitions of Bx , By, and Bz 
constitute four equations for vo, Bx , By, and Bz , given 
a, h, and c. 

For systems greater than about 2 mean free paths, 
Eq. (97) gives a very accurate description of the 
criticality condition. Corrections to this formula may 
be obtained from (96). 

The angular distribution both within the body and 
on its surface may be obtained very easily from the 
methods described in Ref. 4. 

11. EXTENSION OF DIFFUSION-LENGTH 
PROBLEM TO RECTANGULAR CROSS 

SECTION 

Earlier we considered the diffusion-length problem 
in a slab, infinite in the y direction. Now, although it 
is not yet possible to solve the complete two-dimen­
sional x-y problem, we can approach this by Fourier 
transforming Eq. (2) in the y direction and associating 
the square of the Fourier-transform variable with the 
buckling B;. This gives a first approximation of the 

effect of leakage in the y direction, whilst the distri­
bution in the x direction is treated exactly. We shall 
not carry through the analysis of this problem but 
simply state the equation to be solved. In fact this is 
just identical to Eq. (4) with the exception that k 2 

is replaced by k2 .+ B;. 

12. LIMITATIONS OF THE REDUCED BOLTZ­
MANN EQUATION 

Our analysis for the slab problem, which may be 
taken as essentially exact, enables us to assess the 
accuracy of the reduced Boltzmann equation suggested 
by the author in Ref. 4. Making the exp (iBxx) 
assumption in Eq. (4) leads then to 

'JI'(k) = Qo[1j2(k
2 + B!)!] tan-1 

{(k2 + B!)!} 

1 - [cj2(k2 + B;)!] tan-1 {(k2 + B!)!}' (98) 

which is to be compared with the exact expression (31). 
The singularities of 'JI'(k) consist of branch cuts 

extending from i(1 + B!)! to ioo and -i(1 + B!)! 
to - i 00, and also two poles defined by the roots of 

1 - c tan-1 {(k 2 + B2)!} = O. (99) 
2(k2 + B!)! x 

Calling these poles ± iko, we see that 

k2 1 2 
0= a + Bx · 

Yo 

Evaluating the Fourier inverse leads to 

() 
Qo(Y~ - l)e-kOZ cos Bxx 

p x z = 
, CYo{l + v~B;)![1 - y~{l - c)] 

(100) 

+ (00 e-SZ1(s, Bx) ds cos Bxx, (101) 
J(1+Bz

2 )! 

where 1(s, Bx) is rather lengthy and will not be given. 
Comparing Eq. (101) with Eqs. (40) and (48) 

highlights the approximations involved in the asymp­
totic assumption; these are: (1) no harmonics are 
predicted; (2) transient term has lower limit (l + B!)!, 
not unity; (3) transient term is separable in z and x; 
(4) the amplitude of the pole contribution is incorrect; 
(5) no limit on the transverse dimensions for the 
existence of ko are available, although such a bound 
may be obtained by imposing the condition of non­
negativeness of the angular distribution, and leads to 
ko .::} 1. 

These failures would seem to limit the use of the 
reduced Boltzmann equation considerably. However, 
such a view would be pessimistic for it is found that, 
provided Y~B2 is not too near unity, the expression 
(101) gives an adequate representation of the neutron 
density and, in particular, the angular distribution 
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within the body. Moreover, the diffusion-length 
problem is a severe test of the reduced equation which 
may be shown to be much more acceptable for 
criticality and half-space problems, and certainly 
better than the infinite-medium approximations used 
hitherto. 

13. SUMMARY 

In this paper we have developed methods for 
dealing with the transport equation in more than one 
dimension. It has been demonstrated that important 
effects can arise due to a coupling between the different 
space dimensions. These effects would be missed in 
any asymptotic approximation. 

An accurate formulation of the critical conditions 
in a rectangular parallelepiped has been derived 
which should provide a useful benchmark problem 
against which to compare approximate techniques. 

The methods discussed above can be used in other 

branches of physics in which a linear transport 
equation arises, and, in particular, radiative-transfer 
and rarefied-gas dynamic problems. 

Cylindrical geometries may also be treated and 
these are the subject of a subsequent paper. 

Finally, it should be mentioned that the problems 
discussed 'in this report may all be derived via the 
Wiener-Hopf technique. We have used the present 
method since it is more readily generalizable to more 
complicated geometries. 

Note added in proof: Since submitting this paper for 
publication, the author has become aware of the work 
of Bareiss and Abu-Shumays (Argonne National 
Laboratory Report 7328). Whilst this work does not 
deal explicitly with the problems discussed above, it 
does throw considerable light on the structure of the 
eigenvalue spectrum of the three-dimensional Boltz­
mann equation. 
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An integral equation is derived which describes the diffusion of neutrons from a plane source perpen­
dicular to the axis of an infinite circular cylinder. The equation is solved by a Fourier transform in the 
axial direction and by the subsequent solution of a singular integral equation for the radial distribution; 
this is accomplished as a result ofa certain replication property possessed by the original integral equation. 
We have inverted the Fourier transform to obtain the simultaneous r - z variation of the neutron 
density in the cylinder. In addition, a formula is given from which the angular distribution of neutrons 
may be obtained. By approximating the density along the axis of the prism with the asymptotic distribu­
tion, it has been possible to assess the effect of axial leakage on the cylindrical critical problem. A critical 
equation is derived and the appropriate extrapolated endpoints to be used in this are defined. 

1. INTRODUCTION 

In a previous publication! (hereafter referred to as 
1) we have studied the diffusion of neutrons from a 
plane source in an infinite slab, the source plane being 
perpendicular to the faces of the slab. In addition, 
we studied the critical problem in a rectangular 
parallelepiped when the density in two of the orthog­
onal directions was approximated by the asymptotic 
distribution. 

The present paper extends the conclusions reached 

1 M. M. R. Williams, preceding paper, J. Math. Phys. 9, 1873 
(1968). 

in I to circular cylindrical geometry. We shall therefore 
calculate the neutron density and angular distribution 
arising from a plane source situated in an infinite 
circular cylinder, the source plane being perpendicular 
to the axis of the cylinder. We shall also consider the 
critical problem of a finite cylinder in which the den­
sity in the axial direction is approximated by the 
asymptotic distribution. 

2. THE INTEGRAL EQUATION 

In I, an integral equation describing the neutron 
density in a system of arbitrary, but non-re-entrant, 
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within the body. Moreover, the diffusion-length 
problem is a severe test of the reduced equation which 
may be shown to be much more acceptable for 
criticality and half-space problems, and certainly 
better than the infinite-medium approximations used 
hitherto. 

13. SUMMARY 

In this paper we have developed methods for 
dealing with the transport equation in more than one 
dimension. It has been demonstrated that important 
effects can arise due to a coupling between the different 
space dimensions. These effects would be missed in 
any asymptotic approximation. 

An accurate formulation of the critical conditions 
in a rectangular parallelepiped has been derived 
which should provide a useful benchmark problem 
against which to compare approximate techniques. 

The methods discussed above can be used in other 

branches of physics in which a linear transport 
equation arises, and, in particular, radiative-transfer 
and rarefied-gas dynamic problems. 

Cylindrical geometries may also be treated and 
these are the subject of a subsequent paper. 

Finally, it should be mentioned that the problems 
discussed 'in this report may all be derived via the 
Wiener-Hopf technique. We have used the present 
method since it is more readily generalizable to more 
complicated geometries. 

Note added in proof: Since submitting this paper for 
publication, the author has become aware of the work 
of Bareiss and Abu-Shumays (Argonne National 
Laboratory Report 7328). Whilst this work does not 
deal explicitly with the problems discussed above, it 
does throw considerable light on the structure of the 
eigenvalue spectrum of the three-dimensional Boltz­
mann equation. 
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axial direction and by the subsequent solution of a singular integral equation for the radial distribution; 
this is accomplished as a result ofa certain replication property possessed by the original integral equation. 
We have inverted the Fourier transform to obtain the simultaneous r - z variation of the neutron 
density in the cylinder. In addition, a formula is given from which the angular distribution of neutrons 
may be obtained. By approximating the density along the axis of the prism with the asymptotic distribu­
tion, it has been possible to assess the effect of axial leakage on the cylindrical critical problem. A critical 
equation is derived and the appropriate extrapolated endpoints to be used in this are defined. 

1. INTRODUCTION 

In a previous publication! (hereafter referred to as 
1) we have studied the diffusion of neutrons from a 
plane source in an infinite slab, the source plane being 
perpendicular to the faces of the slab. In addition, 
we studied the critical problem in a rectangular 
parallelepiped when the density in two of the orthog­
onal directions was approximated by the asymptotic 
distribution. 

The present paper extends the conclusions reached 

1 M. M. R. Williams, preceding paper, J. Math. Phys. 9, 1873 
(1968). 

in I to circular cylindrical geometry. We shall therefore 
calculate the neutron density and angular distribution 
arising from a plane source situated in an infinite 
circular cylinder, the source plane being perpendicular 
to the axis of the cylinder. We shall also consider the 
critical problem of a finite cylinder in which the den­
sity in the axial direction is approximated by the 
asymptotic distribution. 

2. THE INTEGRAL EQUATION 

In I, an integral equation describing the neutron 
density in a system of arbitrary, but non-re-entrant, 



                                                                                                                                    

1886 M. M. R. WILLIAMS 

shape was given. When applied to cylindrical geom­
etry, this equation reduces to the following form: 

IR II dv 'F(r, k)-= r'dr' O.(r,r';k)2 [c'F(r', k) + Q(r')), 
(J (J v 

(1) 
where 

Ko(; (1 + k2v2)!) 10(; (1 + k2v2)!), 

O.(r, r'; k) = r' ~ r, 

Ko(;(1 + k2V2)!) 10(; (1 + k2v2)!), 
r' Z r. 

(2) 

In Eq. (1), 'F(r, k) is the infinite-medium Fourier 
transform of the density per, z), i.e., 

Therefore we see that the action of the operator on 
10(' •• ) reproduces the function, and adds a distri­
bution of it over v between (0, 1). This behavior con­
firms the correctness of our assumed solution (4). 

Inserting Eq. (4) into Eq. (1) with Q(r) = Qo, and 
using (5), leads, after equating coefficients of terms in 
lo(r&/ii), 10(rlX/v), and the constant, to 

and 

S = Qo ~ tan-l k / (1 - i tan-l k) (7) 

A(;;) = 1 - cii2rl~ = 0 
JO;;2 _ v2 

(8) 

'F(r, k) = L: e-ik'p(r, z) dz. 

which defines ii = vo, the infinite-medium diffusion 
length. 

(3) Finally, the integral equation for 4>(v) becomes 

Ko(x) and lo(x) are the familiar Bessel functions. 
The main body of this paper is concerned with 

solving Eq. (1) and then inverting 'F(r, k) to find 
p(r, z). 

3. REPLICATION PROPERTY OF EQ. (1) 

From the symmetry of the problem, it would seem 
profitable to seek solutions to Eq. (1) in the following 
form: 

'F(r, k) = S + Ao/o(~ (1 + ;;2k2)!) 
+ Ll rp(v)lo(; (1 + V2k2)1) dv. (4) 

i l dV'[1X2 1X'2]-1 A(v)4>(v) + c -;"2 - "2 t/>(v')tP(R, v, v') 
o v V v' 

C [1X2 IX~J-l = - "2 Ao "2 - "2 tP(R, v, '1'0) 
v v Vo 

Qo R/v K
1
{RIX!v). (9) 

c (1 + v2k2)1 
1 - - tan-l k 

k 

We now define a new function tp(v) by 

tp(v);(1 + k2V2)lKl(;(1 + k2V2)~) = 4>(v} (10) 

and rearrange Eq. (9) so that we may write 

Therefore let us consider the action of the integral il dv'[oc2 OC,2]-1 
operator on the right-hand side of Eq. (1) on a A(v}tp(v) + c -2"2 - 2" tp(v') 

o 'JI V v' function of the type 

We find that 

LRr' dr/fov(r, r'; k):: Io(~(1 + 'JI
2k2)1) 

= Io(~Pi)f::[:: - ::r1 

-f ~:[:: -::r11o(; OC)~(R, 'JI, ii), (5) 

where oc = (1 + k2r)! and Pi = (1 + k2Ji2)1. Also 

tP(R, v, ii) == R: Ko(; oc) II (; Pi) 

+ ~oc 10(~Pi) Kl(~IX). (6) 

x [1 - p(~~'){q(~~') - :~ q(~IX)}] 
= _ C~o[oc: _ ~]-l{/o(ROCo) + VOCo q(ROC)Il(ROCo)} 

v v Vo Vo VoOC V Vo 

Qo • 1 2 2 • (11) 

1 c t -1 k (1 + 'Ilk) -- an 
k 

In arriving at Eq. (11) we have used the relation 

x[lo(x)Kl(x) + Ko(x)Il(x)} = 1 

and have defined 

q(x) == Ko(x)!KI(x),....., 1 + O(r-I)} 
and , 

p(x) = xI1(x)K1(x) '"""' ! + O(x-1
) 

for x-+ 00. 
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If we rearrange the square bracket under the 
integral sign in Eq. (11) to the form 

!(1 + V~') 
2 v IX [ 

VIX' J + t - p'q' + V'IX (p'q - t) 

== ! (1 + VIX') + W(v, v'; R), 
2 V'IX 

where p' and q' are in an obvious notation, then Eq. 
(11) may be written as 

A(v)v!(v) + £. r1 

dv' [~ _ ~J-l1j!(V') = -'Y)', (12) 
2 Jo VIX V v' 

where 

i l dV'[1X2 1X,2J-1 
'Y)' = C -2 2 - ----;; W(v, v'; R)1j!(v') 

o v v v 

with 

where 

and 

g3(W)1j![wg(W)] = 1j!o(W), 

Ao(w) = A[wg(w)]jg(w), 

g(w) = {I + k 2(1 - (2)}-!, 

Wo(w, w'; R) = W[wg(w), w'g(w'); R]. 

Qo 1 + . 2 2 • 

1 _ £. tan-1 k (1 + v k ) 

Neglecting the term containing Wo, the solution of 
(13) Eq. (14) may be written down immediately3 as 

k 

Equation (12) is now identical in form to one 
already solved in I, with the exception of 'Y)', which 
constitutes anew, nonsingular source term. 

It should be noted that the function W(v, v'; R) 
has the following property: 

W(v, v'; R) ,....., O(R-I) 

as R ---+ 00. Thus, although Eq. (12) goes over to the 
correct infinite medium equation as R ---+ 00, it does 
so more slowly than in the slab problem, and conse­
quently the "end-point approximation" will be less 
accurate. This behavior has also been noted by 
Kiesewetter in connection with the simpler problem 
of criticality in an infinite cylinder.2 

4. SOLUTION OF EQ. (12) 

The solution of Eq. (12) follows the same lines as 
in I. Thus the change to the new variable 

W = v(l + k2)!j(1 + v2k2)! 

reduces Eq. (12) to 

A( ) ( )+ £.ilW'1j!o(W')dW' - ' oW 1j!0 W - -'Y)o, 
2 0 w' - W 

(14) 

2 Helmut Kiesewetter, "Solutions of the Neutron Transport 
Equation for a Slab, a Sphere and a Cylinder in the Sense of Wiener 
and Hopf," private communication, 1966. 

(1 + k2)1j!0(w) 

( C 1) 2 2 = -cAowoX( -w) 1 - k tan- k (wo - w ) 

X [Io(R(l + k2)!)! { X(wo) + X( -wo)} 
Wo 2 Wo - w Wo + w 

+ I I (R(1 + k2
)!) e y( w')w' q(R(l + k2)! jw') dW'], 

Wo Jo (w' - w)(w~ - W,2) 

with 

Ao = _ __ ..:::Q""o __ 

1 - .£ tan-1 k CWo 
k 

x {Io(R(1 + k2
)!) e woy(w) dw 

wo Jo w~ - w2 

+ II(R(l :0 k2
)!) 

(16) 

X e y(w)wq(R(l + k2)!jW) dW}-I. (17) 
Jo w~ - w2 

Unfortunately, the integrals involving q in Eqs. (16) 
and (17) do not seem to be reducible any further. It is 
clear, however, that in the spirit of our previous 
approximations, we may consistently set q = 1. 

3 G. Mitsis, Argonne National Laboratory preprint 6787, 1963. 
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Equations (16) and (17) then simplify considerably to 

(1 + k2)1po(W) 

= -!eAowoX( -W)(l - t tan-1 k )(W~ - (2) 

[ 
X(wo) 

X {I oCto) + lito)} 
Wo - W 

(18) 

In terms of the original variable vo, (19) can also be 
written 

A - - Qo 2 [2( v~ - 1) ] ! 
o - 1 _ ~ tan-1 k e(1 - V~k2)! 1 - v~(l - e) 

k 

X [(lo(to) - [l(tO» exp {-xo(1 + V~k2hvo} 
+ (lo(to) + [l(tO» exp {xo(1 + Y~k2)!jvO}]-\ 

with to = R(1 + V~k2)!jyO' 
(20) 

It may be verified that, for large R, Eqs. (18) and 
(19) go over to slablike values as obtained in I. 

5. INVERSION IN THE k PLANE 

From Eq. (4) and after neglecting the surface 
transients, we may write 

It may be verified that the apparent pole in Eq. 
(21) due to the zeros of 1 - (ejk) tan-1 k does not in 
fact exist owing to exact cancellation from the second 
term. The singularities of Eq. (21) in the k plane arise 
therefore from the roots of the equation 

[1o(to) - 11(to)] exp {-xo(1 + k2y~)!jvo} 
+ [1o(to) + [l(tO)] exp {xo(1 + k2V~)!jvo} = 0 (22) 

and from the branch points at k = ±i. 
Let us consider the pole contribution arising from 

the zeros of (22). If we designate the roots of (22) by 
k = ± ik .. , and define a quantity Bn as 

then Bn will be given by the roots of the following 
equation: 

Jo(BR) cos (Bxo) - J1(BR) sin (Bxo) = 0, (24) 

where xo(k) is evaluated at k2 = -k;'. For large BR, 
where we may use the asymptotic expansions of the 
Bessel functions, Eq. (24) becomes 

cos {B(R + xo) - t7T} = 0 
or 

Bn = (n + !)7Tj(R + xo). (25) 

The case of n = 0 gives Bo = 2.356j(R + xo), 
which is close to the familiar diffusion-theory result of 
2.4D5j(R + xo). As n increases, Eq. (25) becomes 
more accurate. 

It should be added that only values of Bn such that 
k .. ~ 1 are acceptable solutions of Eq. (24). This 
restriction limits the number of roots to a finite value 
N. As R decreases, N also decreases, until for a certain 
critical R (Rri say) no roots can be found. In such a 
situation there will be no asymptotic, r - z separable, 
solution and the density will decay nonexponentially 
from the source. The physical consequences of this 
behavior and a possible method for dealing with it 
have been discussed in I. 

For the sake of example we shall write down the 
asymptotic part of per, z) which arises from the 
residues of'¥(r, k) at k = ik .. (z > 0). We find 

( ) - 2Qo[ 2(Y~ - 1) Jf Pasy r, z -
evo 1 - vW - e) 

~ Jo(Bnr) 
x""" !' 

n=O BnDn{2~n log G ~ ~:) - I} 

(26) 

where 

iDn = ~ [(lo(to) - [l(tO» exp {-xo(1 + V~k2)!jyo} 
dk 

+ (lo(to) + [l(tO» exp {xo(1 + vgk2)!jvO}]k=ikn' 

The explicit form of Dn will not be given due to its 
great length. It is straightforward to obtain, provided 
it is recalled that xo(k) is a function of k. 

pasy(r, z) is seen to be similar in form to the Classic 
diffusion-theory expression, but now the amplitudes 
of the modes are given exactly and the transverse 
buckling Bn is uniquely defined in terms of the known 
extrapolated endpoint. 

The transient contribution to per, z) has the general 
form 

per, z) = f" K(s){l + B(s)Jo(r(v~s2 - l)!jvo)}e-SZ ds 

(27) 
(23) and is not separable in rand z. 
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A more accurate description of the density in the 
neighborhood of the boundary may be obtained ifEq. 
(18) is inserted into the last term of Eq. (4), and the 
surface transient is then inverted in the k plane. It 
is readily observed, however, that this term becomes 
negligible very rapidly as we move away from the 
boundary. 

6. THE ANGULAR DISTRIBUTION 

The Fourier transform in k space of the angular 
distribution at position (r, z) in the cylinder may be 
reconstructed from the well-known integral formula3 : 

](r, k, 6, ¢) 

= - e-s(H'keosO)[c'Y({r- + S2 sm2 6 
1 JSO(,.O.</» '. 0 • 

47T 0 

- 2sr sin 6 cos ¢}t, k) + Qo] cis, (28) 
where 

So = {r cos ¢ + [R2 - r2 sin2 ¢]t}jsin 0, (29) 

and we have accounted for the variation in the z 
direction by the factor (1 + ik cos e). 

The angular coordinates (6, ¢) are defined in 
Ref. 3. 

Defining <I>(r, z) = cp(r, z) + Qo, we may formally 
write the angular distribution at the point (r, z) as 

1 JSO(,.O.</» 
j (r, z, 6, ¢) = - e-S<I> ( {r2 + S2 sin2 6 

47T 0 
1 

- 2sr sin 6 cos ¢}'!, Z - S cos 6) ds. (30) 

We shall not, however, pursue the algebraic problem 
that results when Eqs. (26) and (27) are inserted into 
(30). 

7. THE CRITICAL PROBLEM 

The results obtained in Sec. 4 can be taken over 
directly to solve the problem of a critical cylinder of 
finite length H. Making the assumption that the flux 
distribution in the z direction may be approximated 
by the asymptotic distribution exp (iBzz), where 
Bz = 7Tj(H + 2Zo), we find that the solution of the 
critical problem is given by Eq. (14) with Qo = O. 
Then AOI = 0 gives the critical condition, and, with 
the approximations discussed earlier, this is given 
explicitly by Eq. (24). The lowest root of (24), 
Bo = Br , corresponds to the radial geometric buckling. 

From Eqs. (22) and (23), therefore, and remembering 
that in a critical problem Vo = i IVol, we may write 

(31) 

The appropriate extrapolated end-points to use in 
(31) raises an interesting point. For example, from 
Eq. (24), B; depends upon xo(iBz) , i.e., upon the 
buckling in the other orthogonal direction. We con­
clude, therefore, that Zo will be defined as xo(iB,). To 
find vo, B" and Bz it is necessary to solve Eqs. (24) 
and (31), and the one relating Bz to zo, simultaneously. 

Additional evidence for the validity of Eq. (31) 
may be obtained from the results of 1. For example, 
we obtained the critical equation for a slab with a 
distribution exp {iByY + iBzz} in the Y and z directions. 
Thus we obtained 

1jvg = B; + {J2, 

where {J2 = B; + B;. We could equally well assume, 
however, that the slab has a cylindrical boundary and 
write (J2 = B;, with Br given by Eq. (24). In this way 
we arrive back at Eq. (31) with the same definitions of 
B z and B,. 

The corresponding angular distribution may be ob­
tained quite readily from Eq. (28) with Qo = O. 

8. SUMMARY AND DISCUSSION 

The use of a replication property and an infinite­
medium Fourier transform have enabled us to solve 
a simple two-dimensional transport-theory problem. 
Although we have concentrated on circular cylinders 
in this paper, the method may be used for any non­
re-entrant, cross-sectional shape whose boundary 
coincides with one of the coordinate surfaces for which 
the Helmholtz equation is separable.4 However, it has 
not yet been possible to deal exactly with rectangular 
cross sections, although an approximate method was 
discussed in I. 

The present technique is also applicable to time­
dependent problems, e.g., initial-value and wave­
propagation problems, if the time variable is eliminated 
by a Laplace transform. Subsequent inversion of the 
solution per, z; s) will yield per, z; t); we shall con­
sider such problems in a future pUblication. 

• K. M. Case, Developments in Transport Theory, E. Inonu and 
P. Zweifel, Eds. (Academic Press Inc., New York, 1967). 
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Strong-Coupling Limit in Potential Theory. II 
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(Received 29 March 1968) 

The analytic properties of the Jost function in the coupling constantg, derived in an earlier article for 
a restricted class of potentials, are rederived generally for potentials V(r), for which, V(r)1 can be bounded 
by a monotonically decreasing potential 17(r), such that J dr I 17(r)'. < 00. In particular, potentials with 
nonlinear exponential tails are studied as a function of the energy and coupling constant. Earlier results 
of Sartori on the energy dependence of the Jost function, derived only for special cases of such potentials 
in the Bom approximation, are demonstrated to be true generally for large classes of such potentials. 

I. INTRODUCTION 

In the earlier articlel (to be referred to as I) the 
analytic properties in g were studied for the Jost 
function based on the SchrOdinger equation 

[ 
dt l(l + 1) ] 
-2 + K2 - 2 + gV(r) u/(r) = 0, (1) 
dr r 

describing the scattering states for K2 > 0 in a po­
tential - g V(r) as well as the bound states of energy 
K2 (/iI /2m == 1) for K2 < 0, when the potential is 
attractive. In particular, the large-g behavior gave a 
new expression for the number of bound states which 
was related to the large-g behavior of the scattering 
phase shifts. That analysis is derived from the con­
ditions 

(i) VCr) is Li , i.e., J:' dr W(r)l i < 00, 

(ii) I V(r)l! is expressible as an absolutely convergent 
Laplace transform, i.e., one can write 

U(r) == W(r)l! =50"" drt: O'(rt:)e-orr
, (2) 

where 

L""d~'O'(rt:)' < 00. 

Condition (ii) limits one to potentials which damp for 
large r no faster than a linear exponential in the sense 
that 

lim - ! In W(r)1 < 00. (3) 
r-+r:t) r 

If the limit in Eq. (3) has a finite nonzero value, the 
potential will be said to possess a "linear exponential 
tail" (I.e.t.). This type of potential with the exception 
of the square well is most frequently considered in 

* Present address: U.S. Naval Ordinance Laboratory, Silver 
Spring, Maryland. 

1 W. M. Frank. J. Math. Phys. 8, 466 (l967). The following errors 
in this article should be noted: The right sides of Eqs. (11), (14), 
(51), and (53) require an additional factor of 2; the G in Eq. (51) 
should be barred; the sign of ikr in the expression for hl+'(kr) 
following Eq. (51) should be +; and the right side of Eq. (61) 
should have a plus sign. 

standard potential theory. Equation (2) could not 
represent potentials which have a nonlinear exponen­
tial tail (n.l.e.t.) such as a Gaussian or square well. 
It does include potentials with power tails (p.t.), i.e., 
potentials such that 

lim -..!..- In W(r)1 < 00. (4) 
r .... "" In r 

It is of interest to broaden the scope of potential 
theory to include nJ.e.t. potentials for the sake of 
mathematical generality, as well as for the sake of 
understanding better the transition from often used 
model potentials, which vanish identically beyond a 
certain range, and the more realistic I.e.t. types. The 
Jost function of an I.e.t. potential has singularities in 
the k == Ei plane, which are absent in the n.I.e.t. case 
if 

(5) 

for large r with p > 1. The case 0 < p < 1 is generally 
expressible in the form of Eq. (2), as is demonstrated 
subsequently. The k dependence of Jost functions for 
n.Le.t. potentials with p > I, has been considered in 
the first Born approximation by Sartorii for a very 
artificial form of n.l.e.t. potential. 

In this article the results of Paper I are extended 
to a general Li potential. We find the exponential 
order3 in g of the Jost function to be i for all k, and 
the same estimate as before applies to the number of 
bound states. In Sec. III the analytical behavior of the 
Jost function in g and k is studied for nJ.e.t. potentials 
expressible in the general form 

W(r)11 = L""d~ O'(a) exp [-(ar)J>], (6) 

with p > 1. We shall restrict ourselves to the condition 
fJ > O. fJ = 0 leads to p.t. potentials which are 

• L. Sartori, J. Math. Phys. 4, 1408 (1963). 
S A function fez) analytic in the finite z plane is said to have 

exponential order p if P is the greatest lower bound of numbers IX, 
such that If(z)1 S; exp K", Izl'" for some K",. If fez) has exponential 
order IX, its type 'T is defined by 'T = lim sup Izl-:< Ilnf(z)l. 

1890 
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generally expressible by Eq. (2). The results of 
Sartori are established in this general case. 

In a subsequent article the WKB method is applied 
to establish the same large-coupling behavior of the 
Jost function, and to derive an asymptotic expansion 
about the point at infinity as well. The strong-coupling 
limit of scattering phase shifts is discussed there. 

II. it POTENTIALS 

The results derived apply to all potentials VCr), for 
which there exists a V(r) such that 

o ~ VCr + a) ~ V(r) for all a ~ 0, (7a) 

I V(r)1 ~ V(r) , (7b) 

SooodrV(r)i < 00. (7c) 

It follows from Eqs. (7b) and (7c) that 

Sooodr W(r)l i < 00. (8) 

If Eq. (8) is obeyed we say that VCr) is Li, while if, 
in addition, the conditions of Eqs. (7) hold we say 
that V(r) is Li. 

It will be shown that the Jost function4 ~ig, -K) 
for Eq. (1) is an entire function of g with exponential 
order t for any fixed K which is not a singular point of 
A,(g, -K). As derived in I [see Eqs. (13)-(18) and 
(52)-(54)] and rederived in Appendix A, the modulus 
of A,(g, -K) == A(g) can be bounded by the series 
(for real K, or K in the lower half-plane): 

1~(g)1 ~ ~olglnSoOOdrl 

x Sor
1

dr2 ·· ·5orn-ldrn(r1 - '2)'" (rn_1 - 'n) 

x , n W(r1) ... VCr n)1 

==! Igln (00 d~l ... (00 d~n~l ... ~n 
n=O Jo Jo 
X W(~n)V(~n-l + ~n) ... V(~l + ... + ~n)1 
00 

== I Igln L n , (9) 
n=O 

where the variables ~j = rj - rHI (j = 1,' .. ,n - 1) 
and ~n = 'n have been introduced. From Eqs. (7) we 
find 

Ln ~ 50
00 
d~l .. 'Lood~n~1 ., . ~n 

X !V(~n)V(';n-l + ~n)' .. V(~l + ... + ~n)1 

(
2)n(OO (00 (,,/2 ("/2 

= :; Jo d~l' "Jo d~nJo dtfil' "Jo dtfin~l"'';n 

x I V(~n) ... V(';l + ... + ~n)l· (10) 

• The Jost function for radial momentum k is identical with the 
Fredholm determinant l!i(g, -k) for the scattering integral equation; 
see R. Jost and A. Pais, Phys. Rev. 81, 840 (1951), Appendix. 

We introduce the new variables '1, ... , '2n defined by 

1 
'2k-l = ../2 ~k cos tfik' 

'2k = ~';k sin tfik (k = 1, ... , n). (l1) 
../2 

From the inequalities 

'2k-l + '2k ::;; ../2 (';k-1 + '~k)i == ~k' (12a) 
and 

V(';k + ... + ~n) 
= Vi(~k + ... + ~n)Vi(';k + ... + ~n) 
~ V i a2k_l + ... + '2n) Vi('2k + ... + '2n) (12b) 

which follow from the monotonicity condition of Eq. 
(7a), we derive 

Introducing the variables Xl, ... , X2n defined by 

'k = Xk - xk+l' '2n == X2n (k = 1, ... , 2n - 1), 

(14) 
we find 

(
4)n(OO ("'I ("'.n-I 

Ln ~ ;: Jo dXl Jo dX2'" Jo dX2n 

X Vi(x1)'" Vi(x2n) 

=:= (~)n_l [(00 dx Vi(X)]2n 
7T (2n)! Jo 

(15) 

where 

- - 2 foo -! 
T = i dx V (x). 

7T 0 

This upper bound on the coefficients of the power­
series expansion establishes the exponential order 
of A/(g, K) to be at most 1. The argument presented at 
the end of Sec. I in I shows the exponential order to be 
no less than 1 and therefore exactly t. It follows that the 
upper limit on the number of bound states to be of the 
form of Eq. (40) of! with T replacing T. It was shown 
in I that the type3 for a class of purely repulsive 1.e.t. 
potentials is exactly 

T = L'" dr W(r)l i . (16) 

This result for the general case of purely repulsive 
Li potentials is deduced by WKB methods in a 
subsequent article. A not too rigorous argument was 
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also presented in I to the effect that the attractive 
phase shift also has a leading tLtype behavior for 
large g. This result is also spelled out more rigorously 
for the general case in the subsequent article. 

III. N.L.E.T. POTENTIALS 

We show first that a large class of n.l.e.t. potentials 
for which Eq. (5) is true with 0 < p < 1 are represent­
able by Eq. (2). Thus if O'(IX) behaves like 

O'(IX) --'lXm
-

l exp (-C/lXq
), (17) 

for IX near zero, one can readily establish from a 
steepest-descent-type estimate that, for large r, 

!V(r)ll = L"'dlX O'(IX)e--«r 

,-....; const X r-(m+lq)/(q+l) exp [-Brq!(q+l)], (18) 

so that with q = p/(1 - p) the large-r behavior 
satisfies Eq. (5). It is clear that the Jost function 
Ll(g, -k) will be analytic in k in a cut k plane with a 
cut in the upper half-plane extending to k = O. 

For the case p > 1, we deal with potentials which 
allow the representation 

(6) 

We focus explicitly on S waves, though the same 
results for real energies apply to all I waves (see 
Appendix C). Though not completely general, Eq. 
(6) represents a wide class of n.l.e.t. potentials, and 
more general cases can also be treated by the methods 
to be presented. We assume fJ > O. We verify that the 
Jost function as a function of g is entire with 
exponential order t, while as a function of k it is 
entire with exponential order p/(p - 1) as found by 
Sartori for the Born term. 

We begin with the expression for the Jost functionS 
(see I or Appendix A): 

where 

Boa) = exp (-ik;) (sin k;) 
k 

(19) 

• We have expressed the potential as -gV(r), so that positive 
V(r) corresponds to an attractive potential. For this reason g" 
appears in place of (-g)n in the Fredholm power series. 

for S waves, and is defined in Appendix C for general 
I waves. We consider complex k = ko + ikl' then 

IBi;)1 ::;;; y2 ; exp (kl + IklD 

== y2 ; exp [2klO(kl)~]' (20) 

(The constant y2 is superfluous when kl ::;;; 0, but is 
retained for uniformity.) By reproducing the steps of 
Eqs. (9)-(14) in the same notation we find 

ILnl ::;;; c~lr In"" d'l . "In"" d'2n exp [K('l + ... + '2n)] 

X Va2n)Ua2n-l + {2n) ... Val + ... + {2n), 

(21) 

where K = 8tk lO(k1), U(r) == I Vl(r)l and we have 
used the inequality 

;k = .J2 ({~n-l + {~k)l ::;;; .J2 ('2k-l + '2n)' 

Introduction of the representation of Eq. (6) leads 
from Eq. (21) to 

ILnl ::;;; c~lr f dlXlO'( 1(1) .. J dIX2nO'(1X2n)Ki lX l> '" , 1X2n), 

(22) 
where 

K K( lXI' . . . , 1X2n) 

== 50
00 

d'l .. 'L'" d'2n exp [Kal + ... + '2n) - lX~n'~n 
- lX~n-la2n-1 + '2n)P ... - IXfal + ... + '2n)P]. 

(23) 

At this point we utilize the following simple con­
sequences of the Holder inequality6 (p ~ 1): 

(24) 

to obtain 

KilXl"" ,1X2n)::;;; lood'l" ·lood'2n 

X exp {Kal + ... + '2n) - (2nl-P[1X1'l + (IXI + 1(2)'2 

+ ... + (IXI + ... + 1X2n){2n]P}, (25) 

which, after the introduction of the variables (q == l/p), 

Uk = (2n)H(lXl + ... + IXk)'k (k = 1, ... ,2n), 

(26) 
6 The Holder inequality which appears in any book on functional 

analysis has the form for discrete sums (tIp + llq = I): 
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results in 

KilXl , ... , 1X2n) 

< du .. , du 
(2n)2n(1-q) foo fOO 

- IXI(IXI + 1X2)' •• (IXI + ... + 1X2n) 0 I 0 2n 

X exp [Kn(UI + ... + U2n ) 
IXI IXI + ... + 1X2n 

- (U I + u 2 + ... + u 2n)PJ 

(2n)2nO-q) 
- 12n(K n ), 

1X1( IXI + 1X2) ••• (IXI + ... + 1X2n) 
(27) 

where Kn = (2n)I-QK. We first consider the case kl ~ 0 
so that Kn = K = O. In Appendix B we show that 

12n(0) =50'" dU I .. ·1XJdU2n exp - (u l + ... + u2n)P 

= ~ r(2n/p) 
p r(2n) 

(28) 

Combining Eqs. (22), (27), and (28) we find that 

I
L 1< 1 (32i )n (2n)2nO-Q)r(2njp) 

n - p 'TT r(2n) 

X f dlXl a( IXI ) •. J dlX2na( 1X2n) 

X __________ ~1 __________ _ 

IXI( IXI + 1X2) ••• (IXI + ... + 1X2n) 

= 2n (32i )n (2n)2n(t-q)r(2n/p)Vi
n , (29) 

p 'TT (2n)!2 

as shown in I, where 

VI == (<Xl dlX a(lX) . (30) 
Jo IX 

The bound on the power-series coefficients Ln deter­
mines7 Al(g, -k) to have an exponential order of at 
most i. Relying on the argument in I that the expo­
nential order cannot be less than i, we conclude that 
A(g, -k) has an exponential order of exactly i for 
an entire function of g. 

The convergence of A(g, -k) for k in the lower 
half-plane also entails the analyticity in k of Ll(g, -k) 
in the lower half-plane. It is a familiar resultS that the 
Jost function in this half k plane behaves like 
1 + O(lkl-l

) for large Ikl. Such a result can be derived 
by using an alternative bound to Eq. (20) 

(31) 

7 See, e.g., E. C. Titchmarsh, The Theory of Functions (Oxford 
University Press, London, 1939), 2nd ed., Sec. 8.3. 

8 See, e.g., R. G. Newton, J. Math. Phys. 1, 319 (1960), Eq. 
(4.16'). 

Utilizing the expression Eq. (AS) of Appendix A for 
A(g, -k) we find from Eq. (31) that 

IA(g, -k)1 ~ exp [I tiL") dx W(X)I} (32) 

confirming the stated estimate. The bound in Eq. 
(32) grows like a 1inear exponential in g, which in 
view of earlier results must be an overestimate for 
large g. The origin of the discrepancy lies in the choice 
of the differing estimates of IHo(~)1 in Eqs. (20) and 
(31). The underlying significance of the differing choice 
of estimates is discussed subsequently. 

We now consider the behavior of Al(g, -k) for k 
in the upper half-plane. Once again the large-Igl 
behavior is correctly determined from the bound of 
Eq. (20) while the large-Ikl behavior is derived from the 
bound in Eq. (31). We first consider the large-g 
behavior, which involves a study of the integral 
12n(k) of Eq. (27). 

12n(Kn) == LGOdu1 .. ·L<XJdU2n 

X exp [Kn(U l + ... + U
2n ) 

1X1 1X1 + ... 1X2n 

- (UI + ... + U 2nY] 
<L"'dUI " ·1"dU2n 

X exp [~n(!ll + ... + u2n ) - (u l + ... + U 2nY'J 

(33) 

where lXi ~ (3 has been used. In Appendix B the 
integral J2n(Kn/(3) is estimated by the steepest-descent 
method and shown to behave for large n like 

J 2n (~n) '"" K(lm k)-in-i(1-q)[B(Im k)l/(P-O 

2n/p 
X exp (C 11m kIP/(p-o)r _n_ (34) 

r(2n) , 

with B, C, and K denoting constants. Tn conjunction 
with Eqs. (22) and (27) one finally finds an upper 
bound for ILnl of the form 

ILnl ~ [B(Im k)l/(P-O 
2n 

X exp (C 11m kIP/(P-l»fn n (35) 
(2n)! r(2n) 

This type of large-n behavior determines7 Ll(g, -k) to 
represent an entire function of g of exponential order 
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at most t. The lower bound t for the exponential order of the integral 
in g for k in the upper half-plane can be achieved (42) 
through employment of the inequality 

together with a lower bound for V(r) in the form of a 
square-well potential S(r) such that I V(r) I ;;::: S(r) 
everywhere. The resulting lower bound on Ln is 
readily related to the coefficients of the power­
series expansion for the Jost function of S(r) at the 
complex energy k' = i 1m k. The latter Jost function 
is explicitly verified9 to have an exponential order 
of t. 

The k dependence of the bound in Eq. (35) corre­
sponds to an entire function of k of infinite expo­
nential order. This is a gross overestimate originating 
in the crudeness of the bound in Eq. (33). A more 
accurate bound for the k behavior can be achieved by 
choosing for I V(r)1 a representation of the form 

W(r)1 = f doc p(oc) exp (-ocr1'), (37) 

as well as the bound 
1 

IHi~)1 ~ - exp (2kl~)' 
Ikl 

(38) 

This bound will be bad for Ikl = 0, and we rely on 
other argumentslO for the basic fact that /l(g, -k) is 
analytic in the neighborhood of k = 0 if for some 
a > 0, V(l')ear -+ 0 with diverging r. Substitution into 
the expression Eq. (A5) for Ln leads to 

1 roo rrn- 1 

ILnl ~ (I kit Jo dri .. 'Jo dr ne2klrll V(rl ) ••• V(r n)1 

= t roo dr e2ImkrW(r)1 [W(r)]n-I 
(2Iklt(n - t)!Jo ' 

(39) 
where 

(40) 

Then 

l/l(g, -k)1 ~ 1 + y Loo dr e2k,r W(r)1 eyW(r) 

< 1 + yerV1L'" dr e2k1' W(r) I 

= 1 +yeYVlfdOCp(oc)Loodre2klHrP, (41) 

where Iyl = Ig/kl and VI == S: dr I V(r)l. The behavior 

• Reference 8, Sec. 10. 
10 Reference 8, Sec. 3. 

for large kl may be determined through the use of a 
steepest-descent estimation technique or by expansion 
of a power series in k i . Both of these methods which 
are explicitly presented in Sartori's article, show 
/leg, -k) to correspond to a function of k of ex­
ponential order of at most p/(P - I). In the case of 
the power-series expansion, one must note that the 
coefficients of the power-series expansion determined 
the exponential order through standard theorems. 7 

The representation, Eq. (37), can in fact be dispensed 
with in favor of an asymptotic statement of the form 

W(r) I ,--, exp - [prP(l + O(rP)]. (43) 

That p/(P - 1) is the true exponential order in k 
for potentials with the representation, Eq. (6), can be 
verified if the potential can be bounded pointwise 
from below by a nonnegative potential U(r) of the 
form 

U(r) = arm exp (-prP). (44) 

Explicit calculation of the first Born term in the Jost­
function expansion along the lines of the calculation 
by Sartori gives a contribution which has exponential 
order p/(P - I), and the result is established. 

IV. DISCUSSION 

We noted that different inequalities on the modulus 
of the Green's function used to estimate the large­
Igl and large-Ikl behavior of the Jost function were 
used. These led to the general result that the best 
possible estimates on the behavior of the Jost function 
in one variable provided poor estimates in the other 
variable. This situation was necessitated by the need 
for bounds that would make for feasible estimations. 
One can qualitatively understand why doing one's 
best for large values of one variable would tend to 
denigrate the estimates for large values of the other 
variable. The modulus of the Jost function is a re­
ciprocal measure of the penetrability of the repulsive 
potential. Strong coupling tends to decrease the 
penetrability, while high energy tends to increase it. 
Thus the correct large-g dependence of the Jost 
function requires realistic appraisal of the Green's 
function for small r which is expressed by the in­
equality (for real k): 

IHi~)1 = I e-
ik s~n k~ I ~ ~, 

while the large-k dependence is better expressed 
through 
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The present results have been derived for S waves 
only, but we show in Appendix C that the inequalities 
of Eq. (20) (for 1m k ~ 0) and Eq. (31) remain 
essentially valid for higher partial waves. 

Note Added in Proof: I am indebted to Dr. D. 1. 
Land for showing that the factor (4/7T)n on the right­
hand side of Eq. (15) is superfluous. A similar type 
result was communicated to the author recently by 
Dr. K. Chadan. 

A more general result for the lower half k plane can 
be obtained in place of Eq. (32) in terms of an ex­
pression involving 

[ 
(00 x lV(x)\ ] 

exp \g\ Jo dx 1 + \lmk\ x . 

APPENDIX A: THE JOST-FUNCTION SERIES 

The radial partial wave ofEq. (1) can be transformed 
into the integral equationslO 

ul(r) = kril(kr) + gkr f dr'r'[Mkr)h:+)(kr') 

- Mkr')h~+)(kr)]V(r')uI(r') 

== krMkr) + g f dr'{jl(r, r'; k) V(r')ul(r'), (At) 

for the scattering case with K2 = k 2, and 

ul(r) = igW f dr'r'UI(iw')h~+)(iw') 
- il(iW')h~+)(iw)]V(r')uI(r') 

== g f dr'~l(r, r';,u) V(r')ul(r'), (A2) 

for the bound-problem case with K2 = _,u2. The 
functions jl(kr), hl+)(kr) are the spherical Bessel 
functions obeying 

.() .(k) sin(kr-I7T/2) 
it 0 = 0, it r ,....., , 

r-> 00 kr 

(A3) 

and the corresponding quantities in Eq. (A3) are the 
appropriate analytic continuations to imaginary k. 
The lost function, as is well known, is identical with 
the Fredholm determinant,4 which has a well-known 
power-series expansion. For Eq. (AI) this power 
series has the form4 

00 
l(g, k) = 'J,(-g)nLn , (A4) 

n=O 

where 

Ln = k 50
00 

drl f1dr2 .. ·fn-l dr nrlh(+)(krl) 

X {j(rl , r 2 ; k) ... ~(r n-l' r n; k) 

x r nMkr n)V(rl ) ... V(r n) 

= 50
00 
drl·· J:.-ldrnR1(rl , r2)··· R1(rn , 0) 

x V(rl)· .. V(r n), (A5) 

where 

- 2 h~+)(kr) (+) (+) 
H1(rs) = kr () UI(kr)h l (ks) - il(ks)h l (kr»). 

h/ (ks) 

(A6) 

[The suppressed energy variable is k, while in Eqs. 
(20), (31), and (36) it is -k.] From the inequality 

\ Hks) I < Ir - sl (A7) 

proven in Appendix C we obtain the bound 

Through the introduction of the variables 

~n=rn' ~j=rj-ri+l (j=I,···,n-l) 

we find an alternative expression for the right-hand 
side of Eq. (A8) 

ILnl ~ 5000d~l·· ·50ood~n~l··· ~n 
X 1V(~n)V(~n-l + ~n) ... Val + ... + ~n)l· 

(A9) 

Equations (A8) and (A9) correspond to the right-hand 
side of Eq. (9). 

For the bound-state case one finds analogously 

00 

~(g,,u) == 'J, gnLn' (AIO) 
n=O 

with 

Ln = i,u 50
00 

drl .. ·fn
- 1dr nrlhi+)(iWl) 

with 

X ~l(rl' r2;,u)·· ·~l(rn-l' rn;,u)rnMiWn) 

= 5000drl .. . 50rn-'drn 

x H1(rl , r2)··· H1(rn_1 , rn)H1(rn , 0), (All) 

H1(rs) = [iW2hi+)(iW)/hi+)(i,us)] 

x UI(iW)h;+)(i,us) - Mi,us)h;+)(iW)], (A12) 
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for which one again has an inequality (see Appen­
dix C): 

I Ht(rs) I S Ir - sl, 

leading again to the bound, Eq. (9). 

(Al3) 

APPENDIX B: EVALUATION OF SOME 
INTEGRALS 

We consider first the integral In defined by 

In == loo dU l .. ·loo dUn exp -(Ul + ... + Un)P. (Bl) 

We set Uj = v~ and find 

In = 2nloodVl .. ·loo dvnvl ... Vn exp -(vi + v~Y 

= (;fI/2

d9?1" ·l .. /2d9?nloodrlvl·· ·loodrnVn 

X exp -(vi + ... + v~)p. (B2) 

We introduce the Cartesian variables Yt,"', Y2n 
defined by 

Y2k-l = Vk cos 9?k' 
hk = Vk sin 9?k (k = I, ... ,n), (B3) 

which leads to 

In = (;f loo dYl .. ·loo dY2n exp -(yi + ... + Y~nY, 
(B4) 

which in 2n-dimensional spherical coordinates can be 
written 

In = 02n(;floodY In-1e-
y

2P = 2~(;f02nrG), 
(B5) 

where 02n is the total spherical angle in 211 dimensions 
and 

2n 
2 '" 2 Y =£.,Yj· 

j=1 

From the known expression 02n = 21Tn jr(I1), we find 
that 

I = ~ 4n r(n/p) 
n p r(n) , 

(B6) 

as expressed in Eq. (28). 
In Eq. (33) we encounter an integral of the form 

In(a) == loodUl .. ·loodUn 

X exp [O"(UI + ... + un) - (u l + ... + unY], (B7) 

where 0" is to be a large parameter. The transforma-

tions applied to evaluate In result in 

In(O") = 02n(';floodY In-lexp(O"l-lP) 

== 02n(;f Vn(O")· (88) 

A steepest-descents type of estimate may be applied 
to Vn(O"). Setting 

hey) = _y2P + O"y2 + (211 - I) lny, (B9) 

we find that the saddle point Yo for which h'(yo) = 0, 
obeys the equation 

2p 0" 2 2n - 1 
Yo = - Yo + -- . (BI0) 

p 2p 
With 

1 8!k 0" = 0" = - K = __ 1 nU-l/p) == (In(l-l/P) 
n f3 n/2 f3 

one finds for large 11 that 

Yo""'" An!P[1 + 0(1/11)], (B11) 
where 

(BI2) 

so that for large ° (i.e., large k 1): 

(
O)1/(2P-2) 

A«(J),....., -
p 

(B13) 

Then, for large 0, 

h(yo) = 0"(1 - I/p)y~ + (2n - 1)(ln Yo - 1/2p) 

I I + [PCP - 1) llP/(p-l) ,.....,-n nn u p pP/(p-l) 

+ -- In (} - -- - - n, 1 In PI] 
p - 1 p - 1 2p 

(BI4) 

and 

h"(yo) = 4[(1 - p)O" - pen y~ t)] 
,.....,4(1 - p)(Jn(l-l/P) (BI5) 

and the steepest-descent estimate combined with 
factors in Eq. (B8) leads to the result in Eq. (34). 

APPENDIX C: HIGHER PARTIAL WAVES 

The inequalities of Eqs. (20) and (31) will be 
established for general partial waves for 1m k S O. 
The 1m k > 0 case with higher partial waves will not 
be dealt with presently. In I the inequalityll 

I 11t(rs)1 = Ikr2[hl+)(ks)it(kr) 
- h:+)(kr)it(ks)]h:+)(kr)/h(+)(ks)1 

s Ir - sl, (Cl) 

(r > s) was quoted but not proven. We now prove it. 
We define 

(C2) 

11 Reference 7, line following Eq. (53). 
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so does 

uo(r) == u+(r) r~. Jo u+(r) 
Clearly uo(o) = 0, while, for large r, 

uo(r) '"'"' 2~k [e-i(kr-ln/2) + Ceik',] + oe) 
with C some constant, since for large r: 

u+(r) '"'"' e-i(kr-ln/2) [1 + O(l/r)]. 

This determines that 
uo(r) = rHkr) 

whence 

[h:+)(ks)jz(kr) - h;+)(kr)jz(ks)] 
1 fT dr' = - u+(r)u+(s) --,-2 . 

krs 8 u+(r ) 
Then 

(C3) 

(C4) 

(C5) 

(C6) 

(C7) 

(C8) 

(C9) 

Since, as we shall show lu+(r)12 is a monotonically 
decreasing function of the radial argument we readily 
conclude that 

I Rks) I ~ Ir - sl· 

We offer a physical proof that 

lu+(r)12 == k2r2 jh<+)(kr)1 2 

is a monotonically decreasing function of r. Consider 
a particle of momentum k moving in one dimension in 
the direction of the positive x axis through the 
potential barrier 

U(x) == ()(x - a) l(l + 1) (ClO) 
x 2 

(see Fig. 1) with a some arbitrary nonnegative value 
of x. [()(x) denotes the step function which is unity for 
positive x.] The wavefunction of the particle in the 
region of this barrier is of the form 

1p(x) == B x h;+)(kx). (Cll) 

Clearly from physical considerations the probability 
density p = 11p(X)21 will be monotonically decreasing 
in the direction of increasing x, first due to reflection 
and second due to the increase in local velocity with 
increasing x, since current density is conserved. In 
fact if I> I' 

(Cl2) 

since the corresponding repulsive barrier is weaker. 
The parallel inequality [Eq. (16)] of I 

IH!(rs)1 = IW2[h;+)(i,us)jz(iW) - h:+)(iW)j!(i,us)] 

x h:+)(W)/h:+)(,us)1 ~ 1, (Cl3) 

UI~) 

I 

) 

y. 

FIG. I. A stream of monoenergetic particles with momentum to 
k travels from x = - 00 to x = + 00, encountering the repulsive 
potential barrier in region II, U(x) = O(x - a)/(l + 1)0.": Reflection 
by the barrier in region II causes the probability density to decrease 
with increasing x. 

can be proven by similar methods. In a parallel 
notation, let 

(CI4) 
which obeys 

[~ - ,u2 - /(l + l)]v+(r) = 0, 
dr2 r2 

(CI5) 

then 

(C16) 

is another solution of the same equation to be identi­
fied as 

(Ct7) 
so that 

IH!(rs)1 ~ Iv+(r)1 2 
Q' fr dr' 

s [v+(r')]" 
(C18) 

The function v+(r) is identical with 

(
2 )! v+(r) = e(-irr)/21l+!) : Kl+l(r), (CI9) 

where Kn(r) is the Bessel function of imaginary 
argument, which damps exponentially for large 
positive values of its argument. In terms of the integral 
representation12 

Kn(r) = ret) (~)n ('Xl dt e-Z'(t2 _ 1)n-1 
r(n + t) 2 Jl 

!2-n I fro = 7T _ du e-"(u2 _ z2)n-~. (C20) 
r(n + t) zn-l z 

We readily find by explicit differentiation that 

Iv (r)1 = r- l+1 du e-1l(u2 - r2)1 (C21) 2-
l fro 

+ r(1 + 1) T 

12 G. N. Watson, Theory of Bessel Functions (Cambridge Uni­
versity Press, The Macmillan Co., New York, 1944), 2nd ed., Sec. 
6.3. 
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decreases with increasing r. This, via Eq. (C18), leads 
to the inequality of Eq. (Cl3). 

in view of earlier results. From the inequalities for 
real positive k 13 : 

An inequality of the form 

I Hl(rs) I ~ A/k (C22) 
luo(r)1 ~ C(~)l+l, (C24a) 

1 + kr 

can be established with A independent of I. In terms of 
the previous notation (r > s): 

I HI (rs) I = .! I uo(r)u+(s) - uo(s)u!(r) I 
k u+(s) 
1 

~ k [I uo(r)u+(r) I + luo(s)u+(r)l], (C23) 

lu+(r)1 ~ C __ r - , 
( 

k )-1 
1 + kr 

(C24b) 

one readily concludes that 

(C25) 

13 Reference 8, Eqs. (3.9). 
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Derivation of Nonrelativistic Sum Rules from the Causality 
Condition of Wigner and Van Kampen 

K. CHADAN* AND A. MONTES· 

Laboratoire de Physique Theorique et Hautes Energies,t Orsay, France 

(Received 19 January 1968) 

Nonrelativistic sum rules previously obtained for each phase shift in the framework of elastic scattering 
by a local central potential of finite radius are shown to follow from the causality principle of Wigner and 
Van Kampen, under the assumptions that the phase shift satisfies the Levinson theorem and that, at high 
energies, the integrability condition holds. In fact, it is shown that under these assumptions, any 
interaction of finite radius which is causal in the sense ofWigner and Van Kampen is equivalent to a local 
potential of the same radius. First we recall the sum rules and mention some of their applications. 
We give a brief survey of their proof in potential scattering, which is based essentially on the analytic 
and asymptotic properties of the Jost function (or the S matrix). Then we show that, under the 
assumptions mentioned above on the phase shifts, the properties of the R matrix derived by Wigner and 
Van Kampen from causality lead to the same analytic and asymptotic properties of the Jost function 
(defined now directly from the S matrix) as in potential scattering, providing, therefore, sufficient 
information for the direct derivation of the sum rules. Finally, using the Gel'fand-Levitan and 
Marchenko integral equations of the inverse-scattering problem, we show that, in fact, this information 
is sufficient to entail that the causal interaction of Wigner and Van Kampen is equivalent to a local 
potential of the same radius. 

I. INTRODUCTION by E j = -y~,j = 1,2,'" , n, the sum rules read2 

In a previous paper,! one of the authors has derived 
nonrelativistic sum rules in the framework of potential 
scattering with central potentials of finite radius. 
These sum rules are integro-differential relations 
between each of the phase shifts and the binding 
energies of the possible bound states with the same 
angular momentum. Denoting these binding energies 
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Energies, B§.timent 211, Faculte des Sciences, 91-0rsay, France. 

t Laboratoire associe au C.N.R.S. 
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where M is the mass of the particle. The energy is then given by 
E = k", k being the wave number. For negative values of k, the 
phase shifts are defined by (lz(k) = -(lz(-k). 

r+ dbl =_2! Yj -l.foodZ 
dk j=1 k2 + y~ 1T-00 

log Icos [zr + Mk + z) - bt(k) + ()(k + z) 7' ()(k)]1 
x 2 ' z 

(1) 

()(x) = -2,i tan-1 Y}. (2) 
}=1 X 

They are valid for all values of r greater than the radius 
R of the potential, so that we have in fact a continuous 
infinity of sum rules . 

Different types of sum rules have also been obtained 
in the more general case of potentials which may have 
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decreases with increasing r. This, via Eq. (C18), leads 
to the inequality of Eq. (Cl3). 

in view of earlier results. From the inequalities for 
real positive k 13 : 

An inequality of the form 

I Hl(rs) I ~ A/k (C22) 
luo(r)1 ~ C(~)l+l, (C24a) 

1 + kr 

can be established with A independent of I. In terms of 
the previous notation (r > s): 

I HI (rs) I = .! I uo(r)u+(s) - uo(s)u!(r) I 
k u+(s) 
1 

~ k [I uo(r)u+(r) I + luo(s)u+(r)l], (C23) 

lu+(r)1 ~ C __ r - , 
( 

k )-1 
1 + kr 

(C24b) 

one readily concludes that 

(C25) 

13 Reference 8, Eqs. (3.9). 
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R of the potential, so that we have in fact a continuous 
infinity of sum rules . 

Different types of sum rules have also been obtained 
in the more general case of potentials which may have 
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an infinite tail. 3 These new sum rules, more complicated 
than (1), are of course also valid inside a potential of 
finite radius (r ~ R). If the potential has a finite radius 
R, and if r is outside this radius, the new sum rules, 
for the S-wave case, read 

r + dDo = S(k, r) _ !:. roo dk' 
dk 7T )-00 

x log I k sin [k'r + DoCk')] I/(k' - kr2 
k' sin [kr + Do(k)] , 

r 2 R, (3) 
where S(k, r) is given, in general, by4 

~ [Yj(r) Yj J S(k, r) = 2...::., 2 2 - 2 2' 
j~l k + Ylr) k + Yj 

(4) 

iyj(r) being the imaginary zeros, in the upper-half k 
plane, of the regular solution CfJ!(k, r) of the radial 
Schrodinger equation, normalized according t05

•
6 

lim r-!-1[(21 + l)!!]CfJ!(k, r) = 1. (5) 
r .... O 

For other waves, one simply has to replace in (3) the 
sine functions by appropriate combinations of the 
spherical Hankel functions w!(kr), and exp (±iD!).5 

Both types of sum rules may be used in practice to 
calculate in a very simple and direct manner the 
radius of the potential and the energies of the bound 
states from the knowledge of the phase shift, without 
using the Schrodinger equation. Such calculations 
have been performed in the case of neutron-proton 
singlet and triplet interactions at low energies.4 The 
results are in very good agreement with the experi­
mental results of effective-range theory and the 
deuteron binding energy. As is seen from (1) and (3), 
no internal quantities like the potential or the internal 
wavefunction appear in any form in these sum rules. 7 

3 K. Chadan, Nuovo Cimento 41,115 (1966); 44, 838 (1966). 
4 K. Chad an and A. Montes Lozano, Phys. Rev. 164, 1762 (1967). 

It is shown there that (1) these zeros, and their complex conjugates, 
are the only complex zeros of qJ,(k, r); (2) y;(r) are monotonically 
increasing functions of r; (3) lim y;(r) = y;. 

,-..00 
• For the study of the solutions of the radial Schriidinger equation 

we refer the reader to the review article by R. G. Newton, J. Math. 
Phys. 1, 319 (1960). We shall follow the notation ofthis article. 

• R. G. Newton, Scattering Theory of Waves and Particles 
(McGraw-Hill Book Co., New York, 1966); V. de Alfaro and T. 
Regge, Potential Scattering (North-Holland Pub!. Co., Amsterdam, 
1965). 

7 At first sight, it may seem that, even for r ~ R, the zeros 
{iy;(r)} are somehow explicitly related to the internal region because 
they are the zeros of qJ,(k, r) normalized according to (5). In the 
absence of any information on the internal region, the wavefunction 
outside is given by (see Ref. 5) qJ,(k, r) = A(k)[u,(kr) - tan b,v,(kr)] 
with an arbitrary A(k), which depends explicitly on the internal 
region. However, it is shown in Ref. 4 that {y;(r)} depend explicitly 
on r, with strictly positive derivatives, so that they necessarily come 
from the expression inside the bracket, and not from A(k). It follows 
that, for r ~ R, {y;(r)} and {y,} can be calculated directly from the 
phase shift. This is of course a matter of principle. In practice, one 
knows the phase shifts only numerically, and an analytic continua­
tion outside the real axis of the expression inside the bracket is in 
general impossible. This is why, in practice, one has to use the sum 
rules to obtain {y;(r)} and {y;}, as done in Ref. 4. 

One may therefore ask whether it would be possible 
to derive the above sum rules from some general 
principles, without making use of the Schrodinger 
equation in the interior region. Everything in (1) and 
(3) being directly given by the phase shifts [or the R 
matrix of Wigner, formula (44) below], one thinks 
immediately of the causality principle, and its con­
sequences on the analytic properties of the R matrix, 
as an "ersatz" for the Schrodinger equation in the 
interior region. The purpose of the present paper is to 
show that, indeed, the sum rules can be directly 
derived from the results of Wigner on the R matrix.s 
In fact, one has to make, at some point of the proof, a 
mild technical assumption about the asymptotic 
behavior of the phase shifts in the limit of infinite k, 
namely, that 

D!(k) r-..J -N7T + 'Y}(k), (6a) 
k .... oo 

where N is a nonnegative integer, and that 

f\-ll'Y}(k)1 dk < 00, (6b) 

which is true in general in potential scattering if (see 
Appendix A): 

iRr W(r) I dr < 00. 

The reason for taking N nonnegative is as follows. As 
we shall see later, the phase shift is an analytic function 
of k in the neighborhood of the real axis, and because 
of the symmetry property D!( -k) = -D!(k), we take 
D!(O) = O. On the other hand, if the Levinson theo­
rem5-which is true in potential scattering-holds, we 
have 15(00) = -n7T, n being the number of bound 
states. Here, wishing to derive our sum rules with a 
finite number of bound states, we must assume 
something of the sort (6a). Moreover, the interaction 
cannot be equivalent to a local potential unless the 
Levinson theorem holds. Although we have some 
reasons to believe that condition (6a) is also a con­
sequence of the causality condition and the finiteness 
of the number of bound states, and not an extra 

8 E. P. Wigner, Proceedings of the International School of Physics 
"Enrico Fermi," Varenna, Course 29 (Academic Press Inc., New 
York, 1964). These lectures contain complete references to earlier 
works. The R-matrix theorem was first proved by Wigner and co­
workers from the assumption that the Hamiltonian is a self-adjoint 
operator bounded below and having a finite radius. It was then 
realized that the same conclusions on the properties of the R matrix 
could be obtained if one uses only the causality condition. Both 
approaches are described by Wigner in the above lectures. See also 
N. G. Van Kampen [phys. Rev. 91, 1267 (1953)], who studies the 
implications of the causality condition directly on the S matrix. 
His results are somewhat weaker than those of Wigner on the R 
matrix. However, with some weak additional assumptions, Van 
Kampen [Physica 20, 115 (1954)], is able to show that the S matrix 
has analytic properties closely related to those of Wigner's R matrix 
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assumption, we admit it as such with no further 
comments. 

In Sec. II, we give, for the sake of completeness, a 
brief survey of the essential mathematical tools and the 
analytic properties of various functions which are used 
to prove the sum rules in potential scattering. In Sec. 
III, we summarize the analytic properties of the R 
matrix obtained by Wigner and Van Kampen from 
causality, and show their bearings on the properties 
of the functions considered in Sec. II. It turns out that 
the analytic properties thus obtained are identical 
with those of Sec. II, and therefore that the sum rules 
can be derived directly from causality. In fact, in Sec. 
IV, we prove that causality and conditions (6a), (6b) 
are equivalent to a local potential. In other words, we 
show that ~ny causal interaction for which the phase 
shift satisfies (6a), (6b) is equivalent to a local potential. 
Finally, in the several Appendices we work out in 
detail the proofs of some technical points which 
otherwise may obscure the progression of the reason­
ing. 

II. MATHEMATICAL TOOLS AND A BRIEF 
SURVEY OF THE PROOFS IN 

POTENTIAL SCATTERING 

The definitions and theorems we begin this section 
with are given in the book of Boas on entire functions,9 

to which the reader is referred for details and original 
references. We deal here exclusively with entire 
functions of order one and finite type. They are 
commonly called functions of exponential type 
(exponential type T, say, if the type is needed). The 
Phragm6n-Linde16f indicator function of such a 
functionj(z), is defined by 

ht<e) = lim sup r-1log If(rei6)1. (7) 
r-+ 00 

The function hie), for a given value of e, is either 
finite or - 00. 

Class P: This class has been introduced by Levin.9 

Let j(z) be an entire function of exponential type T 

(finite). j(z) is said to belong to the class P if the two 
following conditions are satisfied: 

(a) j(z) has no zeros in 1m z < 0, (b) hf ( -a.) ~ 
hf(a.) for some a. in the range 0 < a. < 7T. 

For functions of the class P, we can prove the 
following. 

Theorem ]9: Ifj(z) EP, one has 

I j(z) I ~ Ij(z*)1 (8) 

8 R. P. Boas, Entire Functions (Academic Press Inc., New York, 
1954). 

for all z in 1m z < O. In other words, if (8) holds on 
one ray, even in the weak form of condition (b) above, 
it holds on all rays. 

This theorem is essential in what follows. As we 
shall see, we have mostly to deal with functions of 
the form 

g(z) = exp (ia.)j(z) ± exp (-ia.)j( -z), a. real, (9) 

where j(z) E P, with strict inequality sign in (8),10 
and 

j(-z) = [j(z*)]*. (10) 

It is then obvious that because of (8), Ij(z) I > Ij( -z)1 
if 1m z < O. Therefore, g(z) cannot vanish in the 
lower half-plane. The same is true in 1m z > 0 because 
there Ij(z) I < Ij( -z)l, so that, finally, the zeros of 
g(z) are all real. The importance of this remark stems 
from the fact that our sum rules (1) are nothing else 
but the results of the following theorems of Paley 
and Wiener,9 and Pfluger,9 applied to appropriate 
solutions of the Schrodinger equation outside the 
potential (r > R), which have real zeros in the k 
plane (a fact which is proved exactly in the above 
manner). 

Theorem 211: If J(z) is an entire function of 
exponential type with real zeros only, and j(O) = 1, 
the three conditions 

hf( ±~) = !~~ lyr1If(± iy)1 = 7T(B =F 1m a.), (lla) 

lim n(A) = 2B, (llb) 
A-+oo A 

lim P fA log 1~(x)1 dx = -7T2J3 (llc) 
A-+oo J-A x 

are equivalent, n(A) denotes the number of zeros of 
j(z) in Izl < A, counted according to their multiplicity, 
and P means the principal value of the integral. 

Suppose now that j(z) has arbitrary zeros, real or 
complex, and is bounded on the real axis. We have the 
following theorem on the density of the zeros. 

10 It is obvious that if fez) E P, (8) holds with strict inequality 
sign for f,(z) = eiEZf(z), no matter how small € (> 0) is. It follows 
that g fez), defined by (9) with fE(z), has all its zeros real for any 
fez) E P. In general, by the continuity theorem, g(z) = lim g.(z) 

'-0 
will also have only real zeros, except in some pathological cases 
where the continuity theorem breaks down. 

11 This theorem, as stated here, is an obvious modification of the 
Theorem 8.2.1. of Ref. 9. According to Hadamard's factorization 
theorem of entire functions, we multiply the canonical product 
considered in the book by exp (cu) to cover all cases. If the function 
is real on the real axis, we have 1m a. = O. This is in fact what hap­
pens later, when we use Theorem 2 to derive (I). 
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Theorem 312 : Let fez) be an entire function of 
exponential type T in each of the half-planes 
1m z > 0 and 1m z < O. Let I(z) be bounded on the 
real axis. If we denote by n ± (A) the number of zeros 
with modulus less than A in Re z > 0 and Re z < 0, 
respectively, then 

lim n+(A) = lim n_(A) = ~ . (12) 
A--+oo A A--+oo A 7T 

In other words, the zeros have the density Tj7T in 
each of the above half-planes (total density 2T/7T). 

For functions of exponential type with arbitrary 
zeros, we have the following theorem. 

Theorem 413: Let fez) be an entire function of 
exponential type T, Zn its zeros, and f(O) = 1. The 
conditions 

C 
~ Isin Onl 

7T = k.--- < 00, 
1 r n 

the Jost function/z(k) is defined by 

({iz(k, r) = tik-H[/I( -k)fz(k, r) 

- (-l)1t(k)ft( -k, r)], (16) 

({iz being the regular solution, normalized according 
to (5). The properties of the above functions are as 
follows5 : 

(A) ({il(k, r), for each value of r, is a reaP4 even 
entire function of k of order 1 and type r. Its asymp­
totic properties in the k plane are given by 

({il(k, r) = k-H sin (kr - tl7T) 
Ikl--+ 00 

+ o(lkl-l-l exp 11m kl r). (17) 

(B) For r ~ O,fz(k, r) is regular analytic in 1m k < 0, 
and continuous on 1m k = 0 except at k = O. Also, 
ifr ~ 0, 

lim k'l'l(k, r) (18) 
k--+O 

and 
(13a) exists if the limit is carried out in the region of 

regularity. As Ikl ---* 00 in 1m k ~ 0, we have 

lim n(A) = 2B, 
A--+oo A 

(13b) 

together, are equivalent to 

lim ~ fA log 1~(x)1 dx = -7T(B - C). (13c) 
A--+oo7T -A X 

As we shall see, Theorems 3 and 4 are the basic 
tools for the derivation of the sum rules (3). 

Having now collected all the necessary definitions 
and theorems, we show briefly how the sum rules 
may be derived in potential scattering. As is well 
known, if the potential satisfies 

Loo r W(r)1 dr < 00 (14a) 

and 

Loo r21 V(r)1 dr < 00, (14b) 

the scattering process and the bound states may be 
entirely described in terms of the so-called Jost 
function I!(k) (Refs. 5 and 6). If we denote by 
I!(±k, r) the two independent solutions of the radial 
Schrodinger equation satisfying 

lim exp (±ikr)fz(±k, r) = iI, (15) 
r--+ 00 

12 N. Levinson, Gap and Density Theorems (Am. Math. Soc. 
Colloquium Pub!., No. 26, New York, 1940), Chap. III; P. Koosis, 
Bull. Soc. Math. France 86, 27 (1958). The density of the zeros is 
defined by lim n(A)/A, n(A) being the number of zeros in Iz! < A 

A_oo 
counted according to their multiplicity. Similarly, one can define 
the density in a half-plane (left, right, upper, lower, ... , etc.). 

1S Reference 9, p. 143, Theorem 8.41. 

ft(k, r) = i!e-ikr + o(exp 1m kr). (19) 

The "symmetry" property15 

II(-k*, r) = (-I)Z[ft(k, r)]* (20) 

follows from the radial Schrodinger equation [V(r) 
real] and (15). Notice that both k and -k* are in the 
same half-plane. 

If the potential has a finite radius, k'jz(k, r) becomes 
an entire function of k for r ~ O. 

(C) The Jost function, which can also be defined by 

Iz(k) = k Z W[I!(k, r), ({iz(k, r)], (21) 

W being the Wronskian, is a regular analytic function 
of k in 1m k < 0, and continuous in 1m k ~ O. From 
its definition and (20), it follows that, wherever it 
exists, 

ft( -k*) = [ft(k)]*. (22) 

This shows thatft(k) is real on the imaginary axis. 
Note that, in general, (16) makes sense only for real 

values of k. In the limit of large k, we have 

lim fz(k) = 1. 
Ikl--+ 00 

Imk:SO 

On the real axis, according to (22) we have 

(23) 

Iz(±k) = Ift(±k)1 exp [±ib!(k)] (24) 

14 Real in the sense of analytic functions. It is· real on the real 
axis, so that, by the Schwarz reflection principle, gJl(k*, r) = 
gJl(k, r)*. Also, because of its evenness, gJl is real on the imaginary k 
axis. 

15 It follows from (20) that ilJ,(k, r) is real on the imaginary axis. 
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and 
(25) 

Gz(k) being the phase of h(k). Now, using this, to­
gether with (IS) and (16), we see that, for k real, we 
have 

<plk, r) ~ (-1)ik-z-11ft(k)1 sin [kr - lIn + Gz(k)J, 
,-"00 (26) 

so that Gz(k) is the phase shift. The S matrix on the 
real axis is therefore given by 

SI(k) = exp [2io l (k)] = II (k)[/1 ( _k)]-l. (27) 

If there are bound states, they are determined by 
the zeros of II(k) in 1m k < 0.16 These zeros, 
k j = -iX;, j = 1,2, ... , n, are simple, situated on 
the imaginary axis, finite in number, and they corre­
spond to bound states with energies E; = - X~. On 
the r~al axis,ll(k) never vanishes.I6 Finally, the phase 
shifts satisfy the Levinson theorem 

(28) 

If the potential vanishes outside a radius R, II(k) 
becomes an entire function of order 1 and type 2R. 
More precisely, 

[II (k) - 1] exp (2i k R) = 0(1), 

Ikl ~ 00, 1m k > O. (29) 

This, together with (23) and Theorem 1 show that,I 
for r;:::: R, 

n k - iX' 
g(k, r) = IT --.-' exp (i k r)fl(k) E P, (30) 

;~l k + IX; 

its type being r. Note that, if r > R, g(k, r) satisfies (8) 
with strict inequality sign. Also, g(k, r) satisfies (22) 
[or (10)] in the entire plane. As is easily seen, all of the 
above properties are also valid for g[(k' - k), r], k 
being fixed and real. Combining now exp (i(X)g[(k' -
k),r]withexp (-i(X)g[-(k' - k), rl, with an appro­
priate phase (x, we obtain functions similar to (9), with 
real zeros, to which, after normalizing them to 1 at 
k' = 0, we may apply Theorem 2. This, after some 
easy algebra, leads to two kinds of sum rulesY If 
we take the plus sign in the above combination, we 
obtain (1), whereas if we take the minus sign, we 
obtain formulas similar to (3) in which S(k, r), the 
zeros now being all real, is given by (4) with all 
y;(r) = 0 [i.e., by a sum identical with the one that 
figures in the right-hand side of (I)], but where ()(k), 
Eq. (2), is present in the argument of the sine functions. 

16 We leave out the possibility of h(O) = 0, which corresponds to 
a resonance (/ = 0) or a bound state (/ ~ 0), at zero energy. There 
is no loss of generality in doing so. One can handle the problem in 
the same way (Ref. 1) as whenj.(O) ~ O. 

17 For details, see Ref. J. 

The derivation of (3) is similar to that of the previous 
case. We consider now the wavefunction <PI outside 
the potential (r;:::: R). It is given by (16) where 
Iz(k, r) is now the free solution" 

wl(k r) = -i k r h:2)(k r), (31) 

wz(z) = ile-iZ[I+0(~)J, (32) 
1'1-00 IZI 

hi2 )(z) being the spherical Hankel function. From (17) 
and Theorem 3, it follows that3 the zeros of <Pz have a 
total density 2 r/7T. This, together with the properties 
of the complex zeros4 ±iYj(r) of <PI' shows that we can 
apply Theorem 4 to <Pl(k' + k, r)!<PI(k, r), k being 
fixed and real. The net result is the sum rule (3) and' 
the similar ones for higher I. 

From the above considerations, it is now clear 
that the essential ingredients in the derivation of the 
sum rules are the analytic and asymptotic properties 
of Il(k), namely that II(k) is an entire function of 
order I and type 2R, satisfies (22), (23), and (29), 
and that its zeros in the lower half-plane are pure 
imaginary and correspond to bound states. To derive 
the sum rules from causality and the analytic proper­
ties of the R matrix, we have to show that the S matrix 
[see formula (47) below] can be written in the form 
(27), where II(k), the "Jost function," has all the 
essential properties, mentioned above, of the true 
Jost function of potential scattering. This is the main 
conclusion of the present paper, the proof of which we 
devote Sec. III. 

III. "JOST FUNCTION" IN R-MATRIX 
THEORY 

By definition, the R matrix relates the value of the 
wavefunction to its normal derivative on the sphere 
inside which the interaction takes place. Assuming the 
interaction to be invariant under spatial rotations, 
we can consider separately each angular-momentum 
state. The wavefunction outside the interaction 
region being given in general by 

?J!1(k, r) = Al(k)wl(kr) + BI(k)wl( -kr), (33) 

where wl(kr) is the free solution introduced before, 
Eq. (31), the R matrix (rather its lth element) is 
simply 

R!(E) = ?J!l(k, R)/?J!;(k, R). (34) 

The R theorem of Wigner8 now states that R!(E) is a 
reaP4 meromorphic function of E of the following 
form: 

2 

RI(E) = ~ Yu 
A Eu - E 

(35) 

where YA! and E)'t are real constants. The poles E)'I 
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may approach infinity in either direction but cannot 
accumulate in a finite point. It is obvious from (35) 
that RI(E) is a Herglotz function,ls and maps the 
upper and lower half-planes into themselves. In 
other words, 

Also, 

1m RI(E) . 1m E > 0 unless 1m E = O. (36) 

2 
2 Y)'l < 00. 

). E)'l 
(37) 

Let us now see the relation between RI(E) and the 
S matrix. From (33) and (32), we have 

Sl(k) = exp [2iO I(k») = -( -l)IBI(k)[AI(k»)-l. (38) 

On the other hand, using the Wronskian19 

W[wl(kr), wl(-kr») = (_1)12ik, (39) 

We!, g) -= fg' - f'g (40) 

in (33), we obtain 

A,(k) = -(-I)l(2ik)-lW[w1(-kr),V'I(k,r») (41) 

and 

B/(k) = (_I)I(2ik)-1 W[wt(kr), V'/(k, r»), (42) 

so that 

StCk) = W[klwtCkr), V'ICk, r») (43) 
W[( -k)IWt( -kr), 1f11(k, r)] 

From this, (33), and (34), it is easily found that 

-wl(kR) + (-iYSI(k)wl( -kR) 
RI(E) = , (44) 

-w;(kR) + (-l) ISI(k)w;( -kR) 

w;(kR) =!i wl(kr)l_ .. (45) 
dr r-J. 

Conversely, we have 

Sl(k) = gl(k)[gl( -k)t\ (46) 

glk) = kl[WI(kR) - RlE)w;(kR)]. (47) 

Now comes the crucial point. We want to write Sl 
[Eq. (46)] in the form (27), withfl(k) having all the 
properties, mentioned at the end of Sec. II, of the 
true Jost function of potential scattering. The R 
matrix being meromorphic, it is obvious that we 
cannot simply take fl(k) == gl(k). To remedy this, we 

18 J. A. Shohat and J. D. Tamarkin, The Problem of Moments 
(Am. Math. Soc., New York, 1963). Quite generally, a real mero­
morphic Herglotz function admits the Mittag-Leffler expansion 

R(z) = IXZ + {J + L. (2L - ~}, 
11 lin - Z Un 

where all the constants are real, and IX ~ O. This is equivalent to (35) 
if IX = 0 and the sum in (37) converges to {J. 

19 All the derivatives are taken with respect to r, Eq. (45). 

have to show that there exists an appropriate reaP4 
entire function FI(k2), such that 

(48) 

That FI(k2) must be a real function is the consequence 
of the fact that, because of5 

wl(-Z*) = (-I)I[WI(Z)]* 

and the reality of RI(E), 

RI(E*) = [RI(E»)*, 

gl(k) satisfies already (22), i.e., 

gl( -k*) = [gl(k)]*. 

(49) 

(50) 

(51) 

Therefore, to ensure that j;(k) , Eq. (48), also satisfies 
(22), we must choose FI(k2) real: 

(52) 

Before giving the explicit construction of FI(E), 
let us enumerate the properties of the S matrix one can 
derive from those of the R matrix, namely (35), (36), 
and (37). We consider for simplicity the S wave, and 
drop henceforth the subscript I. The other waves can 
be handled in the same way, with some minor changes, 
as shown in Appendix B. As has been shown by Van 
Kampen ,20 the above properties of the R matrix imply 
(and are implied by) the following properties of S: 

(a) S(k) is a meromorphic function of k in the entire 
plane; 

(b) on the real axis, 

[S(k)]* = [S(k»)-l = S( -k); (53) 

(c) the poles of S lie either on the positive imaginary 
axis or in the lower half-plane.21 The poles on the 
positive imaginary axis are simple. It has been shown 
in the first paper of Van Kampens that poles of higher 
order on the + i axis would violate causality; 

(d) in the first quadrant of the k plane, 

1m [exp (2ikR)S] ~ 1; (54) 

(e) the absolute value of SR(k) = exp (2ikR)S(k) is 
uniformly bounded in 0 ~ arg k ~ l7T - E, E > O. 

Note that properties (a) and (b) are trivial con­
sequences of the reality and meromorphy of the R 
matrix, and obviously hold for all/. 

Let us now study the properties of the poles E). of 
the R matrix. They are needed in the construction of 
F(P). Consider first the negative poles. We assume 
that the number of bound states is finite, i.e., there is 
a finite number of poles of S(k) on the imaginary 

20 N. G. Van Kampen, Rev. Mex. Fis. 2, 233 (1953). 
21 W. Schiitzer and J. Tiomno, Phys. Rev. 83, 249 (1951). 
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axis.22 This is a reasonable assumption in general, and 
is dictated here by our wish to prove the sum rules. 
If we think in terms of potential scattering, the 
number of bound states is finite if r V(r) is integrable 
at the origin. 5•6 On the other hand, as discussed by 
Wigner8 and Van Kampen,8 an attractive potential 
behaving like ,-n (n;::: 2) at the origin-which has 
indeed an infinite number of bound states-or, more 
generally, a self-adjoint Hamiltonian which is not 
bounded below, would certainly violate the causality. 
In fact, in this case, because of the well-known 
phenomenon of collapse into the origin, the R matrix 
cannot be defined. The number of bound states being 
finite, we can see at once that the same must be true 
for the number of negative poles of the R matrix. 
Indeed, a bound state (k = iy, Y > 0) is determined 
by the vanishing of the denominator of (46)23: 

w( -iyR) - R( -y2)w' (-iyR) = O. (55) 

Because of (49), the functions w( - iy R) and w' ( - iy R) 
are either real (I even) or pure imaginary (I odd), and 
R(E) is an increasing function on the real axis because 
of (35). Also, if Ej_1 and Ej (;::: Ej_1) are two con­
secutive poles of the R matrix, one has R(Ej _ 1 + 0) = 
- 00 and R(Ej - 0) = + 00. It follows that there is 
one bound state between each two consecutive 
negative poles of R(E). This implies that the number 
of these poles must be finite. 

Consider now the positive poles of the R matrix. 
From (44) and (31), the R matrix is given by (I = 0), 

R(k2) = (I/k) tan (kR + b). (56) 

Using condition (6a), one sees easily,24 that the poles 
and their residues in the k plane (E;. = kD are given 
asymptotically by 

±k;. = V;. + O(nA)' 

±PA = bA + O(nA)' 

'fJA ,......, n[A (7TjR)], 

where A is a large positive integer, and 

VA = (A + t) (7T/R), 

bA = -l/vAR. 

(57a) 

(57b) 

(S7c) 

(58a) 

(58b) 

If kA is a pole, -kA is also a pole with an opposite 
residue. Collecting first the contribution of these two 

22 That these poles correspond to bound states is clear from the 
definition of '1'1 , (33), and the fact that they come from the vanishing 
of the denominator of (46), which is proportional to AI(k). 

28 Notice that k = 0 is neither a pole of S, nor a pole of R. 
2. To calculate the residues, we need the first derivative of 6(k). 

S being holomorphic in a neighborhood of the real axis, and having 
no zeros on the real axis because of lsi = I, the phase shift <5 = 
(2;)-1 log S is also holomorphic in the neighborhood of the real 
axis, and therefore has bounded derivatives of all order in that 
neighborhood. 

poles together and then summing over A, we get (35) 
back, with the asymptotic residues 

y~ = -2k;,PA = (2/R) + O(nA)' (59) 

The above expressions for the poles and their 
residues are asymptotic, and hold for large values of 
the index. In fact, it is clear that there exists an integer 
A such that, for A > A, there is a one-to-one corre­
spondence between the poles kA and their asymptotic 
form V A' Note that the first few k A are purely imaginary 
(E). < 0) if there are bound states. 

From the above asymptotic values of the poles and 
the residues, it can be shown that25 

lim - ikR(£) = 1 + 0(1), (60) 
k-oo 

uniformly in any sector € S arg k S 7T - €, € > O. 
Using this property in (46), and remembering (32) 
we see that 

exp (2ik R)S = 0(1), (61) 
Ilcj-oo 

uniformly in any sector 0 < € S arg k S 7T - € < 7T. 
If k j = iyj, Yj > 0, j = 1, ... ,n, are the poles of 
the S matrix on the +i axis, we get from /S(k)/ = 1 
on the real axis and the maximum modulus principle, 
that 

I exp (2ik R) il (k - iyj)(k + iYj)-IS(k) lSI 
in 1m k ;::: O. (62) 

This is the generalization of the property (e) of the 
S matrix to the whole upper half-plane. 

Let us now consider tentatively 

F(k2
) == II (1 - ~), 

A EA 
(63) 

where EA are the poles of the R matrix. That this 
function is entire and real is obvious because of the 
uniform convergence of the infinite product in any 
compact of the E plane [consider log F, and use 
(57a)]. With this choice of F, the functionj(k) defined 
by (48) is obviously entire. Using the general theory 
of meromorphic functions,26 it is shown in Appendix 

25 The E plane is cut along the positive-real axis, k = E~ is 
defined with 1m k > 0 if E is not real-positive, and k real-positive 
if E is real positive on the upper rim of the cut. It is well-known that 
the asymptotic properties of entire functions and meromorphic 
functions are closely related to the asymptotic behavior of the zeros 
and poles (see Refs. 9 and 26). More precisely, there is a definite 
relation between the asymptotic behavior of n(r,O) and n(r, ao), 
where these two symbols represent, respectively, the number of 
zeros and poles in Izl < r, and the growth of the corresponding 
meromorphic function. From (56) it is clear that in our case the 
zeros and the poles of R(k2) are asymptotically those of k-1 tan (kR), 
and we expect the asymptotic behavior of R(k2 ) in the upper half 
of the k plane to be the same as k-1 tan (kR - N1T) - -(ik)-'. 
In Appendix C we show rigorously that this is indeed the case. 

2. R. Nevanlinna, Eindeutige Analytische Funktionen (Springer­
Verlag, Berlin, 1953), p. 163ff. 
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C that R(E) has the factorization 

R(E) = R(O) G(E) 
. F(E) 

= R(O) I] (1 - :J[ If (1 - :JT1, (64) 

where E' are the zeros of R(E). These zeros are simple 
and int:rlaced between the poles E).. They have the 
asymptotic form 

E~ = (,u + ~r ;: + ,u'l.(,u), ,u a large integer, (65) 

as is clear from (56) and (BI5). Also, it is shown in 
Appendix C that R(E) has the following asymptotic 
behavior in the entire plane: 

1 0(1) 
R(E) = - tan (kR -~lrr) + - , (66) 

k-->oo k Ikl 
and in Appendix D that in all complex directions, 
o < arg k < 7T, F, and G have the uniform asymptotic 
behavior 

= Ak-l cos (kR - t17r)[1 + 0(1)], (67) 
k-). 'YJ 

G = II (1 _ E,) 
Jl EJl 

= Bk-I
-

1 sin (kR - tl7T)[l + 0(1)], (68) 
k-->oo 

where the constants A and B are related by A = R(O) 
B (for the actual values of A and B in terms of E). and 
E' , see Appendix D). 

Jl Using the above asymptotic behaviors in the defini­
tion of the "Jost function" (47) and (48), we obtain 

fl(k) = kZ[wz(kR)F(E) - R(O)G(E)w;(kR)] 

= A[1 + e-2ikRo(1) + 0(1)]. 
k-+ 00 

This behavior is in agreement with both (23) and (29) 
if A = l. The "Jost function" should therefore be 
defined by 

ft(k) = (kljA)[w/kR)F(E) - R(O)G(E)w;(kR)]. (69) 

It is an entire function of order 1 and type 2R. 
It remains to be shown that its zeros in the lower 

half-plane are simple and on the imaginary axis. 
This has been shown for the S wave by Schtitzer and 
Tiomno,21 as was mentioned before under property 
(c) of the causal S matrix [note that a pole of S in 
1m k > 0 is due to a zero of its denominator f( -k)]. 
In Appendix B, we show that the above property is 

true in general (l ~ 0). It is in fact sufficient to prove 
only that the zeros in the lower half-plane are on the 
imaginary axis. That they are simple is a consequence 
of the causality condition,8 as we saw before under 
property (c) of the S matrix. The property (22) is also 
automatically satisfied. We have therefore completed 
our proof that the causal S matrix can be written in 
the form (27), withfl(k) having all the properties of 
the Jost function of potential scattering. We can 
therefore derive our sum rules directly from the 
causality condition and the Levinson theorem. 

In fact, we are going to show in Sec. IV, using the 
Gel'fand-Levitan equation of the inverse scattering 
problem, that the above properties of Il(k) entail the 
existence of a local potential of radius R which 
reproduces our causal S matrix. This of course does 
not mean that the interaction is itself local, but only 
that it is equivalent to a local potential as far as the 
R and the S matrix are concerned. 

IV. THE EQUIVALENCE OF THE CAUSAL 
INTERACTION WITH A LOCAL POTENTIAL 

OF FINITE RADIUS 

It will be shown now that a causal interaction of 
radius R satisfying the Levinson theorem and (6b) is 
in fact equivalent to a local potential of the same 
radius. For simplicity, we consider the S wave with one 
bound state. As will be seen, the generalization to 
higher waves and more than one bound state is 
straightforward. 

We start from the Gel'fand-Levitan integral 
equation27 of the inverse scattering problem which 
implies that given an arbitrary phase shift28 (satisfying 
the Levinson theorem) and the bound-states energies, 
there exists a family of potentials (the so-called phase­
equivalent family), depending on as many arbitrary 
real-positive parameters as there are boun~ states, 
satisfying conditions (14a), (14b), such that all the 
potentials of the family reproduce the phase shift and 
the binding energies. The arbitrary real positive 
parameters are in fact the norm of the bound-state 
wavefunctions defined by the boundary condition (5) 
of Sec. I. They can vary between zero and infinity. 
In general, different members of the family have 
different asymptotic behaviors at r = 00. We therefore 
have to show that the properties of the Jost functions 
(or the S matrix) which were derived in Sec. III 
entail the existence of a potential of radius R in the 

" Reference 5, Sec. 8. 
28 A sufficient condition for the existence of the potential would 

be the continuity of the phase shift on the real axis. Here, we have in 
fact much more than this since b = (2i)- 1 Iog S is analytic in a 
neighborhood of the real axis because of IS(k)1 = I, which guaran­
tees that S has neither zeros nor poles on the real axis. 
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family. According to a theorem by Newton,29 this 
potential is unique among the phase-equivalent 
family. All the other members behave at infinity as a 
linear combination, with nonzero coefficients, of the 
bound-state wavefunctions, so that they do not have a 
finite radius. To prove the existence of a potential of 
finite radius in the family, we use another integral 
equation, derived by Marchenko,3o.31 which is 
equivalent to the Gel'fand-Levitan equation, and is 
such that the asymptotic properties of the potentials 
are much more transparent. This equation reads 

F(x + y) + K(x, y) + L""K(X, t)F(t + y) dt = 0, 

° S x < y, (70) 

F(t) = Ce-yt + .l.- f"" [1 - S(k)]eikt dk, (71) 
27T -"" 

_y2 being the energy of the bound state, and C 
(positive) the normalization constant: 

C-1 = l""lf( -iy, r)1 2 dr. (72) 

The potential is given by 
d 

VCr) = -2 - K(r, r). (73) 
dr 

Necessary and sufficient conditions for the existence 
of a unique solution of the above integral equation 
are also known.32 It can be easily seen that these 
conditions are satisfied in our case. In fact, we do 
not need to look at these conditions since, as was 
mentioned before, the Gel'fand-Levitan equation 
guarantees the existence and the uniqueness of the 
potential if the phase shift (satisfying the conditions 
stated before), the bound-state energy, and the con­
stant C are known. 

Let us consider first the case of no bound state. 
In this case, F(t) reduces to the Fourier-integral 
transform of 1 - S. The S matrix is now holomorphic 
in the upper half-plane and satisfies there the condition 
(61). By closing the contour of integration in (71) in 
the upper half-plane, it is seen that F(t) = 0 for 
t > 2R. It follows then from Eq. (70)thatK(x,y) = 0 
for y ~ x > R, and this, according to (73), implies 
that the potential vanishes beyond the radius R. 

The case where there is a bound state is quite 
similar. The S matrix still satisfies (61), but now has a 
pole at k = iy. By closing the contour of integration as 

2. R. G. Newton, Phys. Rev. tOt, 1588 (1956). 
.0 Z. S. Agranovich and V. A. Marchenko, Th.e Inverse Problem 

of Scattering Theory (Gordon and Breach, SCience Pub!., Inc., 
New York, 1963), Chap. 5. 

31 L. D. Faddeev, J. Math. Phys. 4, 72 (1963). 
•• Reference 30, p. 132, theorem 5.6.1. 

before, we find 

F(t) = [c + if(iy) Je-yt t > 2R, (74) 
f'(-iy) , 

i'( - iy) = f'(k)lk~-iY' 
This, together with (70) and (73), implies that VCr) 
behaves in general like exp (-2yr) for r > R, except 
when 

C = -if(iy)/f'( -iy), (75) 

in which case it has, as before, the radius R. This is 
equivalent to saying that the unique member of the 
phase-equivalent family which has the radius R is 
such that the bound-state wavefunction normalization 
is determined by (75). It remains to be shown now, 
that the right-hand side of Eq. (75) is indeed positive. 

This is true in general, in the absence of ghosts, 
and can be shown here in a very simple manner. 
According to (46) and (47), and if we notice that 
wo(z) = exp (-iz), the condition f( -iy) = 0 [which 
is equivalent to g( -iy) = 0] gives 

g( -iy) = e-rR[l + yR( _y2)] = 0. 

Accordingly, 

g(iy) = eYR[l - yR( _y2)] = 2eyR. 
Also, 

g'(-iy) = -ie-yR[R + 2y2R(_y2) - RyR(-y2)] 

= -ie-yR [2R + 2lR(-y2)], 

where R( _y2) = dR/dE at E = _y2. The R matrix 
being an increasing function on the real axis, we get, 
finally, 

. f(iy) . g(iy) 
-I =-/ 

f'(-iy) g'(-iy) 

2e2yR 
------>0. 
2R + 2y2R( _y2) 

Q.E.D. 

If there is more than one bound state, the first 
term in the right-hand side of (71) is replaced by a sum 
over the bound states, and the above analysis can be 
carried out exactly in the same way. For each bound 
state y;, the normalization constant C, , corresponding 
to the potential of finite radius, would be 

2 exp (2y,R) 0 
C,= 2 2>' 

2R + 2y,R(-y,) 

For I> 0, the proof can be carried out as for the 
S wave. The starting point is again the Marchenko 
equation for I =F 0, given by Blazek,33 which is quite 
similar to (70) and (71) except that the exponentials 
are replaced by appropriate combinations of Hankel 
functions. The calculations are elementary, and lead 

.3 M. B1afek, Commun. Math. Phys. 3, 282 (1966) . 
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to the same conclusion: In the phase-equivalent family 
of potentials. there is one with radius R. It corresponds 
to the normalization constant 

C z = IN-iy, r)1 2 dr = -i~. [f OO J-1 J:(i ) 

o )I( -IY) 

To prove the positivity of the right-hand side, one 
uses the same method as for 1 = 0, above, combined 
with the recursion formulas of Appendix B for the 
functions wl(kR). It is elementary but tedious and we 
shall not reproduce it here. 

As is obvious now, the decomposition of the 
R matrix into the product (64) and the detailed 
properties of the "Jost function" are not necessary at 
all for the proof of the equivalence of causal inter­
action with a local potential of the same radius, since 
this proof is based entirely on the meromorphy 
properties of the S matrix (46) and (61), the latter 
being a direct consequence of (60). Once this equiv­
alence is shown, it follows that the S matrix is given 
by (27), withf(k) having all the required properties, 
and the sum rules become a trivial consequence of the 
above equivalence. The decomposition formula (64) 
is also obtained easily from formula (44) and the 
remarks of Sec. II on the zeros of functions which are 
combinations of functions of class P. This is the 
reason why the proofs of (64), (67), and (68) are given 
only in Appendices C and D. That they are given at all 
is simply because these properties, which are estab­
lished without knowing beforehand the existence of 
the equivalent local potential, seem to hold, in a 
slightly modified form. under more general circum­
stances. One may therefore hope that our sum rules, 
in a generalized form, would be true for more general 
classes of causal interactions, especially for some 
restricted class of nonlocal interactions which are not 
equivalent to a local potential. We intend to develop 
this in a forthcoming paper. 

Finally, it may be shown that the properties of the 
"Jost function" established directly from those of the 
R matrix, when used in the Gel'fand-Levitan integral 
equation, lead also to the equivalence theorem. 
However, the proof is much more involved than given 
here. 
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APPENDIX A 

In general, under conditions (14a), (14b), the Jost 
function in Imk ~ ° is given by [Ref. S, formula (4.4)] 

Nk) = 1 + foR ipz{k, r)V(r)klwl(kr) dr. (AI) 

Here, of course, we only need condition (14a). 
The phase shift on the real k axis is the phase of the 

Jost function, i.e., 

(A2) 
Because 0[5 

fz(k) = 1 + o(l), (A3) 
k-+ 00 

we have 

log Nk) ~ Nk) - 1, (A4) 
k-+ 00 

so that, for k large enough, 

(jl(k) = 1m log Nk) ~ 1m fl(k). (AS) 

We have therefore to show that k-1 11m fl(k)1 is 
integrable at infinity. Now5 . 

1m wl(kr) = -ulkr) = - (f kr )iJl+!(kr). (A6) 

Using the upper bounds given in Ref. S (k real­
positive), 

and 

( 
kr )1+1 

lul(kr)1 ~ A -­
I + kr 

(A7) 

lipzCk, r)1 ~ B(_r_)l+l, (A8) 
1 + kr 

in (AI), we find 

fR (kr)21+l 
11m fll ~ C dr r IV(r)1 2 2 

o (1 + kr) 1+ 

~C(RrIV(r)1 kr 2 dr. (A9) 
Jo (1 + kr) 

It follows that 

(K k-1 lIm fl(k)1 dk ~ C (R dr r I V(r)IJ Kr du 
JKo Jo Kor (1 + U)2 

~ C !oRr JV(r)1 dr. (A10) 

Q.E.D. 
APPENDIX B 

This Appendix is devoted to a detailed study of the 
functions considered in Sec. III, for all values of the 
angular momentum I. First, let us mention some 
properties of the free solutions wl(kr). We have5 

wl(z) = -vl(z) - iuz{z) = ile- iZ[1 + O(I/z)], (BI) 

utCz) = zHz) = (-I)l+lUl(-Z), 

vl(z) = znb) = (-I)IV1(-Z), 

{
sin (z - tin), 

uz{z) = zl+1[(21 + I)! WI, 
z -+ 00, 

Z -+0, 

( ) _ {-COS (z - tin), z -+ 00, 
VI Z -

-z-I(21 - I)!!, z -+ O. 

(B2) 

(B3) 

(B4a) 

(B4b) 

(BSa) 

(BSb) 
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Accordingly, the asymptotic form of the R matrix 
(44), for k -> + 00, is 

Rz(k2
) = .! tan (kR - 17T + Oz) 

k 2 

+ 1 0 (~) . (B6) 
sin [2(kR - tl7T + (1)] "k2 

From this and (6a), it follows that the poles k).! and 
the residues PAl are given asymptotically by 

kAI = YAZ + O['i)(klZ)] = Yl l + O['i)(7TA/R)], (B7) 

PAl = bAI + O['i)(kll)] = VAl + O['i)(7TAjR)], (B8) 

where A is a large integer (~ 0), and 

Y = (A + I + I)!!. (B9) 
AZ 2 R' 

-1 
bll = -. (BI0) 

Ryu 

There is therefore a one-to-one correspondence 
between the k).! and YAI for 1.1.1 > A, A being a fixed 
large positive integer. Combining the poles ±k).! 
which have opposite residues, we get 

2 

R,(e) = L YAI, (B11) 
A EAZ - E 

the sum now being over the poles of the R matrix 
which we number also symbolically by the set {A}, 
although the set {I, 2, ... } would be more appro­
priate. The first few E).! may be negative if there are 
bound states. For A > A, we have 

E = (A + i..±l)2(7T
2

) + A(X(A), 
Al 2 R2 

(B12) 

Y~I = (2/R) + (X(A). (B13) 

According to (6b), 

f'" A-1 1(X(A)1 dA < 00. (B14) 

It is clear also that the zeros of RI(E) are given 
asymptotically by 

E~ = E~' + fl(X(fl), (B15) 

(B16) 

where fl is a large integer. Formulas (BI2-BI6) are the 
generalizations of formulas of the Sec. III given for 
1=0. 

We have now to generalize to I :F 0, the properties 
of the S matrix, stated for I = 0 in Sec. III, which are 
needed in our analysis. As was noted before, properties 
(a) and (b) are trivial consequences of the reality 

and meromorphy of the R matrix, and (49). In fact, 
it is obvious that because of (46) and (51), we have in 
general (k complex) 

Sz( -k) = [StCk)]-1 (B17) 
and 

(BI8) 

i.e., the S matrix is real on the imaginary axis. 
Property (c) can be established as follows. Accord­

ing to (46), we have to prove that g,(k), given by 
formula (47), does not vanish in 1m k < 0 outside 
the imaginary axis. The zero due to kl being compen­
sated by the pole k- I of w,(kR), we are left with the 
solution of 

wlkR) - kRz{E)wlkR) = 0, (BI9) 

w,(kR) = (:p) wz(P)!P=kR' (B20) 

We note now that wl(kR) does not vanish in the lower 
half-plane. 34 To simplify the writing, let us put 
kR = P and RI(p2jR2) = RI(p2). 

If we divide by WI (p), (6.19) becomes 

P w'(p) = ~ (B21) 
wI(p) Rb2

) , 

RI(E) being a Herglotz function [1m RI(E)' 1m E > 0 
if 1m E :F 0]; we have 

1m [R I(p
2)1-1 = -Re P' 1m P' [+], 

where the symbol [ + ] means a positive function which 
does not vanish except perhaps for real values of p2, 
i.e., P either real or pure imaginary. It follows that, 
in the lower half of the P plane, 

1m RI1(p2) = Re P . [+]. 

We are now going to prove that in the same domain, 
the left-hand side of (B21) satisfies 

1m [PW;(p)] = -Re P' [+]. 
wI(p) 

Clearly, this would mean that (BI9) does not vanish 
in 1m P < 0 except perhaps on Re P = O. For this 
proof, we proceed by induction.35 We start from the 
recursion formula36 

pwb) + PW;_1(P) - lw l _ 1(p) = O. 

This relation gives, respectively, for I and I + 1, 

1 (
W;_1) ( Wz ) -P- =p-
Wl-1 WZ-1 

---
3' Bateman Manuscript Project, Higher Transcendental Functions, 

A. Erdelyi, Ed. (McGraw-Hili Book Co., New York, 1953), Vol. II, 
p.62. 

3. We wish to thank E. Cremmer for his help in this proof. 
3. These recursion relations are easily obtained from those for the 

Hankel functions, Ref. 34, and our definition. 
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and 

1 + p(::) = 21 + 1 _ p(W~~I). 
Note that we always divide by a function which does 
not vanish in 1m P < O. Taking the product of these 
two formulas, and using the recursion relation36 

(21 + l)wl = P(WZ+l + WI_I), 
we get 

[1 + p(w;/wl)][1 - P(W;_I!WI_l )] = p2. 

Separating the real and imaginary parts, and using the 
self-explanatory notation 

p(w;!wl) = Gl + iHI' P = x + iy, 

we obtain 

(1 - GI_l )GI + Hl- IHI = (x2 - l) - l(l - Gl_l ), 

-HI-1GI + (1- G1_ l )HI = 2xy + IHI_ l • 

Solving these two equations for Gland HI' we find 

G
1 
= -I - (Ll 1_ l )-1[0'2 - x2)A 1_ 1 - 2xyHI_1], 

(B22) 

HI = (Ll 1_ l )-1 [(x2 - y2)HI_1 + 2xyA 1_ 1], (B23) 

where 

and 

~l-l = A~l + HL > O. 

We are now going to prove that Bl = -x-1H I = 
-(Re p)-1 1m [P(W;!WI] is positive in the half-plane 
y = 1m p < O. Indeed, we get from (B22) and (B23) 
that 

Al = 21 + 1 + (Ll I_1)-I[(y2 - x2)AI_1 - 2x2yBI_1], 

(B24) 

It follows that, for alII, 

1m [p(w;!w l)] = -Re p' [+] 

in 1m p < O. 
The fact that the eventual zeros on the negative­

imaginary axis are simple, i.e., the poles of Sl(k) in 
the upper half-plane are simple, is a consequence of 
causality, as was mentioned in Sec. III. 

As for properties (d) and (e), they can also be 
generalized to all I, and k in the whole upper half­
plane, by using a product similar to the one in the 
left-hand side of (62), and by replacing everywhere 
exp (2ikR) by appropriate combinations of wl(±kR). 
However, we do not use them in our analysis, and so 
we do not pursue the matter further. 

We are going now to establish some expansion 
formulas for tan (kr - ihr) and sin (kR - i/rr) that 
we use in Appendices C and D. For the first function, 
we start from the Euler formula37 

tan (z - ilrr) 

= -cot (z _ 1 ~ 1 7T) 

= - Z - -- 7T - I z - -- rr - n7T ( 
I + 1 )-1 00 [( 1 + 1 )-1 

2 n~1 2 

( 
1+ 1 )-IJ + z - -2- rr + n7T (B26) 

to which we add 

00 [( I + 1 )-1 o = f z + -2- 7T + nrr 

( 
1 + 1 )-IJ 

Z + -2- rr + nrr . 

It is then easily found that 

(B25) tan (z - ilrr) 

Writing now (B25) for 1 + I, and eliminating Al 
and Bl with the help of (B24) and (B25), we finally find 

Bl+l = Ll11
[ -2(21 + l)y + Lll!l ipi 4 BI- 1]. 

It follows that, in the lower half-plane, BZ+1 is strictly 
positive if B l- l is so. Now, for Sand P waves, we have 

Bo = -(Re p)-IIm [pC:) ] 

and 

= _ (z _ 1 : 1 rr rl 

- ~ 2z / [Z2 - (n + 1 : 1 r 7T2 J 
_ (1 + l)rr ~ [(Z + nrr)2 _ (I ~ 1)2 rr2J-l. 

The second series being absolutely and uniformly 
convergent, we finally obtain 

tan (z - iI7T) 

':=00 -2! {z /[ Z2 - (n + 1 ~ 1)\2J} + 0(1) (B27) 

in all complex directions. 

37 G. Valiron, TMorie des [onctions (Masson et Cie., Paris, 1948), 
p.384. 
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For the second function, we begin with38 

sin (z - t/7T) = (z - ti7T) IT (1 _ z - t/7T) ezlJlu 
Jl=l f-l7T 

X IT (1 + z - t/7T) e-z1vu. (B2S) 
v=l V7T 

The second infinite product can be written 
co 1 co 

II=IIxII· 
v=l v=l v=/+l 

Making the change of variable v = f-l + 1 In the 
second product above, we get 

TI = II (1 + z ~;i7T) 
co (f-l7T + t/7T + Z) 

X exp (-Z/V7T) II 
1'=1 (f-l + l)7T 

xexp[-(.!-!+_1 )Z/7TJ. 
f-l f-l f-l+ 1 

Collecting now all the exponentials in the right-hand 
side, except the first exponential ofthe second product, 
we obtain 

exp [(-± 1 + f 1 ) ~J 
v=l v 1'=1 f-l(f-l + I) 7T 

which is equal to one by virtue of 

1 1 co 1 

v~ ; = 1'~1f-l(f-l + I) (B29) 

(For the proof of this, see below.) Going back now to 
(B2S), and putting the two infinite products together, 
we find 

sin (z - 1/7T) = (z - tl7r) IT (1 + _Z_---=..t/_7T) 
1'=1 f-l7T 

IT (f-l + tl)27T2 - Z2 IT (f-l + 1/)2 

Jl=l (f-l + t/)27T2 
1'=1 f-l(f-l + I) 

_ O(ZI+1) IIco (1 _ Z2 ) 
- 1'=1 (f-l + 1l)27T2 . 

(B30) 

Note that all the operations we have performed on 
the infinite products are legitimate because these 
products are all absolutely convergent, and we have 
extracted from them other absolutely convergent 
infinite products. To prove (B29), we proceed by 
induction. For 1 = 1, it holds trivially that 

f 1 -f(!-_l) 
1<=1f-l(f-l + 1) 1'=1 f-l f-l + 1 

co 51'+1 dx I co dx =L 2= 2=1. 
1'=1 I' X 1 X 

38 Reference 37, p. 433. 

Suppose now that (B29) holds for 1 - I. Taking 
the difference of each of its sides for 1 and I - I, we 
get, as above, 

1 co 1 

1 =1'1:1(f-l + 1 - 1)(f-l + I) 
= I 1 = rco d: = 1 . 

V= I v( V + 1) J 1 X 1 
Q.E.D. 

APPENDIX C 

Here we have to show that in general (/ ~ 0) 

R1(P) = k-1 tan (kR - t/7T) + Ikl-1 0(1) (CI) 

for k -+ 00 in all complex directions in the upper half­
plane. By definition, 

2 

RI(k 2
) = L ?'M , (C2) 

A Eu - E 

where, for A > A (a large fixed integer), 

EAI = E11 + ACl(A), 

o ( 1 + 1)2 7T
2 

Eu = A + -2- R2' 

?'~I = 1 + !x(A), 
R 

and !X(A) is such that 

fco A-I I!X(A) I dA < 00. 

(C3) 

(C4) 

(C5) 

(C6) 

As is obvious, we can neglect the first A terms of the 
series in (C2) which are O(E-l) for E -+ 00. For 
A > A, there is a one-to-one correspondence between 
the poles of Rz(E) and those of k-1 tan (kR - tt7T). 
To simplify the writing, we drop henceforth the 
subscript I. As is clear from the above formulas, we 
have, uniformly in all complex directions (0 < e =::;; 
arg E =::;; 27T - e): 

lim R(E) = O. (C7) 
IEI-+co 

Let us see first what we can get from the above prop­
erties of R(E) by using the general theory of mero­
morphic functions. 2s •

39 According to (C3), the number 
of poles of the R matrix in lEI =::;; r is given, asymptot­
ically, by 

nCr, 00) = (R/7T)ri + OCr-i). (CS) 

Also, the origin not being a pole, we have 

nCO, 00) = O. (C9) 

If we denote by n(r, 0) the number of zeros inside the 

39 E. C. Titchmarsh, Theory of Functions (Oxford University Press, 
London, 1939), p. 284bff. 
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circle lEI::; r, counted according to their multiplicity, 
we also have 

n(r, 0) = (R/17)r! + O(r-t ). (ctO) 

Indeed, R(E) being a Herglotz function does not 
vanish outside the real axis. On the other hand, there 
are no zeros for E < E1, and those in E > E1 are 
interlaced between the poles E;., and are simple 
because R(E) is monotonically increasing between two 
successive poles. There is exactly one simple zero 
between two successive poles. In fact, according to 
Appendix B, and formula (6a), these zeros are asymp­
totically close to (A. + tl)2172/ R2, i.e., they are 
situated, in the k plane, half way between two neigh­
boring poles. 

Consider now the characteristic function T(r) 
(Refs. 26 and 39). It is given by (a ¥- (0): 

T(r) = mer, (0) + N(r, (0) 

= mer, a) + N(r, a) + per, a), (CII) 

where per, a) is a bounded function of r, and 

mer, (0) = l.. r2

"IOg+ IR(rei"')1 dp, 
217 Jo (CI2) 

N(r, (0) = r n(t, (0) dt = 2R r! + O(r-!), (Cl3) 
Jo t 17 

1 i2" I 1 I mer, a) = - log+ . dp, 
217 0 R(re"P) - a 

(C14) 

N(r, a) = r net, a) dt, 
Jo t 

(CIS) 

n(t, a) denoting the number of the roots of R(E) - a 
in lEI::; t, counted according to their multiplicity, 
and (oc ~ 0) 

log+ oc = max (0, log oc). (CI6) 

It follows from (CIO) that 

N(r,O) = (2R/17)r! + O(r-Z). (CI7) 

Consider now the function m(r, (0). It is obvious 
that because of (C7), this function is bounded when 
r --+ 00 by staying a finite distance (no matter how 
small) away from the poles E" , i.e., if we exclude small 
intervals Ir - E"I = d, A. = 1, 2, ... ' . Indeed, R(rei'!') 
goes to zero at r = 00, E < p < 217 - E, and is 
bounded on the arc -E ::; P ::; E if we exclude the 
above intervals. Note that we can choose d small 
enough so that all the zeros of R(E), E~ , are outside 
the intervals Ir - E;.I = d. 

Therefore, if r 1: [EA - d, E;. + d], A. = 1, 2, ... , 
we have 

T(r) = N(r, (0) + mer, (0) = (2R/17)r! + 0(1). (CI8) 

Now, according to (Cll) with a = 0, the asymptotic 
equality of N(r, (0) and N(r, 0), and the bounded ness 
of p(r, 0), m(r, 0), and m(r, (0) are equivalent, so that, 
for r E [E). - d, E" + d], and ), --+ 00, we can use 
mer, 0) instead of mer, (0). Consider therefore 

1 i21; I 1 I m(r,O) = - log+ --.- dp. (C19) 
217 0 R(re'''') 

The intervals [E" - d, E). + d) being free from zeros 
E~, the integrand is bounded on the arc -E < p < E. 

In fact, it is mostly zero because R(E) is large close 
to the poles. On the other hand, R(E) being a Herglotz 
function, we have, for p ¥- 0, 217, the lower bound18 

IR(rei"')1 ~ f , (C20) 
r 

C independent of p. 
Therefore, if r --+ 00 by staying within the intervals 

(E). - d, E;. + d), we have 

m(r, 0) :::;;; O(log r). (C21) 

It follows that no matter how r -)- 00, we have, 
neglecting O(log r), 

T(r) ,...- (2Rj17)rt . (C22) 

The order of the meromorphic function40 R(E) is, 
accordingly, 

_ l' log T(r) _ 1 
P - 1m sup - 2' 

r->oo log r 
(C23) 

It follows from the factorization theorem of mero-
morphic functions that41 

R(£) = R(O{ 1] (1 - :) J/[ I} (1 - :J 1 
(C24) 

This formula will be useful in Appendix D. 
That the asymptotic behavior of R(E) is given by 

k-1 tan (kR - t117) can be shown as follows. First of 
all, we have the Mittag-Leffler expansion 

tan (z _ t117) = __ -_1~ __ ~, (_1_ + -.l) 
I + 1 '<=-00 Z - 'V.< ,117' 

Z---17 
2 

(C2S) 
where 

(" 1+ 1) 
'V). = A + -2- 17, 

40 Reference 26, p. 217ft'; Ref. 39, p. 284e. 
" Reference 26. p. 224, formulas (7) and (8); Ref. 39, p. 284f. 

Here p = t, and the zeros and poles have genus 0 (q = 0 in Nevan­
linna's terminology; P, = P2 = 0 in Titchmarsh). We have assumed 
that R(O) "" O. If the origin were a zero (simple) of R(E), we would 
have a factor R'(O)E instead of R(O) in front of our formula. How­
ever, the factor E could be absorbed in the numerator (function G), 
and nothing would change in our analysis. 
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and the prime on ! means that the term A = 0 is 
omitted. 

As shown in Appendix B, formula (B27), the above 
formula leads to 

2 1 -! 0 2 = k-1 tan(kR-!17r)+k-1o(l) (C26) 
R ;. E;. - k k-oo 

in all complex directions. 
Consider now 

! ( y~ _ 2/R ) 
" E" - E E~ - E 

= t [E1Y~ - ~ E;. - E(Y~ - ~)] 
X [(E" - E)(E~ - E)tl. (C27) 

We are going to show that this difference behaves 
like IEI-! 0(1). As before, we can drop any finite 
number of terms we wish from (e27). They wiil 
contribute only by O(E-I). From (C3) and (C5), it is 
seen that the main terms in the numerator are E~IX(A) 
and EIX().). Once these are taken care of, the remainder 
AIX().)/R can be shown, with the same method, to give 
a smaller contribution. 

Now, for E not on the positive real axis, rp = 
arg E :;f 0, 21T, we have (draw a figure and project E 
on the real axis, and E" on the direction rp): 

or 

IE~ - EI ~ IEllsin rpl, 

IE~ - EI ~ E~ Isin rpl, 

IE~ - EI ~ t(E~ + lEI) Isin rpl, 

and similar formulas with E" instead of EJ. 
Therefore, 

I
! E~IX().) I 

(E;. - E)(E~ - E) 

< 4 ! E1IIX().)1 
- (E" + IEI)(E~ + lEI) sin2 rp 

~ _4_! Io:().) I ~ _4 __ 1_! IIX(A)I , 

sin2 rp E" + lEI sin 2 rp lEI! (E" + IE!)! 

the series in the rhs being convergent by virtue of 
(C6). For IEI-+ 00, we get therefore IEI-! 0(1). The 
other main term can be worked out similarly: 

I 
EIX().) I < 4 '" lot(A)1 

! (E~ - E)(E" - E) - sin2 rp k E~ + lEI 

= IEr! 0(1). 

As for the remainder, with numerator ).IX().), the same 
method gives O(/EI-I). We have therefore proved 
formula (CI) rigorously. In fact, it is now easy to see 
that, in all directions, including the positive real axis, 

we have the asymptotic behavior 

R(E) C:::::' k-1 tan (kR - tl1T - N1T). (C28) 

To end this appendix, let us say a few words about the 
properties of the two entire functions 

F = II and G = II 
;. ~ 

which figure in (C24). Each one is an entire function 
of order t in E. Indeed, the convergence exponent of 
the zeros in both cases is42 PI = t, the genus of the 
zeros (or of the canonical products) is zero, and 
nCr) C:::::' (R/1T)r!. According to Theorem 2.6.5,42 both 
functions are of order P = Pl = 1- That both are also 
of finite type is clear from Theorem 2.9.5. According to 
Definition 2.7.3, the genus of F and G is zero (see also 
Theorem 2.12.5).42 The asymptotic properties of F and 
G are studied in Appendix D. 

APPENDIX D 

We have to study here the asymptotic properties of 

F = IT and G = II 
;. ~ 

They are quite similar to each other as is intuitively 
clear from the asymptotic expressions of the zeros 
E" and E~. We consider in detail G, because it enters 
directly into the definition of the "Jost function" (70). 
According to the estimates of canonical products at 
large,43 we have, uniformly in all complex directions 
(rp :;f 0, 21T): 

G(IEI eiq» = II [1 - E,J 
~ E~ 

= exp [(lEI! Rei (q>-u)/2)(1 + 0(1))], (D1) 

and an identical expression for F(E). However, the 
above estimate is clearly not sufficient to ensure that 
the "Jost function" would satisfy (29). We have to 
obtain a more precise statement than merely 0(1). We 
start from formula (B30): 

sin (z - tl1T) = O(ZI)(Z - tl1T) II (1 - :;), (D2) 

z~ = (fl + tl)1T, U = 1,2,· ... 

As we saw before, for fllarger than some integer M, 
there is a one-to-one correspondence between E; 
Eq. (65) and E~' = (fl + t/}21T2/R2. 

Accordingly, we can write 
G(E) 

sin (kR - tl1T) 

= [ II (1 - E,)J/[ II. (1 - ~,) ]O(kP
), (03) 

~>M E~ ~>M ElL 

42 Reference 9, Chap. 2. The number of the theorems mentioned 
below refers to this book. 

43 Reference 9, Lemma 10.3.6. 
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where P is an integer (~ 0). Note that for fl < M, 
there is not necessarily a one-to-one correspondence 
between the zeros of Rz(E) and those of 

k-1 tan (kR - !l7T). 

This is the origin of the term O(kP ). 

To see the asymptotic behavior of the above ratio, 
we take its logarithm: 

log Jl = i [log (1 - E,) - log (1 - ~,) J. 
IT Jl>M Ell Ell 

1l>l\I (04) 

Each series is absolutely and uniformly convergent in 
any compact of the E plane because 

log (1 -~) ~ - ~ = 0(11-2), 
EO, EO' r 

Jl. Jl--+ ro }.l 

and a similar statement for E~ instead of EZ'. 
Now (04) can be written 

E' E -E' - 2: log ---.£. + 2: log ~ . (DS) 
E~' E - Ell' 

The first series is absolutely convergent because of 

E~ = E~' + flrx.(P,) r-.J 1 + rx.(fl) 

Eo, EO' , 
Il It-oo It P, 

and (C6). The second series in (DS) is, therefore, also 
absolutely and uniformly convergent (it is the differ­
ence of two absolutely convergent series). This can 
also be directly checked in the above manner. Now, 
for E ->- 00, arg E ¥- 0, 27T, each term of the second 
series in (DS) vanishes, and so does the series itself. 
It follows that, in all complex directions, we have 

IT (1 _ E,) 
log It> 111 Elt = 0(1). (D6) 

IT (1 _ ~,) IEI-oo 
It> 111 Elt 

We have therefore proved that 

G(E) = IT (1 - ~) 
It Elt 

= sin (kR - tl7T)O(kQ)(l + 0(1», (D7) 
E-oo 

Q being an appropriate integer (Q ~ 0). 
A similar analysis can be made for F(E). Because of 

the shift 7Tj2R in the position of the zeros in the k 
plane, we have to compare F(E) with the cosine func­
tion. The result is 

F(E) ~ O(kQ') cos (kR - il7T), (D8) 
E-oo 

Q' being an integer (~ 0). Note that, because of (Cl), 

we have 
Q' = Q + 1. (D9) 

To obtain the actual value of Q (or Q') is a more 
delicate matter. As is clear from the analysis leading to 
(07), Q is related to the difference between the total 
number of zeros of RI(P) and k-1 tan (kR -~I7T), in 
the k plane. We will concentrate now on the calcula­
tion of Q', using the well-known formula44 

no(f, D) - noo(f, D) = -. - dz, (010) . . I i 1'(z) 
217T r fez) 

where na(f; D) denotes the number of times the 
meromorphic function fez) takes the value rx. inside 
the domain D bounded by the simple Jordan curve r. 
The integral is taken in the counterclockwise sense 
along r, and it is assumed that there are no zeros or 
poles on the boundary r of the domain. 

We have to compare the zeros of F [poles of RI(E)] 
with zeros of cos (kR - il7T). From now on, we will 
work in the k plane where it is easier to keep track of 
the zeros and poles. Now, according to (44), the poles 
of RzCk2) come from the zeros of the denominator: 

Dl(k) = -w;(kR) + (-lYw;( -kR)SI(k). (Dll) 

The origin not being a pole of the R matrix,S it is 
easily seen from (46) and (47) that45 

Sl(k) = 1 + 0(k21+1
). (D12) 

k-O 

From this, it follows that both the numerator Nt, and 
the denominator D l , of (44) behave like k Z near the 
origin.45 It follows that the number of poles of R z(k

2) 

is given by the number of zeros of Dz(k) = k-z Dz(k). 
We are therefore interested in the difference 

nO(D I ; jkj < r) - no[cos (kR - tl7T); jkj < r], (D!3) 

r large enough, so as to include all the zeros E;. and E~ 
which are not in a one-to-one correspondence to each 
other, i.e., all the zeros with A < A.1t is obvious that, 
making r larger and larger, because of the one-to-one 
correspondence between E). and E~ for A> A, the 
above difference remains fixed once we have included 
all the zeros corresponding to A ~ A. We can therefore 
take the limit r ->- 00 in (Dl3). Let us denote by 
no~oc/j; r) the number of zeros or poles of a mero­
morphic function fez) inside the upper (+) and the 
lower (-) half of the circle jzj = r, respectively, and 

44 Reference 37, p. 391, formula (54). 
45 We have W,(Z) = -v,(z) - iU,(Z), where V, has the parity I, 

and u, the parity 1+ 1. In general, W,(Z) = (G , - H,) exp (-iz), 
where G, and H, are polynomials, with real coefficients, in r', of 
degree I and 1- 1, respectively. Their parities are I and 1- 1. 
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by no,oo(f; r) their total number in Izl < r. We have 

n",(Rz; r) = no(F; r) = no(i5z = k-lv Z ; r) 

= -I + no(Vz; r), (DI4) 

no(Vz; r) = no(Vz; r) - noo(Sz; r) + nco(Sz; r) 

= no(Vz; r) - noo(Vz; r) + nco(Sz; r), 

(DI5) 
where use has been made of (DII), and46 

noo(Sz; r) = nt,(Sz; r) + n;(Sz; r) = n + n;(Sz; r), 

(DI6) 

n being the number of bound states (poles in 1m k > 
0). Now, from the symmetry relation 

Sz( -k) = [SZ(k)]-1,47 

and (Dl6), we deduce 

noo(Sz; r) = n + n;(Sz; r) 

(Dl7) 

= 2n - [no(Sz; r) - n;(Sz; r)]. (DI8) 

Collecting the above results, we get finally 

no(F, r) = -I + no(Dz; r) 

= no(Dz; r) - nco(Dz; r) - 1 + 2n 

- [no(Sz; r) - n;(Sl; r)]. (DI9) 

To simplify the writing, let us make the change of 
variable kR = p. Applying (DlO) to V z and cos (p -
thr), we get 

[no(Dz; r) - no(cos (p - il1r); r)]r .... oo 

= 2n + ~ lim r {D; + tan (p - t17r)} dp 
2Z7Tr-+00 Jlpl=r V z 

Imp2:0 

I foo S' I 1 + - --l dp + - lim 
2i7T -co Sz 2i7T r-+oo Ipl=r 

Imp:O;O 

x -.i + tan (p - tl7T) - -.! dp. {V' S'} 
Dz Sz 

(D20) 

U Remember that Sl has no poles or zeros on the real axis. 
47 In Sec. III, this property was stated for k real. However, it is 

obvious that it holds in general in the complex plane. 

Now, 

1 foo S' 1 -. _z dp = - [!5( (0) - !5( - (0)] = -2N, (D21) 
2Z7T -co Sz 7T 

and the other two integrals in the upper and the lower 
half-planes vanish in the limit r -+- 00 because of (61), 
(DIl), and (32), as is easily verified.48 It is understood 
here that, in accordance with the conditions of 
validity of (DlO), the limit r -+- 00 has to be taken in 
such a way as to avoid the zeros and poles of V z, Sz, 
and tan (p - tl7T). This is always possible because all 
these functions are meromorphic in the whole p plane, 
so that, excluding appropriate small intervals, we can 
make r -+- 00 without ever having zeros or poles on the 
circle Ipl = r. The final result is 

[no(F; r) - no(cos (p - tt7T»]r~oc> = -I + 2n - 2N. 

(D22) 
It follows that, for 0 < arg k < 7T, 

F(k2
)k-+OO = A k-IHn-2N cos (kR - ll7T)(1 + 0(1», 

(D23) 
and 

G(k2
)k-+0c> = B k-I-1+2n- 2N sin (kR - tl7T)(1 + 0(1», 

(D24) 
where 

(D25) 

(D26) 

In fact, A = BR(O) because of (CI). Note that the 
above asymptotic behaviors are even under k -+- -k 
irrespective of the parity of I. If the Levinson theorem 
holds, we have n = N. 

48 It is sufficient to use the asymptotic behavior of the functions 
under the integrals, and the fact that wi + [I - l(l + 1)Z-2JWI = o. 
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The asymptotic properties of a class of nonlinear boundary-value problems are studied. For large 
values of a parameter, the differential equation is of the singular-perturbation type, and its solution is 
constructed by means of matched asymptotic expansions. In two special cases, very simple approximate 
analytic solutions are obtained, and their accuracy is illustrated by showing their good agreement with 
the exact numerical solution of the problem. 

I. INTRODUCTION 

In a previous paper,! an expansion method for 
nonlinear boundary-value problems was presented. 
The eigenfunction-expansion basis used was defined 
by the associate linear boundary-value problem. As the 
problem became strongly nonlinear, more terms in the 
expansion were needed for accuracy. We present here 
a study of the asymptotic properties of the same class 
of problems in slab geometry. Tn two special cases, 
approximate asymptotic solutions are obtained whose 
accuracy increases as the nonlinear distribution departs 
more from the linear distribution. Thus, when more 
than two terms in the expansion method are needed 
for accuracy, the present asymptotic solutions give 
very simply a distribution which is in excellent agree­
ment with the exact numerical solution. It is shown 
that in the general case an approximate solution can 
be obtained in terms of asymptotic expansions. 

II. THE NONLINEAR PROBLEM 

The problem studied arose in connection with the 
distribution of the energy released in a nuclear power 
r~actor as a result of a power excursion.2 The distri­
bution is given by the following nonlinear boundary­
value problem: 

d2y 
dx2 + r2(x)y - yn = 0, 

y(O) = y(l7) = O. (1) 

In (1), r 2(x) is the space-dependent perturbation in 
the neutron multiplication of a reactor with an 
infinitesimally small initial neutron population; the 
perturbation makes the reactor supercritical, thus 
leading to the release of energy. The energy release 
through various nonlinear physical effects, such as 

1 J. Canosa, J. Math. Phys. 8, 2180 (1967). 
• W. L. Ergen, Trans. Am. Nucl. Soc. 8,221 (1965). 

Doppler broadening of the neutron-absorption cross 
section or moderator-expansion effects, reduces the 
neutron multiplication and the neutron population 
eventually becomes zero. Equation (1) gives the 
distribution of the energy release from the start of the 
perturbation till the neutron population again becomes 
zero. The exponent n is a positive number, and n ~ 2. 

Due to the physical nature of the problem, we 
assume the existence of a solution which is continuous, 
positive, and bounded in the domain. The uniqueness 
of the solution is proved by the following: 

Theorem. 3 If a positive solution of Eq. (1) exists, 
it is unique. 

Proof Let us assume that there are two positive 
solutions, Yl and Y2, and let 

Then 

1](0) = 1](17) = O. 

Define the following implicit function of x: 

g(YI, Y2) = n ll[tYI + (1 - t)Y2]n-l dt 

= [tYI + (1 - t)Y2r 11 
YI-Y2 0 

= y{' - y~ = y~ - y~ 

YI-Y2 1] 

Thus 1] satisfies 

(2) 

(3) 

(4) 

d21] 2 
dx2 + [r (x) - g(Yl, Y2)]1] = 0, 1](0) = 1](17) = 0, 

(5) 

3 H. B. Keller (private communication). 

1915 
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and also 

(6) 

But, as n ~ 2 and Yl and Y2 are assumed positive, 
obviously 

[/Yl + (1 - I)Y2]n-l ~ [/Yl]"-l, 0 ~ I ~ 1, (7) 

and so from (4), 

(8) 

in any interval of x where Yl and Y2 are positive. 
Therefore, 

As Y and Yl are strictly positive, (13) can only be 
satisfied if 

fT [AI - r2(x)]yY1 dx < o. (14) 

Applying the mean-value theorem, 

that is, 

and so 
(15a) 

which is the desired result (10) from which (11) 
follows when r2 is constant. The usefulness of this 

(9) result is that if 

Sturm's fundamental comparison theorem4 can 
now be directly applied to Eqs. (5) and (6), even if 
these are nonlinear. As 1)(0) = 1)(7T) = OandYI(O) = 0 
by hypothesis, Sturm's theorem shows that, as Yl 
oscillates more rapidly than 1) in the interval (0, 7T), 
Yl must vanish at least once between 0 and 7T. This 
contradicts the assumption that two positive solutions 
exist. 

We now present some results of interest that have 
been obtained for the general case where r 2(x) is a 
positive function in the domain, at least piecewise 
continuous, and n ~ 2. 

It is of some interest to point out first that no 
positive solution can exist unless 

r 2(x) > 1, (10) 

where r 2(x) is the value of r 2(x) at some point x 
inside the domain. For r2 constant, we have the 
condition 

(11) 

The proof is quite simple and is based on the extension 
of an idea due to Kastenberg.6 The fundamental 
eigenfunction of the Helmholtz equation obeys 

d
2
Yl 

-2 + A1Yl = O. 
dx 

(12) 

If we multiply (12) by Y, the solution of (1) and (1) 
by Yl, subtract and integrate over the domain, we get, 
after using Green's theorem, 

• E. L. Ince, Ordinary Differential Equations (Dover Publications, 
Inc., New York, 1956), p. 224. 

5 W. E. Kastenberg, Ph.D. dissertation, University of California, 
Berkeley (1966). 

r2 = const = 1, (15b) 

Eq. (1) has no solution, while the linear equation 
associated with it has one (Y = sin x). Therefore, if 
we confine our discussion to the case 

r 2(x) ~ 1, 0 S x S 7T, (15c) 

(as it is done in this paper), the average value of r 2(x) 
over the domain is a measure of the nonlinearity of 
the problem; i.e., if 

r 2(x) ~ 1, 

the solution is close to that of the linear problem 
associated with (1) with the condition (15b); and if 

r 2(x) ~ 00, 

the solution departs strongly from that of the linear 
problem. 

Ill. UPPER AND LOWER BOUNDS FOR THE 
MAXIMUM OF THE DISTRIBUTION 

One should also note that, when 

(16) 

corresponding physically to very small perturbation 
increases in the neutron multiplication, the energy 
release is quite small and the distribution given by (1) 
approaches (except a multiplicative constant) the 
fundamental mode of the general eigenvalue equation 

d2 

Y21 + r2(x)Yl - A1Yl = 0, y(O) = Y(7T) = o. (17) 
dx 

The expression (16) defines an asymptotic limit of the 
problem. In this paper, we will study mainly the other 
asymptotic limit when 

(18) 
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corresponding to large perturbations in the neutron 
multiplication, large energy releases, and thus strong 
nonlinear effects. In this case, the distribution given 
by (1) departs strongly from the linear distribution (17). 

We now derive upper and lower bounds for the 
maximum value of the distribution given by (1). 
Because of the conjecture in Sec. II, the solution must 
have at least a maximum. Let the maximum value of 
the distribution occur at x = a; then 

yea) = M, dYd(xa) = 0, d
2

y(a) < o. 
dx2 

Thus, from (1) and (19), 

d2y(a) 2 
--2 = yn(a) - r (a)y(a) < O. 

dx 

(19) 

(20) 

As r2(a) and yea) are strictly positive quantities, we 
finally have 

Therefore, from E'qs. (22) and (28), it follows that the 
maximum value of the distribution is bounded by 

A~/(n-l) ~ M < [maximum ofr2(x)]1/(n-l). (29) 

To illustrate the inequality (29) explicitly, consider 
Eq. (1) where r2 is constant and n = 2; then the 
fundamental eigenvalue of (17) is Al = r~ - 1, and 
(29) becomes 

(30) 

In the limit case r2 ---+ 00, it is clear from (30) that 

IV. GENERAL ASYMPTOTIC SOLUTION 

We seek the solution of 

(31) 

d
2

y 2( ) n 0 () ) 
-2 + r x Y - Y = , Y ° = y( 1T = 0, (32) 
dx 

yea) < [r2(a)]1/n-1, (21) in the asymptotic case 

so that an upper bound for the solution is given by 

y(x) < [maximum of r2(x)]1!(n-l). (22) 

If r2 is constant, the solution has only one maximum 
at the center of the domain. 1 

The lower bound for the peak of the distribution is 
now derived. We multiply (1) by Yl, the fundamental 
eigenfunction given by (17), Eq. (17) by y, the 
solution of (1), subtract and integrate over the domain. 
After applying Green's theorem and noting that the 
resulting surface integrals vanish because of the 
boundary conditions satisfied by y and Yl, we get 

-llTynYl dx + AlllTYYl dx = O. 

Therefore 

(23) 

Al = llTynyl dX/ llTYYl dx. (24) 

As the lower bound of the distribution is zero, the 
application of the mean-value theorem leads to the 
following inequality: 

o ~ llT ynYl dx ~ Mn-1l" YYl dx, (25) 

where M is the maximum value of the distribution y 
in the domain. Using now (24), Eq. (25) becomes 

o ~ A1l"YYl dx ~ Mn-lllTYYl dx (26) 

or 
(27) 

and finally, 

(28) 

r2(x) = Ap(x), (33) 
where 

'). ---+ 00 and p(x) = 0(1), (34) 

and both). and p(x) are positive. The general result 
(29) indicates that the solution of (32) away from the 
boundaries is of the same order of magnitude as 
[r2(x)]1!(n-l ). This suggests the introduction of a new 
variable 

y = Al/(n-I) Y, Y = 0(1), (35) 

in terms of which (32) becomes 

with 

d2 y 
e-

2 
+ p(x)Y = yn 

dx 

e::::1jA-.0. 

(36) 

(37) 

Equation (36) is in the form of a singular perturbation 
equation, the solution of which will be sought in the 
form of asymptotic expansions. 

A. Special Cases 

We will first give the formal solution of Eq. (36) 
in the simplest case, where 

p(x) = const = 1, (38) 

and then extend the treatment to the general case in 
which p(x) is not a constant. 

From a representation ofEq. (36), with the property 
(38), in the phase plane (Y, dYjdx), it can be shown 
that its solution has a maximum at the domain 
center and is symmetric about it, so that one needs 
only to construct the solution in 0 ~ x ~ 1T12. 
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For n = 2, Eq. (36) becomes 

e d
2 
Y + Y _ y2 = 0 

dx2 

and its solution proceeds as follows: 

(39) 

(i) Outer Expansion. We assume the solution in the 
form of an asymptotic series 

00 

Y(x, e) = .2 e'h(x) = fo(x) + efix) + .. '. (40) 
i=O 

Substituting into (39) and grouping like powers of e, 
we can determine the functions fi(x) recursively. One 
gets 

fo(x) = 1 and fi(x) = 0, i> 0, (41) 

so that (40) degenerates into 

Y(x, e) = 1. (42) 

Transforming back to the original variable y, Eq. (35), 

y(x, e) = ;'Y(x, e) = ;. = l/e = r2 (43) 

[see (33) and (38)]. That is, away from the boundaries, 
the solution is given asymptotically by the straight 
line (43), a result already suggested by (30). 

(ii) Boundary-Layer (Inner) Solution. To study the 
solution near the boundary x = 0, define a new length 

x = x/(e)l. (44) 

Then Eq. (39) becomes 

d
2
y + Y _ y2 = O. 

dx2 

Equation (45) has a first integral 

(
dY)2 dx + y2 - iy3 = const. 

(45) 

(46) 

The boundary-layer solution near x = 0 is associ­
ated with the limit process e --+- 0, x fixed, and has the 

form 
Y(x, e) = go(x) + PI(e)gI(x) + . . .. (47) 

PI (E) --+- 0 as E--+-O; it is to be found in general so that 
consistent problems occur for the higher approxima­
tions. Only the first term is considered here and 
satisfies essentially (45): 

d2go 2 
dx2 + go - go = O. (48) 

Now the boundary conditions at 00 for go no longer 
involve E but are determined by matching with the 
outer expansion (42). For this simple case the match­
ing occurs as x--+- 00, x--+- 0, and requires 

(49) 

The boundary condition (49) fixes the constant of 
integration in the integral corresponding to (46): 

(~~r + g~ - ig~ = t· (50) 

The variables in (50) can be separated and the problem 
is reduced to one quadrature, where the integration 
constant is determined by the boundary condition at 
X= 0: 

(51) 

After carrying the integration, we get 

_ 1 - 4(2 - J3)e-Z + (7 - 4J3)e-2X 

go(x) = 1 + 2(2 _ J3)e-X + (7 _ 4J3)e-2X' (52) 

There is a corresponding boundary layer near x = 17 

with x in (44) replaced by ~ = (17 - X)/(E)t. Because 
of the symmetry of this case, it is sufficient to consider 
o ::s;; x ::s;; -17/2. Therefore the boundary layer solution 
contains the outer solution, and thus is uniformly 
valid in the range 0 ::s;; x ::s;; 17/2. In Table I we give 

TABLE I. Asymptotic approximation vs exact solution. 

r" = 8 r2 = 10 r' = 16 r' = 20 
x/(1T/2) 

Exact Asymptotic Exact Asymptotic Exact Asymptotic Exact Asymptotic 

0 0 0 0 0 0 0 0 0 
0.1 1.989 1.994 2.766 2.768 5.495 5.495 7.586 7.586 
0.2 3.700 3.709 5.069 5.073 9.679 9.680 13.05 13.05 
0.3 5.029 5.041 6.772 6.778 12.39 12.39 16.33 16.33 
0.4 5.993 6.009 7.941 7.949 14.00 14.00 18.12 18.12 
0.5 6.660 6.682 8.704 8.717 14.91 14.91 19.05 19.06 
0.6 7.106 7.138 9.187 9.205 15.41 15.41 19.53 19.53 
0.7 7.394 7.440 9.483 9.511 15.68 15.68 19.76 19.76 
0.8 7.569 7.638 9.657 9.701 15.82 15.83 19.88 19.88 
0.9 7.663 7.766 9.746 9.817 15.88 15.91 19.93 19.94 
1.0 7.693 7.850 9.774 9.888 15.90 15.95 19.94 19.97 
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TABLE II. Asymptotic approximation vs exact solution 

r' = 2.25 r' = 4 r' = 9 r' = 16 
x/(Tr/2) 

Exact Asymptotic Exact Asymptotic Exact Asymptotic Exact Asymptotic 

0 0 0 0 0 
0.1 0.2367 0.2476 0.4351 0.4371 
0.2 0.4608 0.4821 0.8306 0.8344 
0.3 0.6620 0.6930 1.160 1.165 
0.4 0.8340 0.8739 1.414 1.421 
0.5 0.9743 1.023 1.599 1.609 
0.6 1.083 1.142 1.728 1.740 
0.7 1.164 1.235 1.813 1.829 
0.8 1.219 1.305 1.865 1.889 
0.9 1.250 1.357 1.894 1.930 
1.0 1.260 1.396 1.903 1.953 

the results obtained from (52) together with the 
direct numerical solution of Eq. (39) for several values 
of ,2 (note that ,2 = A = liE). The agreement with 
the exact results is already quite good for ,2 = 8, the 
maximum error (2 %) occurring at the domain center. 
The table shows that, as ,2 increases, the agreement 
improves rapidly and the discrepancy from the exact 
solution is only one or two units in the fourth signifi­
cant figure. The general result (30) is also illustrated 
in Table I. The expansion method,! in return, gave 
good results for ,2 ->- 1, where the distribution ap­
proaches the linear (sine) distribution defined by (17), 
and where only one term in the expansion was 
necessary; with two terms, the expansion method 
gave good results for ,2 ;;; 8, above which more terms 
were needed and so the method became quite laborious. 
The present asymptotic solution thus complements 
the expansion method, and gives the solution for 
strongly nonlinear problems where the distribution is 
markedly different from the linear distribution. 

Another special case in which an explicit asymptotic 
solution can be obtained is when n = 3 in Eq. (36). 
The general result (29) becomes 

(r2 
- I)! ~ M < r == l/(E)!, (53) 

so that in the limit ,2 ---+ 00, the solution at the center 
approaches asymptotically the upper bound 

Y(Tr/2) -+ l/(E)!. 

The procedure is now formally the same as that 
followed for Eq. (39). The results corresponding to 
Eqs. (42) and (52) are, respectively, 

Y(x, E) = 1 (54) 
and 

~ exp (J'i x) - 1 
go(x) = exp (J2 x) + 1 . (55) 

0 0 0 0 
0.9641 0.9642 1.668 1.669 
1.748 1.748 2.843 2.843 
2.284 2.284 3.480 3.480 
2.610 2.610 3.777 3.777 
2.793 2.793 3.907 3.907 
2.891 2.892 3.961 3.961 
2.943 2.944 3.984 3.984 
2.969 2.971 3.993 3.993 
2.981 2.985 3.997 3.997 
2.985 2.992 3.998 3.999 

In Table II we give the results obtained from Eq. (55) 
together with the numerical solution of Eq. (36) with 
n = 3, for several values of r2. It is seen that the 
agreement is excellent for r2 ;;; 4. 

The ranges of validity of the asymptotic approxima­
tions are obtained readily from Eqs. (52) and (55). 
For if these equations are asymptotically to approach 
the outer solution, Eq. (42), we must have 

y(~) ->-1, 
2(E) 

that is, 

2(2 - J3)e-U/ 2(E)t «1, e2tU/ 2(<)t» 1, 

respectively, so that finally we get 

r2 ~ 7 and r2 ~ 4 

for the ranges of validity of (52) and (55). 
These two special cases (n = 2 and 3) seem to be 

the only ones in which it is possible to obtain the 
indefinite integrals arising from the separation of 
variables in the result corresponding to (48) for a 
general value of n. 

When n ~ 4, although no explicit solution can be 
obtained, the solution of (36) can be reduced to a 
simple quadrature. The general result (29) is now 

(r2 - l)l/(n-l) ~ M < ,2/(r-1) == (l/E)l/(n-l), (56) 

so that for ,2 ->- 00, the maximum of the solution at 
the center of the domain approaches asymptotically 

Y(Tr/2) = (ljE)l/(n-l). (57) 

That is, as is seen by inspection of Eq. (36) together 
with the restriction (38), the outer solution is always 

Y(x, E) = 1, (58) 

independently of n. Furthermore, the equation 



                                                                                                                                    

1920 J. CANOSA AND J. COLE 

corresponding to (48), p(x) is a well-behaved function. The formal procedure 
is quite similar to that of the previous section: 

d
2
go + n 0 dx2 go - go = , (59) (i) Outer Expansion. We assume a solution 

always has a first integral 

~ + g2 ___ gn+l = const 
(
d )2 2 
dx 0 n + 1 0 , 

(60) 

whose constant is obtained with the usual matching 
condition with (58), i.e., 

() 1 dgo(oo) = O. go 00 = , 
dx 

(61) 

Thus (60) becomes 

(
dg )2 n - 1 2gn+l 
d; =;;-:;i - g~ + n ~ 1 == Pn+l(go). (62) 

It can be shown by elementary means that the 
asymptotic value of the boundary layer solution, i.e., 
go = I, is a double root of the polynomial P n+l (go) 
appearing in (62). This remarkable property of the 
problem reduces the solution of (59) to a straight­
forward quadrature. Because of this property, we 
can rewrite (62) in the form 

(~~)2 = (go _ 1)2Qn_l(go), (63) 

where Qn-l means simply a certain polynomial of 
degree n - 1 in go. Therefore the solution of (59) is 
given by 

- - x (64) f
YO dgo N 

. 0 (go - 1)[Qn-l(go)J~ - , 

where the integration constant has been determined 
by the boundary condition at x = 0, and the sign by 
the fact that dgo(O)/dx > O. For go = 1, the integral 
(64) becomes infinite as it should [see first equation 
in (61)]. In an actual calculation we are only interested 
in the range 0::;; x ::;; 'TT/2(€)t. For values of go not 
too near 1, the numerical integration of (64) can be 
done by elementary means (e.g., Simpson's rule) 
because the integrand is well behaved. For values 
go ~ 1, the form of the integrand (64) allows us to 
avoid numerical difficulties, because Qn-l(go) does not 
vanish at go = 1, and can be extracted from the 
integrand; the form of the remaining part of the 
integrand, which can be integrated in closed form, 
shows clearly the exponential decay of the boundary 
layer solution into the outer solution. 

B. General Case 

We now briefly describe the asymptotic behavior 
of the solution of Eq. (36) in the general case in which 

Y(x, €) = Jo(x) + if;.(x) + ... , 
and, following the usual procedure, we get 

(65) 

fo(x) = p(x)l/(n-l }, (66) 

1 [pc x )1/ (n-l}]" 
flex) = --1 ( ) (67) 

n - p x 

In the first-order treatment to which we restrict 
ourselves, only the first term in (65) is needed, and 
we expect it to approximate the solution of (36) 
away from the boundaries. 

(ii) Boundary-Layer (Inner) Expansion. We define 
a new length by 

(68) 

where x is fixed, i.e., 0(1). As (68) shows, when 
€ ~ 0, the actual thickness of the boundary layer 
approaches zero as €t. The outer expansion (65) is 
then expected to be valid in most of the domain, except 
in the infinitesimally thin boundary layer. With (68), 
Eq. (36) becomes 

Let us expand 

d
2

y + p(€tx)Y = yn. 
dx2 

Y(x, €) = go(x) + €t gl(X) + ... , 

(69) 

p(€tx) = Po + P~€tx + ... , (70) 

where Po = p(O), p~ = p'(O), etc. Substituting (70) 
into (69) and proceeding in the usual fashion, we 

O(.Ji) 

I 
l­
I 
I 
I 
I , 

I, 
-(;---

I 
I 

~FJRST ORDER I B. L. SOLUTION 

·~o~~--------------------L--~x 
'It/2 

FIG. I. Illustration of the results of a first-order treatment. 
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obtain the first approximation to the boundary layer: 

(71) 

which is of the same form as (59). Equation (71) shows 
then that, to first order, the boundary-layer solution 
has the same form independently of the coefficient 
p(x) in Eq. (36). Therefore, all the discussion about 
the boundary layer presented in the previous section 
applies equally here. In this first-order treatment, the 
rough matching of (71) with the outer solution (65) 
is achieved by imposing 

go(oo) = p~/(n-l), 

i.e., the boundary-layer solution must approach 
asymptotically the value of the outer solution at the 
origin. Note that, for x very small although fixed, as 
x = X/Et, if E -+ 0, X -+ 00, and so the actual distance 
from the origin at which the boundary layer solution 
blends with the outer solution becomes increasingly 
small with E. For clarity, the results of the treatment 
are illustrated in Fig. 1, assuming that p(x) and thus 
the solution of (36) is symmetric. The matching of the 
boundary layer and the outer solutions will be some­
what rough in this first-order solution. However, a 
uniformly valid first approximation is 

Y(x, E) = fo(x) + go(x) - p~/(n-1) + 0(1) 

and defines a smooth curve. 
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Klimontovich18 and Dupree5 and is based on the fact 
that the microscopic distribution function satisfies 
exactly the Vlasov equation. 

In a recent article16 we discussed this approach for 
the case of homogeneous systems. We showed that we 
could obtain an asymptotic (t -- (0) expression for the 
microscopic distribution function by solving an 
approximate equation of motion. This approximate 
equation is simply the linearized Vlasov equation for 
the microscopic distribution function. It is equivalent 
to the equations of motion for the two-particle 
correlation and autocorrelation functions when the 
three-particle correlation function and the effects of 
close collisions are negligible. The use of this asymp­
totic expression to calculate the correlation function 
yields the Balescu-Lenard-Guernsey kinetic equation 
and other results. This asymptotic expression for the 
microscopic distribution function also yields the test­
particle results which express the system as a collection 
of non interacting quasiparticles. A quasiparticle is 
composed of a particle moving at constant velocity 
plus the associated polarization cloud induced in the 
medium by the particle. We also indicated that the 
test-particle approach could be extended to inhomo­
geneous systems. But we were unable to obtain an 
expression for the phase-space density of the polariza­
tion cloud. Finally, we obtained a set of equations 
describing a homogeneous, slowly varying system 
which contains small, inhomogeneous, quickly varying 
perturbations. 

In this paper we discuss the generalization of the 
previous results to inhomogeneous systems. The 
inhomogeneous case has been considered by a number 
of authors.19- 21 But these considerations have been 
limited to considering the inhomogeneous system as a 
perturbation on a homogeneous system (generally 
upon the equilibrium system). The resulting equa­
tions are quite difficult to interpret. This is quite 
different from the homogeneous case where, generally, 
the kinetic equations have very simple interpretations 
in terms of the, golden rule, using dynamically 
shielded potentials or in terms of the Boltzmann 
equation.13.22 Another difficulty is that these results 
cannot be applied to the gravitational gas because, 
unlike the plasma, it has no tendency toward homo­
geneity. 

We show that the inhomogeneous system does 

18Iu. L. K1imontovich. Zh. Eksp. Teor. Fiz., 33, 982 (1957) 
[Sov. Phys.-JETP 6, 753 (1958)]. 

10 R. L. Guernsey, Phys. Fluids S, 322 (1962); Lectures in Theoret­
ical PhysiCS, W. E. Brittin, Ed. (Gordon and Breach,Science Pub!., 
Inc., New York, 1967), Vo!. IX. 

10 M. K. Sundaresan and T. Y. Wu, Can. J. Phys. 42, 794 (1964). 
21 R. Balescu and A. Kuszell, J. Math. Phys. 5, 1140 (1964). 
•• H. W. Wyld and D. Pines, Phys. Rev. 127,1851 (1962). 

have many of the characteristics of the homogeneous 
system. In particular, we can solve the microscopic 
linearized Vlasov equation in terms of a generalized 
dielectric function. In the first section we discuss some 
general properties of the microscopic distribution 
functions and autocorrelation functions. In the next 
section we solve the approximate equation of motion. 
We are then able to obtain approximate expressions 
for correlation functions in terms of the initial one­
particle distribution function and the initial two­
particle distribution function propagated along the 
unperturbed orbits. The effect of the medium on a 
test particle is again (as in the homogeneous case) 
to modify the field. due to the test particle by the 
generalized dielectric function. The test-particle 
results extend as expected,16.23 and we obtain an 
expression for the phase-space density of the polariza­
tion cloud. In particular, we can consider the system 
to be a collection of noninteracting quasiparticles. The 
quasiparticle consists of a particle traveling an orbit 
determined by the mean fieldS plus the associated 
polarization cloud induced by the particle. Finally, we 
are able to obtain a generalized kinetic equation which 
contains the effects of the dielectric function but not 
those of the three-particle correlation function and 
close collisions. We confine ourselves throughout to the 
one-component system. 

2. MICROSCOPIC DISTRIBUTION FUNCTIONS 

The microscopic or "exact" one-particle distribution 
function has been discussed by many authors re­
cently: 15-17 It is given by 

N 

J(r, p, t) = 1 b(r - ri(t)b(p - p.(t), (1) 
i=1 

where ri(t) and Pi(t) are the position and momentum 
of the ith particle at time t. It is easy to show that this 
distribution function obeys the microscopic Vlasov 
equation 

aJ(x, t) + 1. . oj + F • oj = 0, 
at m Or ap (2) 

where x = (r, p) denotes a point in phase space, F 
denotes the force which includes all external forces 
and the "exact" fluctuating force arising from inter­
particle interactions. For example, if the particles 
interact through a two-body potential such as the 
Coulomb or gravitational potentials, then this 
contribution to the force is given by 

F(r, t) = - .E.. fdX'cD(r - r')I(r', p', t). (3) or 
---

'S M. E. Rensink, Phys. Rev. 164, 175 (1967) . 
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It is also easy to show that 1 obeys another equation 
of motion which involves the N-particle Liouville 
operator CN • This equation is 

ol(x. t) _ iCNl(x. t) = O. 
ot 

(4) 

In the above equation we are considering 1 to be a 
function of a point r in the 6N-dimensional r space. 
The operator CN is defined by 

N p. 0 N 0 
iCN = L --2 • - + L F(xi ) • - , (5) 

i=1 m ori i=l 0Pi 

where F(xi ) is the force experienced by the ith particle. 
The Liouville equation for the N-particle distribution 
function/NCr, t) is given by 

OfN(r, t) + iCNfN(r, t) = O. (6) 
ot 

We can solve Eqs. (4) and (6) formally as 

lex, t) = lex, r(t, ro» = eif:.Ntj'(x, ro) 
and 

(7) 

/N(rO' t) = e-if:.NtfN(rO' 0) = fN(r( -t, r o), 0), (8) 

where 
(9) 

defines the time-dependent, 6N-dimensional phase 
point r(t, r o), whose initial value is roo 

The average value of the microscopic distribution 
function is given by 

<l(r, p, t)o = f drol(r, p; r(t, rO»fN(rO' 0) 

= f dro(eif:.Ntl(r, p; ro»f~ro, 0), (10) 

where dr 0 is a volume element in the 6N-dimensional 
phase space. The above equation has a close similarity 
to the "Heisenberg picture" in quantum mechanics 
because all of the time dependence is in the "operator" 
1 and the average is taken with respect to the initial 
distribution function. The anti-Hermitian properties of 
the Liouville operator also allow us to write Eq. (10) as 

<l(r, P. 1»0 = f drol(r, p; ro)e-if:.NtfN(rO, 0) 

= <l(r, p, O»t· (11) 

The above equation represents the "Schrodinger 
picture" where all of the time dependence is in the 
distribution function. From Eq. (11) it is easy to 
show that 

<fer, p, t» = n/l(r, p, t), (12) 

where n is the average particle density and /1 is the 
usual one-particle reduced distribution function. In a 
similar manner it is easy to show that 

<T(r, p, t)/(r, p, t»o = n%(r, p; r', p', t) 

+ m5(r - r')o(p - p')fl(r, p, t). (13) 

One of the interesting aspects of the "Heisenberg 
picture" is that it is a very convenient way to treat 
muItitime correlation functions. In particular, any 
two-time correlation function involving one-particle 
observables16 (e.g., the particle density) can be written 
in terms of the quantity 

<lex. t)l(x', t')o 

= f dro(eif:.Nt](x; ro»(eif:.Nt](x'; rO»fN(rO' 0) (14) 

= f dr~f dro/(x; ro)l(x'; r~) 

X e-i Nte-if.N'tjN(rO' o)o(ro - r~). 

With the use of Eqs. (8) and (9) we obtain 

<lex. t)l(x', t')o 

(15) 

= f drof dr~l(x; ro)l(x', r~)D2(rO' t; r~. t'), (16) 

where D2 is the joint probability density that the 
system will be at the point r 0 at time t and at the point 
r~ at t' and is given by 

D2(rO' t; r~, t') =fN(rO' t)o(ro - ret - t', r~». 

(17) 
If we substitute the expression 

N 

l(r, p; ro) = L oCr - ri)o(p - Pi) (18) 
i=1 

forlinto Eq. (17), we obtain 

<ll(X, t)/I(X', t'» = n2 WI2(x, t; x', t') 

+ nWll(x, t; x', t'), (19) 

where Wll and W12 are the quantities introduced by 
Rostoker.16 •24 

We can also write the two-time correlation in 
another form. We have 

<lex, t)l(x', t')o 

= f dro/(x; ro)e-if:.Nt](x'; ret', rO»fN(rO, 0) 

= f drol(x; ro)fN(X', t'; r o, or), (20) 

where or = t - t' and 

•• N. Rostoker, Phys. Fluids 7 479,491 (1964). 
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We note that IN obeys the Liouville equation as a 
function of -r. The two-time correlation function is 
now seen to be simply the reduced one-particle 
distribution function corresponding to IN' That is, 

(l(x, t)l(x', t')o 

= N f drot5(r - rl)t5(p - Pl)fN(r', p', t'; ro,-r) 

= nfl(r', p', t'; r, p, -r), (22) 

Il(r', p', t'; r, p, 0) = (l(x, t)l(x" t»o, (23) 

which is given by Eq. (13). This result is equivalent 
to the theorem proved by Weinstock which relates 
the autocorrelation function to a one-particle distri­
bution function. 25 

3. L~ZED NUCROSCOPIC VLASOV 
EQUATION 

It has been pointed out by several authors15- l7 that 
the linearized microscopic Vlasov equation is equiv­
alent to the equation for the two-particle correlation 
function in which the three-particle correlation 
function and the effects of close collisions have been 
omitted. In the homogeneous case, the linearized 
microscopic Vlasov equation is easily solved and the 
resulting kinetic equation is the well-known Balescu­
Lenard-Guernsey equation.16 In this section, we 
consider the case in which inhomogeneities in space 
are allowed and the Bogoliubov adiabatic assumption 
is not used. 

We write the microscopic distribution function as 

lex, t) = n!t(x, t) + t51(x, t), (24) 

where the quantity 151 represents the fluctuating phase­
space density. From Eq. (2) we obtain for 11 the 
equation 

Ofl(X, t) + iLofl(X, t) = - ~ ~. (t5F(x, t)t51(x, t», 
at nap 

(25) 

where t5F represents the fluctuating force arising 
from 151, i.e., 

t5F(x, t) = F(x, t) - (F(x, t», (26) 

and we assumed that it commutes with the divergence 
operator in momentum space. The one-particle oper­
ator iLo is given by 

iLo = ~ . E. + (F) • .£. . (27) 
m or op 

16 J. Weinstock, Phys. Rev. 139, A388 (1965). 

We can define the time-dependent operators26 

ro(t) = Uo(t,O)r, Po(t) = Uo(t,O)p, (28) 
where 

aUo(t, t') 'L ( )U ( ') - 0 --"-'-----'- - 'ot 0 t, t - , 
at 

which describe a particle moving in the average force 
field (F) which includes all of the external forces and 
any forces which arise from inhomogeneities in the 
system. 

The equation of motion for the fluctuating phase­
space density is 

(E. + iLo) t51(x, t) + nt5F(x, t) • .£. fleX, t) 
at op 
= - .£.. [t5F(x, t)t51(x, t) - (t5F(x, t)t51(x, t»]. (29) ap 

The linearized microscopic Vlasov equation is obtained 
by neglecting the right-hand side of Eq. (29). Clearly, 
this assumes that the fluctuations are small and not 
very "stiff," such as those arising from soft collisions 
as opposed to hard collisions. This assumption is 
equivalent to neglecting the three-particle correlation 
function and the effects of close collisions. 7 .16 

We can solve the resulting equation in terms of the 
initial value of 151 as27 

t51(x, t) = Uo( -t, 0)t51(x, 0) 

- n Ltdt'Uo(t', t)t5F(x, t'). :pfl(X, t'). (30) 

The way in which the fluctuating force is related to 151 
depends on the system under consideration. We now 
restrict ourselves to a one-component system in which 
the particles interact via a two-body potential cI>(r). 
We have in mind either the Coulomb or gravitational 
potentials. We can then write 

t5F(x, t) = - E. fdX'cI>(r - r')t51(x', t). (31) or 
Equation (30) can then be rewritten as 

t51(x, t) = Uo( -t, 0)t51(x, 0) + nfdt'Uo(t', t) :r 
x fdX'cI>(r - r')''£' flex, t')t51(x', t'). (32) op 

If we then integrate both sides of the above equation 

16 The operator Uo(t, 0) is the time-translation operator for the 
unperturbed orbits. Its initial value is the unit operator and it has the 
semi group property Uo(t', t")Uo(t", t) = Uo(t', t). 

.7 A somewhat related approach was discussed at the IXth annual 
meeting of the Division of Plasma Phys., A.P.S. (Nov., 1967), by 
J. Price. 
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over the momenta and define the fluctuating particle 
density 

we obtain28 

bp(r, t) = f dpbl(r, p, t), (33) 

f dr' 50t dt'€(r, r'; t, t')bp(r', t') 

= f dpUo( -t, O)bl(x, 0), (34) 

where the generalized dielectric function is given by 

€(r, r'; t, t') = bet - t')b(r - r') - nf dpUo(t', t) 

X o<l>(r - r') . oUr, p, t'). (35) 
or op 

It is easy to see that if 11 is independent of space and 
time, the usual dielectric function is obtained by a 
Laplace-Fourier transform. It is not surprising that a 
dielectric function of this form should arise. The fact 
that the system is inhomogeneous in space and time 
means that the Fourier transform of the dielectric 
function is not just a function of k and w, but is a 
function of two wavevectors and two frequencies. 
Such generalized dielectric functions have been discus­
sed elsewhere in recent years.29 

In order to obtain an expression for the fluctuating 
particle density, we need to introduce the inverse of the 
dielectric function which is defined by the integral 
equation 

f ~r 5o
t
"dt€-I(r", r; t", t)€(r, r'; t, t') 

= b(r - r')b(t" - t'). (36) 

With the use of Eq. (35) we obtain 

€-I(r", r'; t", t') = b(r" - r')b(t" - t') 

+ n f dx S:"dt€-I(r, r'; t, t')Uo(t', t) 

X o<l>(r - r') . oUr, p, t') . (37) 
or op 

If the one-particle distribution is independent of space 
and time, we obtain the usual expression for the 
dielectric constant. 

The use of Eq. (36) in Eq. (34) yields 

bp(r, t) =f dx'ltdt'€-I(r, r'; t, t')U~( -t', O)bl(x', 0). 

(38) 

28 The integral over time in Eq. (34) should be extended infinites­
imally beyond t so as not to require a factor of 2 in the first term of 
Eq. (35). 

•• P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959). 

The force due to bp is given by 

bF(r, t) = - ~ fdr'<I>(r - r')bp(r', t). (39) 
or 

We thus have the usual description in terms of a 
generalized dielectric function. If we replace cI(r, r'; 
t, t') in Eq. (38) by b(r - r')b(t - t'), then the 
corresponding fluctuating force obtained from Eq. 
(39) is that due to noninteracting particles traveling 
along the unperturbed orbits given by Eq. (28). The 
effect of the medium is to modify the force by a 
dielectric function. 

We can now write blin terms of its initial value as 

bl(x, t) = Uo( -t, O)bl(x, 0) + n tdt'Uo(t', t) ~ Jo or 
X f dr'<I>(r - r') . :PUX, t') f dx" 

X fdt"€-\r', r"; t' t")U~(-t", O)bl(x", 0). 

(40) 

As we have mentioned previously, the effect of the 
operator Uo( - t, 0) is to propagate backward in time 
along the unperturbed orbits. If we define 

jO(x, t) = Uo( -I, O)f(x, 0), (41) 

where f is any function of x = (r, p), then we can 
write Eq. (40) as 

bl(x, t) = b;o(x, t) 

+ fdt' f dx'P(x', t' I x, t)b;o(x', t'), (42) 

where 

P(x't' I xt) = n ltdt"O(t", t')Uo(t", t) 

X :r f dr"<I>(r - r")' :pftCx , t,,)€-I(r", r'; t", t'), (43) 

where 

O(x) = {O, x > o}. 
1, x < ° 

The quantity P(x't' I xt) is the generalization of a 
similar quantity introduced by Rostoker24 for the 
homogeneous case. It is the phase-space density at x 
of the shielding cloud induced by a test particle at 
X'.I6 It has been shown previously that the test-particle 
theory holds for inhomogeneous systems.I6 .23 Equa­
tion (43) gives an explicit expression for P(x't' I xt) in 
terms of the inverse dielectric function. The expression 
given by Eq. (42) can then be interpreted in terms of 
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the test-particle theory. It says that the system can be 
considered to be a superposition of N noninteracting 
quasiparticles which are composed of a bare test 
particle following the unperturbed orbit given by 
Eq. (28) plus the polarization cloud induced by the 
test particle. 

We are now in the position to calculate various 
correlation and autocorrelation functions. We only 
need an expression for the quantity (blO(x, t)blO(x', t'». 
This is very easy to obtain. We find 

(br(x, t)br(x', t'» = n2g(xo( -t), x~( -t'), 0) 

+ nb(xoC -t) - xM -t'»!~(x, t), 

(44) 

where xo(t) is the unperturbed orbit given by Eq. (28). 
Thus, from Eqs. (42) and (44), we can obtain an 
expression for the quantity (bl(x, t)bl(x', t'» and all 
related quantities in terms of the inverse dielectric 
function and the initial one- and two-particle distri­
bution functions propagated along the unperturbed 
orbits. 

In particular, we obtain for the density auto­
correlation function the expression30 

(bp(r, t)bp(r', t'» 

= f dx"Ltdf" f dx"'fdt"'E-l(r, r"; f, t") 

X E-l(r', r"; f', f"')[n2g2(x~( -t"), x~'( _tIll), 0) 

+ nb(x~( -t") - x~'(-t"'»!~(x", t")]. (45) 

In order to obtain a kinetic equation we need an 
expression for (1Jp(x, t)bl(x, t». This can be calculated 
by using Eqs. (38), (42), and (44). We then obtain a 
generalized kinetic equation when we substitute 
the result into Eq. (25). The generalized kinetic 
equation is 

O!I(X, t) + ~ . O!I(X, t) + (F(x, t» • O!I(X, t) 
at m or op 

= ! ~ . ~ fdr'ct>(r - r')fdX' tdt' E-l(r, r'; t, t') 
nap or Jo 

X {[nb(xo( - t) - x~( - t'»!~(x,.t) 

+ n2g2(xO( -t), x~( -t'), 0)] 

80 A very similar expression for the quantum case was obtained 
by D. Dubois, Lectures in Theoretical Physics, W. E. Brittin, Ed. 
(Gordon and Breach,Science Publ., Inc., New York, 1967), Vol. IX. 

+ Ltdt"f dx"P(x"t" I X, t) 

X [nb(x~( -t") - X~( -t'»f~(x', t') 

+ n2g2(X~(-t"), X~(-t'), O)]}. (46) 

The above equation is relatively complicated, but 
it does represent a solution of the problem when we 
ignore the three-particle correlation function and the 
close collision effects. These approximations are 
reasonable for the Coulomb and gravitational forces. 
To lowest order, we can replace/~(x, t) by the exact 
quantity Il(x, t) on the right-hand side, giving us a 
kinetic equation involving only 11 and the initial 
correlation function. Equation (46) gives a general 
result to which approximation procedures, such as the 
adiabatic assumption, can be applied to obtain 
kinetic equations for particular systems. Of course, we 
also need to obtain approximate expressions for the 
inverse dielectric function. In reality, the kinetic 
equation consists of Eq. (46) and Eq. (37). This is 
really the case with the Balescu-Lenard-Guernsey 
equation as well, because the dielectric function there 
containsfI(t) as well. We note also that the problem of 
obtaining the kinetic equation is intimately connected 
with orbit theory because of the Uo operator. This was 
to be expected. 

Finally, we can obtain the generalization of the test­
particle result for the correlation function for in­
homogeneous systems. We find that 

g2(X, x', t) = ltdt"P(X~(t' - t"), t" I x, t)!I(X', t') 

+ fdt"p(xo(t - t"), t" I x', t')!l(X, t) 

+ Ltdt"Ltdt"J dx"P(x", til I x, t) 

X P(x:(t'" - t"), t'" I x', t')!l(X", t"). 

(47) 

Equation (47) is subject to the usual interpretation. 
The correlation between two particles arises from three 
effects. The first two terms are the contribution due to 
one particle being in the polarization cloud of the 
particle. The last term is due to both particles being 
in the polarization cloud of a third particle. 
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Galilean transformations are expressed as transformations in a five-dimensional space, with a subsi­
diary condition, and a Galilean tensor calculus with a nonsingular metric is developed. It is shown that 
the homogeneous Galilei group is isomorphic to a subgroup of the pseudo-orthogonal group 0(4, 1), 
which leaves the difference of two components of a vector invariant. A set of scalar variables for a Galilean­
invariant S matrix is selected. A Galilean-invariant phase space is defined and a recursion relation 
derived. 

INTRODUCTION 

Galilean invariancel - 5 is of interest to the physicist 
since it is the nonrelativistic limit of Lorentz invariance 
and is the invariance obeyed by classical mechanics. 
There has also been recent attention given to the 
construction of kinematically consistent nonrelativistic 
quantum theories.s However, the elegance of the 
manifestly covariant formulation of Lorentz invariance 
is lost in the usual treatment of Galilean invariance. 
In what follows it is shown that a manifestly covariant 
formulation of Galilean invariance follows in a 
natural way from the limit of Lorentz covariance. 
One can then systematically construct Galilean 
co variants and choose scalar variables for a Galilean 
invariant S matrix in an identical manner to the 
construction in the Lorentz-invariant case. A Galilean­
invariant phase space can also be defined and a 
recursion relation similar to the relation for Lorentz­
invariant phase space will be shown to hold. 

1. GALILEAN COVARIANCE 

In considering Galilean invariance it is convenient 
to work with Galilean quantities which are the non­
relativistic limits of the corresponding Lorentz 
quantities. Rather than regard the limiting process as 
one in which we let c ---+ 00, we retain rest-energy 
terms as well as the next order term in vic. Thus, the 
relativistic energy-momentum relation E = [m 2c4 + 
(p)2C2]! becomes E = mc2 + (p)2j2m. Similarly, the 
general homogeneous Lorentz transformations (includ­
ing spatial rotations R) reduce, in the Galilean limit, 
to 

p' = Rp + mV, 

E' = E + V'l'Rp + tmV2, 

x' = Rx + Vt, 

t' = t. 
1 V. Bargmann, Ann. Math. 40, 149 (1939); 59, 1 (1954). 
2 E. Inonu and E. P. Wigner, Nuovo Cimento 9, 705 (1952). 
3 M. Hamermesh, Ann. Phys. 9, 518 (1960). 
• J. M. Levy-Leblond, J. Math. Phys. 4, 776 (1963). 
6 J. Voisin, J. Math. Phys. 6, 1519 (1965). 
• J. M. Levy-Leblond, Commun. Math. Phys. 4,157 (1967). 

(1) 

A homogeneous Lorentz transformation can be 
represented as a linear transformation on a Lorentz 
four-vector. On the other hand, a Galilean transforma­
tion of energy and momentum cannot be represented 
as a linear transformation acting on an energy­
momentum four-vector because of the explicit 
appearance of the mass in the transformation. In 
order to have a linear transformation, we must 
introduce a fifth component to our Galilean vector. 

With a five-vector7 pa = ('!), a homogeneous Galilean 

transformation can be represented by a matrix of the 
form 

G ~ (V:Ri :+) (2) 

The three-by-three "space part" of each five-by-five 
matrix will be abbreviated in the upper left corner. 

A space-time five-vector has x for its first three 
components and t for its fifth component. Its fourth 
component must be related to x and t in the same way 
that E is related to P and m, i.e., X4 = t + (x)2j2t. 

The metric in this five-dimensional space can be 
found by taking the Galilean limit of the Lorentz 
scalar product. The Lorentz scalar product EIE2 -
PI • P2 becomes, in the Galilean limit, m1E2 + m2E1 -

mIm2 - PI • P2' Our nonsingular8 Galilean metric is 
therefore determined to be 

~),' ~ c: (3) 

The group of transformations G is just the group 
which leaves the metric g invariant under a congruent 

7 From now on factors of c will be understood and not written 
explicitly. 

• P. Havas, Rev. Mod. Phys. 36, 938 (1964). A fouT-dimensional 
formulation of Galilean invariance using a singular metric is 
developed here. 

1927 
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TABLE T. Contravariant and covariant Galilean five-vectors. 

Space-time Acceler- Momen-
differentials Velocity ation tum Force Gradient 

dxr1. vO: aO: pO: pI. vr1. 

dx v a p F -v 
dt(1 + v'/2) 1 + v'/2 a· v E F· v a/at 

df 1 0 m 0 0 

dx(J. Va all Pll F(J. Va 

-dx -v -a -p -F V 
dt 1 0 m 0 0 

dt(v2/2) v2/2 a'v E-m F· v a/at 

transformation GTgG = g, with the subsidiary con­
dition that it leave the "submetric" 

(4) 

invariant, GTgoG = go; i.e., it must leave the fifth 
component of our five-vector invariant. 

We may now lower indices on contravariant vectors 
to form covariant vectors. Some Galilean five-vectors 
of interest are given in Table I. We observe that for a 
covariant vector it is the fourth component which is 
invariant. The following relations may be noted: 

(5a) 

(5b) 

(5c) 

(5d) 

but are related by 

M2 = 2eI mJU - (I m;)2. (8) 

We note that U ~ M, with the equality holding only 
when all the particles are at rest. 

The Levi-Civita symbol €(J.pyq/; is a fifth-rank 
covariant isotropic tensor under transformations 
for which det G = 1, and may be used to construct 
Galilean covariants. In particular, the Galilean 
analog of any Lorentz covariant constructed with the 
fourth-rank symbol €I'vpa may be found immediately. 
For example, the Lorentz quadrilinear invariant 

PIx P2x P3x P4x 

€l'vpapip;pCp: == 
Ply P2y P3y P411 

(9) 
Plz P2z P3z P4z 

EI E2 £3 E4 

has as its Galilean analog 

PIx P2x Pax P4x 

II P y /;_ 
Ply P2y Pay P4y 

€llpy4oPIP2PaP4 - (10) 
Plz P2z Paz P4z 

recalling that the fourth component of a covariant 
vector is an invariant. 

The square of the spin for an n-particle system is 
given, for the Lorentz case, by 

(11) 
where 

dT2 == gllP dx ll dxP = dx(J. dXIl = dt2, 

V'(J.V'Il = _V2. 

(5e) Pv = I p;, Mpa = I (xfpf - xfpf). (13) 

(5f) In the Galilean case we have 

There are two n-particle invariants which should be 
distinguished. The invariant center-of-mass energy or 
"effective mass" of n particles, which in the Lorentz 
case is [(I £.)2 - (I Pi)2]!, becomes in the Galilean 
limit 

(6) 

The invariant "effective-mass squared" (IpiMIpi)(J. 
becomes 

M2 = I [2(miE; + m;Ei - Pi· p;) + (mi - m;)2], 
i<; (7) 

and is no longer the square of the center-of-mass 
energy. These two invariants are not independent, 

(14) 
where 

W(J. = [2(PTr)!]-I€IlPY40PP MYo. (15) 

pfJ and MYo are again given by (13). The fourth 
components of the momentum and position vectors 
do not appear in W(J.' 

There are, in addition, Galilean tensors which do 
not correspond to any Lorentz tensor, namely those 
for which an index of the Levi-Civita symbol is not 
held fixed. The quintilinear Galilean invariant 

(16) 

has no Lorentz analog. Apart from constant factors, 
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this invariant can be written as 

Vlx V2J' V3x V4x V5x 

Vly V2y V3y V4y V,:;,y 

VIz V2z V3z V4z V5z 

2 
VI v~ v~ v2 

4 v2 
5 

We now find an equivalent group C which leaves 
the pseudo-orthogonal 0(4, I) metric 

(17) 

invariant. If we find a congruent transformation C 
such that CT gC = g, then the equivalent group C = 
C-IGC will leave the metric g invariant: CTgC = g. 
It will also leave the metric go invariant: CTgoC = go, 
where go = C T goc. Under such a transformation, a 
Galilean vector pa becomes p = C-1p. One choice9 

of C is 

(18) 

The matrices of the group C then have the form 

(19) 

The "submetric" go is 

(~___ 0) 
go = 0 -1 . 

o -1' 1 

(20) 

The new Galilean vector is if = ( ; ), a momentum, 
E-m 

total-energy, kinetic-energy five-vector. It is now 
evident that the homogeneous Galilei group is 
isomorphic to a subgroup of the pseudo-orthogonal 
group 0(4, I) which leaves the difference between the 
fourth and fifth component of a vector invariant. 

• More generally, the matrix C may be chosen to be 

k arbitrary. 

2. SCALAR VARIABLE PROBLEM 

The problem of selecting a set of scalar variables 
for a Lorentz-invariant S matrix has been discussed 
by Rohrlich. lo He has shown the following: 

For an n-particie reaction there are 3n - 10 
independent bilinear scalars needed to reconstruct the 
momentum configuration with respect to three 
momenta, say PI, P2' Pa, chosen as base vectors. The 
3n - 9 scalar variables 

PI • Pk' k = 2, ... , n - 1, 

P2 . Pk , k = 3, ... , n - 1, 

Pa' Pk' k = 4, ... , n - 1, 

together with the n - 1 masses mk ,k = 1, ... , n - 1, 
determine the n - 1 four-vectors up to a choice of 
two vectors, for k = 4, ... , n - 1. The nth vector is 
determined by momentum conservation. If the mass of 
the nth particie is specified, then Pn is in fact over­
determined, placing a single constraint on the 3n - 9 
variables. Only 3n - 10 are therefore independent. 
The dichotomic invariant sign EIlVP(1P~P{p~p~ serves to 
distinguish between the two choices of h for each 
k = 4, ... , n - 1. Therefore, n - 4 of these dicho­
tomic quadrilinear invariants in addition to the 
aforementioned bilinear invariants specify the wn­
figuration uniquely. 

There is an entirely analogous situation for the case 
of Galilean scalar variables. The appropriate bilinear 
scalars are Galilean scalar products of the form 
P(a)"P(b) . Suppose that we are given three base vectors 
Pi == (Pi' E i , mi ), i = 1,2,3, and that for an arbitrary 
h, k = 4, ... , n - 1, the scalar products 

Pi' Pk = miEk + mkEi - mimk - Pi' Pk, 

i= 1,2,3, (21) 

are specified. We may then solve these three equations 
simultaneously for Pk in terms of Ek in the form 
Pk = a k + ~kEk' Since Ek - (Pk)2/2mk = mk, we have 
a quadratic equation for each Ek ; if one solution is 
real, the other must also be, leaving us with two 
physical vectors as in the Lorentz case. 

The quadrilinear Galilean invariant 

is now the dichotomic parameter which distinguishes 
between the two vectors. The specification of n - 4 of 
these quadrilinear invariants, in addition to the 3n -
10 independent bilinear invariants, therefore deter­
mines the n-particie configuration. 

10 F. Rohrlich, Nuoyo Cimento 38, 673 (1965). 
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3. GALILEAN-INVARIANT PHASE SPACE 

Under Galilean transformations, both d3p and 
d4p == d3p dE are invariants. Although a phase space 
defined by 

is Galilean-invariant, we may choose not to work with 
it since it does not have the same dimensions as, and 
is not the nonrelativistic limit of, the Lorentz invariant 
phase space. However a Galilean-invariant phase 
space defined by 

F n = f (r [d4pit5(P~ - m;)] 

X t5
3 (p - f p}~( E - f Ei) (22) 

does have these properties. If we note that 

d4pit5(p; - mD = d3pi dEit5[(2miEi - m~ - p~) - m~] 

= d
3

pi dEi b[Ei - (mi + P;) ] (23) 
2mi 2mi 

and introduce the notation 

k (k )2/ k 
Ui = E; - p;/2mi , Uk = t E; - ~ Pi 2 t mi , 

we can write 

A recursion relation for the quantity 

similar to the recursion relationI I.12 for Lorentz­
invariant phase space, may be easily derived. Inserting 
into the integral (26) the factor 

11 P. P. Srivastava and E. C. G. Sudarshan. Phys. Rev. 110, 765 
(1958). 

12 G. Pinski. Nuovo Cimento 24,719 (1962). 

we have 

Rn(Un; mI ,"', mn) 

= J (J il [d4
pit5(Ui - mi)]t5

4
(r - ~Ipi) 

X J d4pnt5(u n - mn) d4r 

X t5(Un_I - U)b4(P - r - Pn)} dU 

= rn~~-m"Rn_I(U; mI ,"', mn)R~l)(Un; U, mn) dUo 
J'~ mj 

1 (27) 
Here 

R~l)(Un; U, mn ) 

== J d4pnt5(u n - mn)d4rt5(U n-I - U)t54(P - r - Pn) 

(28) 

Also 
R 2(U; mI , m2) 

= 21T(U - mi - m2)l(1/2m I + 1/2m2)-f. (29) 

It should be noted that, unlike the situation for the 
Lorentz recursion relation, the function R~l) ( Un; U, mn) 
is an explicit function of the sum of the masses of 
those particles which have effective mass U, and must 
be distinguished from the function R2(U; mI, m2). 

The two-particle Lorentz and Galilean phase space 
may now be compared: 

F~or(u; mI , m2) = 1T IprorllU, 

F?al(U; mI , m2) = 1T Ip?ali/(m i + m2), (30) 

Gal [U - mi - m2 Jl 
IPI I = (1/2mI + 112m2) . 

(31) 

Unlike the two-particle Lorentz phase space which 
approaches a limiting value with increasing energy, 
the two-particle Galilean phase space is unbounded. 

Application of these relations to Galilean statistical 
theories will be treated in a separate publication. 
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We derive some new equations for the wavefunction for the three-body scattering problem using the 
"partial-wavefunction approach." All scattering processes are solutions of inhomogeneous coupled 
integral equations for the scattered parts of the total wavefunction. We show how the Pauli principle is 
incorporated when some or all of the particles are identical. This leads to a reduction in the number of 
independent scattered partial wavefunctions when some of the particles are identical. The kernels in the 
integral equations contain no <5 functions but each scattered partial wavefunction does have a self­
coupling term. We apply the method to the scattering of three identical bosons interacting through zero­
range pair potentials. The method gives the same equation for this problem as obtained by the Faddeev 
T-matrix approach. 

I. INTRODUCTION 

The advantages of writing the wavefunction as a 
sum of three parts for a bound-state system of three 
identical particles has been shown by Eyges.1 Faddeev 
has applied a similar idea to the scattering problem, 
and written the T matrix as the sum of three parts.2 

Using the "partial-wavefunction" approach, we have 
also shown how solutions for a bound-state system of 
three arbitrary particles can be constructed which are 
eigenstates of a complete set of commuting operators.3 

The method has been applied with success to the 
heliumlike atom,3 and has led to a new technique for 
calculating bound-state energies for three-body sys­
tems. 

The purpose of this paper is to show how the three­
body scattering problem can be treated in a similar 
way by breaking up the scattered part of the total 
wavefunction into a sum of three parts which we 
call "scattered partial wavefunctions." General oper­
ator equations for the three-body scattering problem 
are derived and the matrix elements of these 
equations for several specific situations are written 
out in the momentum representation. In order to 
show the reader how these equations are applied we 
consider explicitly the case of three identical particles 
interacting through zero-range pair potentials and 
demonstrate that the method, in this case, gives the 
same results as the Faddeev T-matrix approach. 

II. THE EQUATIONS FOR THREE·PARTICLE 
SCATTERING 

The Schrodinger equation where the center-of-mass 
and time motion have been separated out is 

(I) 

1 L. Eyges, Phys. Rev. 115, 1643 (1959). 
2 L. D. Faddeev, Zh. Eksp. Teor. Fiz. 39, 1459 (1960) [Sov. 

Phys.-JETP 12, 1014 (1961»). 
• J. R. Jasperse and M. H. Friedman, Phys. Rev. 159, 69 (1967). 

where 'Y t is the Schrodinger state-vector and H is the 
Hamiltonian operator written as 

H = Ho + Vii + Vik + Vki . (2) 

Consider a system of three distinguishable particles 
where particle k is incident on a bound state of 
particles i andj. We may write the total state-vector as 
the sum of an incident part, which is a known eigen­
state of Ho + Vii' and a scattered part which is 
unknown, 

'Yt = 'Y(i) + 'Y. 

Substituting this expression into Eq. (I), rearranging, 
and writing the result in terms of the resolvent oper­
ator Go(s) = (Ho - S/)-l, we obtain 

'Y = -Go(S){(Vik + VkJ'Y(i) + (Vii + Vik + Vki)'Y} , 

where s is defined as the complex energy parameter. 
Let this definition for Go(s) and a consistent extension 
of the energy of the in-state to complex values serve to 
define the continuation of the energy to the complex 
plane in our equations. It can be shown that a solution 
of the following form exists4 : 

'Y t = 'Y(i) + "Pi; + "P;k + "Pki' 

where the three scattered partial state-vectors, "Pi/S, 
are given by a set of coupled operator equations. In 
matrix form we have: 

(~;:) = -GO(S)(~ik)'Y(i) 
"Pki Vki 

(3) 

4 This result follows using arguments similar to those develored 
in Ref. 3. 

1931 
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Rewriting these equations so that the self-coupled 
terms appear together gives 

(

[1 + GO(S)Vi;l~'ii) ( 0 ) 
[1 + GO(S)Vik]1J'ik = -GO(S) Vik '¥(i) 

[1 + GO(S)Vki ]1J'ki Vki 

-GO(S)(~k ~i ~;~)(:;:). (4) 

Vki Vki 0 1J'ki 

If the incident wave were a state where each particle 
were free, then the inhomogeneous term of the first 
equation in Eqs. (4) would be -Go(s) Vii'¥(i) instead of 
O. The momentum representation of the homogeneous 
equations embodied in Eqs. (4), representing the 
three-body bound states, is the same as that derived 
in Ref. 3. 

Consider a system of three particles interacting 
through pair potentials, where particles i and k are 
identical and particle j is different. In dealing with 
situations where some of the particles are identical, 
we may either solve the Schrodinger equation without 
any symmetry requirement on the solution and then 
symmetrize (or antisymmetrize) afterward, or we 
symmetrize (or antisymmetrize) both the solution and 
the equations in the beginning. In a two-body problem 
with two identical particles, there is no advantage in 
using one method over the other. However, for the 
three-body problem using the partial-wavefunction 
approach, it is advantageous to symmetrize (or anti­
symmetrize) the solutions first. Since all pair potentials 
are even functions of their arguments, the three 
coupled equations which result are no longer all 
independent and the system of equations can be 
simplified. In this way the number of independent 
scattered partial wavefunctions can be reduced. The 
Hamiltonian is given by Eq. (2) where the pair poten­
tials Vii and Vik have the same form. It can be shown 
that the incident state-vector and the scattered state 
vector are4 

'¥B.Ali) = 1J'W ± 1J'~~, 
urB.A _ .,,+.- ± .,,+.- + .,,0.0 
T -Tii Tik Tki' 

and that the total state-vector is given by 

'¥t = ,¥S.Ali) + '¥B.A, 

where the incident partial state-vector is a known 
eigenstate of Ho + Vii' The + and - superscripts 
refer to either the symmetric or antisymmetric total 
solution. The e and 0 superscripts refer to the evenness 
or oddness of the scattered partial state-vector upon 
exchange of particles i and k. For particle k, incident 
on the bound state of particles i and j, we substitute 

this form for the total state-vector into the Schrodinger 
equation and use procedures similar to those of the 
previous case to obtain 

Note that the total state-vector and the coupled set 
of equations giving the partial scattered state-vectors 
are explicitly symmetrized (or antisymmetrized). For 
this system it is possible to show that there are only 
two independent equations by proving that4 

.,,(;) -.,,(;) and .,,+.- - .,,+.­Tii - T;k Tii - Tik . 

By this we mean that when we take the matrix elements 
of the operator Eqs. (5) in momentum space we can 
prove that the form of 1J'~:) is the same as that of 
1J'}r and the form of 1J't;.- is the same as that of 1J'1k'- . 
If each particle were initially free, then the inhomo­
geneous terms would be 

( 

~i[ 1J'!~) ± 1J'~r]) 
-Go(s) Vik[1J'W ± 1J'~~] . 

Vici[ 1J'W ± 1J'~r] 

In order to make these operator equations more 
explicit we write out the matrix elements for the case 
of two identical particles interacting with a third 
which is different. The center-of-mass coordinates in 
position space and in momentum space may be 
defined as follows: 

R == (mifi + mjfj + m~k)M-l, 
f ij == (fi - f j ), 

Pk == fk - (mifi + mjf/)(mi + ml)-l, 

K == k i + k j + kk' 

kil == (mik i - mik;)(mi + mi)-l, 

X k == [(mi + mj)kk - mk(ki + kj )]M-l, 

where the three sets of coordinates for each representa­
tion are generated by allowing i, j, and k to assume 
the values 1, 2, and 3 in cyclical permutation and M 
is the total mass. Letting particles 1 and 3 be the identi­
cal pair and taking the matrix elements of the two 
independent equations of Eqs. (5) in the frame 
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(k12' X3) == (k, x) gives5 

cfotC(k, x) + [(27T)\1X12k2 + (J3K2 - S)]-l 

X II dr dk'V12(r)cfoti-(k', x) exp ir· (k' - k) 

= Iii-(k, x) - [(27T)3(1X12k2 + (J3K2 - 8)]-1 

X II dr dk'V12(r){±cfoi:;-(bk', k' - b-1x) 

X exp ir· [k' - k - (b-1 - b)x] 

+ cfo~iO(ik', k' - 2x) 

X exp ir· [-k' - k + (2 - a)x]) (6a) 

cfo;iO(k, x) + [(27T)3(1X31k2 + (J2K2 - S)t1 

X If dr dk'V31(r)cfo;iO(k', x) exp ir· (k' - k) 

= Iti-(k, x) - [(27T)31X31k2 + /32K2 - 8)]-1 

X II dr dk'V31(r){ cfot:e( -ak', k' - a-Ix) 

X exp ir· [k' - k - (a-1 
- i)x] 

± cfoti-( -ak', k' - a-Ix) 

X exp ir • [-k' - k + (a-1 
- i)x]). 

Here we have defined 

(k, x \ tpt·-) == cfot'-(k, x) 

and the inhomogeneous terms are 

(6b) 

Ii:i-(k, x) = -(±)[(27T)3(1X12k2 + (J3K2 - 8)]-1 

X IIdrdk'V12(r)cfoii~(bk"k' - b-1x) 

X exp ir· [k' - k - (b-1 
- b)x], (7a) 

Iti-(k, x) = - [(27T)3(1X31k2 + /32K2 - S)]-l 

X IIdrdk'V31(r){cfo~~(-ak"k' - a-Ix) 

X exp ir • [k' - k - (a-1 
- i)x] 

± cfo~~( -ak', k' - a-Ix) 

X exp ir· [-k' - k + (a-1 
- i)x]). (7b) 

We have also defined 

(k, x I tp::» == cfo~~·)(k, x), 

and the constants appearing in these equations for 
m1 = m3 are given by 

1X12 = ia-t, /33 = HI + b), 

1X31 = 1, /32 = Ha-1 
- i), 

a = m2(m1 + m2)-t, b = m1(m1 + m2)-1. 

• Note that the homogeneous parts of these equations differ 
slightly from Eqs. (14a) and (14b) of Ref. 3. This comes about 
because we have redefined the total wavefunction for the case of 
two identical particles [given in this paper by Eq. (8)] and have 
corrected a slight error in the symmetry discussion in Ref. 3. 

The space part of the total wavefunction in the frame 
(k12 , x3) is defined as 

(k12' x3 \ ,¥~.A) == <D~.A(k12' x3), 

and is given by 

<Df'A(k12 , x 3) 

= cfo~~(k12' x3) ± cfoW( -k23 , Xl) + cfoii-(k12 , x3) 

± cfoi:e( -k23 , Xl) + cfo;iO(k31' x2). (8) 

Note that <Df·A(k12' x3) is symmetric or antisym­
metric upon the exchange of particles 1 and 3. 

For three identical particles it is also possible to 
show that a solution of the following form exists: 

where 

'¥f,A = ,¥S.A(i) + ,¥S,A, 

lT~S.A(i) _ me.oW + 1I,e.0(i) + 1"e,0(i) 
T - T;; T ik Tki' 

The coupled equations, which result when the incident 
state is the one in which one particle scatters from the 
bound state of the other two, are given by 

Again, we have explicitly symmetrized or antisym­
metrized the equations and as a consequence we may 
show that the form of each incident partial state­
vector is the same, and the form of each scattered 
partial state-vector is the same. This in turn implies 
that there is only one independent equation in Eqs. 
(9). Taking the matrix elements in momentum space 
of the single independent equation in Eqs. (9), and 
dropping the subscripts i, j, and k we obtain 

cfoe,O(k, x) + [(27T)3(k2 + !K2 - S)]-l 

X II dr dk' V(r)cfoe.O(k', x) exp ir • (k' - k) 

= l",O(k, x) - [(27Tl(k2 + !K2 - S)]-1 

X II dr dk'V(r){ cfoe.o(tk', k' - 2x) 

X exp ir· (-k' - k + !x) + cfo"O( -tk', k' - 2x) 

X exp ir. (k' - k - !x)}, (10) 
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where we have defined (k, K 1 tpf/> == cp:/(k, K) and 
where the inhomogeneous term is 

I":O(k, K) = _[(21T)3(k2 + tK2 - s)r1 

X II dr dk'V(r){ cp •. O(i)(tk', k' - 2K) 

X exp ir· (-k' - k + IK) 

+ cp •. oW( -ik', k' - 2K) 

X exp ir· (k' - k - IK)}. (11) 

The total wavefunction in the frame (kii' Kk) is 

(kii , Klel 'ff·A) == <l>f·A(kij, Kle) 

= cp •. o(i)(kii , Kle) + cp •. ow(k ile , Ki) 

+ cp •. o(i)(klei , K i ) + CPe.o(kii' K k) 

+ cp •• O(kile , Ki ) + cp'.O(klei' Ki)' (12) 

III. THREE IDENTICAL PARTICLES INTER­
ACTING THROUGH ZERO-RANGE PAIR 

POTENTIALS 

In Sec. II we have derived some general equations 
for the three-body scattering problem using the 
partial-wavefunction approach. We have also shown 
how the Pauli principle may be incorporated so as to 
symmetrize or antisymmetrize the equations when 
some or all of the particles become identical. In this 
section we consider one case explicitly, i.e., the case 
where three identical particles interact through zero­
range pair potentials, and show that our method 
produces the same result as the Faddeev T-matrix 
approach. 

The method we propose for calculating the total 
wavefunction consists of performing the following 
three steps: 

(I) Take the matrix elements in momentum space 
of the appropriate operator equations for a given 
incident state; 

(2) Use the knowledge of the bound states of each 
pair problem and the requirement that the Fourier 
transform exist and represent all possible outgoing 

states to deduce the most general expansion for each 
scattered partial wavefunction; 

(3) Substitute these expansions into the appropriate 
equations and derive a set of coupled integral equations 
for the unknown functions appearing in each ex­
pansion. 

Let us carry this out for the zero-range pair po­
tential problem. The pair problem has one bound 
state given by 

for r > roo where ro is the range of the potential. In 
momentum space we have . 

The incident partial wavefunction, when one particle is 
incident on the bound state of the other two, is then 

where Ko is the wavevector of the incident particle. 
We have dropped the e and 0 superscripts since it is 
understood that we are looking for the symmetric 
solution. Since the pair potential has zero range we 
see from Eqs. (10) and (11) that the following sub­
stitution is valid: 

The wavefunction in momentum space must have the 
appropriate singularities to produce all possible out­
going states. Since the pair problem has only one 
bound state we may write 

cp(k, K) = 31TNP(k2 + !K2 - S)-1 

X (_{32 + !K2 - S)-Y(K; Xu), (14) 

where f is a bounded continuous function of K and 
(J (angle between K and Ko) with bounded continuous 
derivatives on K and (J. Substituting Eq. (14) into Eq. 
(10), noticing that the factors (k2 + !K2 - S)-1 cancel 
out, multiplying through by cpP*(k), and integrating 
with respect to k, we obtain 

X exp ir • (-k' - k + IK) + cpw( -ik', k' - 2K) exp ir· (k' - k - IK) 

+ 31TNPf(k' - 2K; Xu) exp ir· (-k' - k + IK) 
[(ik,)2 + !(k' - 2K)2 - s][ - {32 + !(k' - 2K)2 - s] 

+ 31TNfJf(k' - 2K; Ko) exp ir· (k' - k - jK) } 
[( -ik')2 + !(k' - 2K)2 - s][ _{32 + !(k' - 2K)2 - s] . 

(15) 
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Here we have defined the following expression: 

/).fJ + DfJ(K) == I dk cpfJ*(k){ 1 + (27T)-3 II dr dk'V(r) 

x [(k,2 + !K 2_ S)-1 exp ir· (k' - k)]}. 

The integrations over the pair potential may be 
eliminated by making use of the two-body Schrodinger 
equation in momentum space: 

cph(k') = _ [(27T)3(k'2 + p2)r1 

x IJ dk drV(r)cpP*(k) exp ir· (k' - k). 

This reduces the vector integrations from three to 
one. Substituting Eq. (13) for the cp(i) and making an 
appropriate transformation of variables for the one 
remaining vector variable appearing in Eq. (15), we 
obtain -

(!)[/).fJ + DfJ(K)] I(x; xo) 
(_P2 + !K2 - s) 

= 47T2[(xo + tX)2 + P2]cpfJ*(Xo + tx)cpP(!xo + x) 

+ (!)jdY fey; Xo) . 
(l + Y • x + K2 - s)( _p2 + ty2 - s) 

The expression for /).fJ + DfJ(K) becomes 

/).fJ + DfJ(K) =Jdk{cpP*(k) _ (k
2 

+ P
2

)CPfJ*(k)}. 
(k2 + !K2 - s) 

For the zero-range pair potential we may calculate 
/).fJ + DfJ(K) by using the following formula: 

fdX 2 x
2 

= X =F zJdX 2 1 + c. 
(x ± z) (x =F z) 

We see that the infinite parts cancel and we are left 
with 

/).fJ + DfJ(K) = 27T2 [ _p - i(s _ !K2)1]. 

The integral equation for I becomes6 

- = K + X • X + K - sr (3) I(x; xo) ( 2 2 1 

8 [P _ i(s _ !K2)t] 0 0 

+ ~ JdY ICy; xo) 
87T2 (l + y. x + K2 - s)( _p2 + !l- s)' 

(16) 

Note that the self-coupling of the scattered partial 
wavefunction causes no difficulty at the point x = xo, 

• The inhomogeneous term may be written this way since the 
equation only has meaning for s = (m/h2)£ ± iE in the limit as 
E --->- O. For a different derivation of this equation, see G. V. Skornia­
kov and K. A. Ter-Martirosian, Zh. Eksp. Teor. Fiz. 31, 775 (1956) 
[Sov. Phys.-JETP 4, 648 (1957)]. 

and that the kernel of the integral equation for I is a 
Schmidt operator for all complex s except for part of 
the real axis from _p2 to 00. It is also possible to 
prove? that the limit on the cut exists for s--+ 

(mJIi2)E < 0 in the Banach space C1 (the space of 
bounded continuous functions with bounded con­
tinuous derivatives) and hence, for E < 0, the kernel 
is compact in C1 • The compactness proof fails in C1 

for s --+ (m/1i2)E > O. This does not mean that the 
kernel cannot be made compact in some other Banach 
space. In fact, making the substitution 

cp'(x; xo) = (i)[P - i(s - !K2)1]-1f(x; xo) 

we obtain the following equation: 

cp'(x; x o) = (K2 + X· Xo + Kg - S)-1 

_1. JdY cp'(y; xo) 

7T2 (K2 + X • Y + y2 - s)(P + i(s _ ty2)1) . 

(17) 

This equation is identical with that derived by Faddeev 
for this problem.2 Faddeev has shown in general that 
the fifth power of the kernel is compact in a certain 
Banach space.8 The space part of the total wave­
function for symmetric states is then 

<l>f(kii , xk) = SYM {NfJcpfJ(kii)(27T)3b(Xk - x~) 

+ 37TNfJ(k:i + !K~ - S)-1 

X (-P:i + !K: - s)-1f(xk; x~)}, 

where the SYM denotes symmetry with respect to the 
variables kil and xk as written out explicitly in Eq. 
(12). We note here that Eqs. (16) and (17) are not 
unique as they stand due to the pathological behavior 
of the three-body bound state for the zero-range pair 
potentiaP The three-body transition amplitude for 
this problem can be calculated in a straightforward 
way. For example, in the frame (kii , xk ) we get the 
following result for elastic scattering: 

Tf~i = [f(x; xo)]"~,,o =/(KO' 0; KO)' 

IV. DISCUSSION 

We have derived some new equations for the three­
body scattering problem using the partial-wave­
function approach and showed how the equations 
simplify when some or all of the particles are identical. 

7 The proof is similar to that of Lovelace, [CO Lovelace, Phys. 
Rev. 135, B1225 (1964)]. 

8 L. D. Faddeev, Mathematical Aspects of the Three-body Problem 
in the Quantum Scattering Theory (Steklov Mathematical Institute, 
Leningrad, 1963), No. 69. 

• The nonuniqueness is due to the fact that the three-body bound 
state has a solution for arbitrary E. For a discussion on how a 
satisfactory solution can be chosen using these equations, see G. S. 
Danilov, Zh. Eksp. Teor. Fiz. 40,498 (1961) [Sov. Phys.-JETP 13, 
349 (1961)]. 
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We have also indicated how each partial wavefunction 
can be expanded and applied the method to the problem 
of three identical particles interacting through zero­
range pair potentials. It is important to note that with 
this method we do not need to know the off-shell, 
two-body t matrices; only a knowledge of the two­
body bound states for each pair potential is necessary. 
Our feeling at present is that this method can be 

applied to more complicated pair interactions. Three­
dimensional, square-well scattering and electron­
hydrogen scattering are currently being considered 
using this approach. 
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The most degenerate class of representation functions d~~w,(8) pertaining to U(6) ® U(6) have been 
calculated for arbitrary quark number N with the baryon number B, and W, W' weights of the U(6)w 
subgroup assuming the following values: B = 0, 1, i, 1; [W), [W') = 1, 6, 21, 56. These functions are 
the matrix elements of the rotation operator exp (-iOJ.) between basis vectors of the degenerate U(6) ® 
U(6) Feynman series (characterized entirely by BNWlabels), and are essential to the generalized Reggeiza­
tion program. 

1. REPRESENTATION FUNCTIONS OF THE 
MOST-DEGENERATE SERIES 

A generalized Reggeization scheme based on the 
supermultiplet symmetry U(6) ® U(6) has recently 
been proposedl where it has been assumed for definite­
ness that the sequence of physically observed states 
falls in an especially simple class of representations2-

the Feynman series-which are characterized by only 
two Casimir labels: the baryon number B and the 
quark number N. Correspondingly, the poles of the 
generalized partial-wave components of the S matrix 
are presumed to occur just in this degenerate sequence 
and to provide the supermultiplet Regge poles. An 
analysis shows that the N-plane Regge-pole contri­
bution to the amplitude is of the form /3d;l,w'«()/ 
sin ml., where d;/,w'«() is the continuation of the 
rotation-matrix element 

dW,w'«() = (NBWI e-i6J'INBW') (1) 

to complex N = (I.(E) for the degenerate states 

• The research reported in this document has been sponsored in 
part by the Air Force Office for Scientific Research (OAR) through 
the European Office of Aerospace Research, United States Air Force. 

1 A. Salam and J. Strathdee, Phys. Rev. Letters, 19,339 (1967); 
R. Delbourgo, M. A. Rashid, A. Salam, and J. Strathdee, Phys. Rev. 
Phys. Rev. 170, 1477 (1968). 

• Y. Dothan, M. Gell-Mann,and Y. Neeman, Phys. Letters. 17, 
148 (1965); A. Gotsman and Y. Neeman, Tel-Aviv University 
preprint (1966); R. Delbourgo, A. Salam, and J. Strathdee, Proc. 
Roy. Soc. (London)289A, 177 (1965). 

IBNW). In practice, therefore, one requires a knowl­
edge of these functions for B = ° (meson exchange) 
and B = 1 (baryon exchange). The B = ° functions 
have been stated in a previous publication l ; in this 
paper we present the B = 1 functions, building these 
up from the known B = ° set through B = i (quark 
sequence) and B = i (biquark sequence). 

Before evaluating the d«() , one should briefly 
recall the precise definition of the U(6) ® U(6) 
degenerate-states set which we are proposing to adopt 
in order to appreciate the comparatively simple 
nature of the ensuing results. To do so, it is useful to 
state the significant properties of the fundamental 
spinor ("quark") representations from which all 
others, and in particular the degenerate series, can be 
constructed. Letting BI and B2 refer to the "baryon 
numbers" of the commuting phase transformations 
of U(l) ® U(l) and writing (WI' W2) for the repre­
sentations of the commuting SU(6) groups of SU(6) ® 
SU(6), we have the four basic spinors: 

'/fa transforming as (6, I); BI = t, B2 = 0, 

'/fa transforming as (6, 1); BI = -t, B2 = 0, 

'/fa transforming as (1,6); BI = 0, 

'/fa transforming as (1, 6); BI = 0, 
B2 = t, 
B2 = -to 

By constructing multispinor products of these four 
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quarks we can represent any U(6) (2) U(6) state. Thus 
a supermultiplet of baryon number B = Bl + B2 
and quark number N == t(Bl - B2) is described by 
the multispinor3 

A A 

<1>b! •.. bn1 • ql' •. ~n2-3B2 
at'" ant+3Bl' at'" a n2 • 

By imposing traceless ness and particular symmetries 
in indices of the same type, we may select out the 
desired (Wl' W2) level. 

The degenerate series referred to above is defined by 
the additional conditions nl = n2 = 0, together with 
complete symmetry in the remaining indices, viz., by 
multispinors of the variety <1>«bl :: J'N) ). Thus for the 

at aN+3B 

mesons (B = 0) and the baryons (B = 0) we encounter 
the Feynman series: 

N= 0, 1, 2, 

(Wl' W2) = (1,1), (6,6), (21,21),"'; B = 0 

(Wl' W2) = (56, 1), (126, 6), (252,21), ... ; B = 1. 

The simplifying feature of these sequences is that, 
under the reduction SU(6) (2) SU(6) to SU(6), the 
SU(6) (W) representations occur singly in any 
(Wl' W2) representation of SU(6) (2) SU(6). Con­
sequently, the labeling IBNW) is sufficient to char­
acterize the degenerate states. Nevertheless, it must be 
emphasized that the IBNW) vectors on their own 
cannot constitute a complete set since, for given B 
and N, they need to be supplemented by other less­
degenerate vectors. 

In the simplest instance' the Reggeization program 
for U(6) (2) U(6) calls for the evaluation of the special 
representations dfir~W'(O) of Eq. (1), for B = 0 and 
B = 1. In previous workl it was shown that arbitrary 
d~ w,(O) for given B can be built up from the lowest 
W: W' values by differential techniques, and that it 
was sufficient to consider the basic functions 

dti)[llO), B = 0; dfs)[6'](0), B = t; 
d~l][2l'lO), B = i; drs6][56'](0), B = 1; 

and so on. We shall demonstrate below how the 
B =F 0 functions can themselves be built up from the 
B = 0 set also by successive differentiations through 
B = t, i, etc. 

2. MULTISPINOR dee) FUNCTIONS 

The calculation of d(O) will be carried out in two 
steps: the first consists in casting the arguments in the 

3 R. Delbourgo, M. A. Rashid, A. Salam and J. Strathdee, 
Trieste Conference Proceedings (I.A.E.A., Vienna, 1965). 

• One should not categorically preclude the possibility that the 
physically observed supermultiplets fall into sequences of levels 
more complicated than the degenerate sequence considered in this 
paper. If that is the case, the calculations will be correspondingly 
more complicated; that is all. 

M-function framework of the inhomogeneous U(6, 6) 
theory to obtain U(6,6) tensor expressions for the 
d(O); the second step, deferred to Sec. 3, consists in 
contracting over external U(6,6) wavefunctions3 

<1>«BAl · ..... BAN) ) to obtain the canonical expressions for 
1 N+3B 

d(O). 
Now the fundamental function dti][l] (0) arises in the 

supersinglet scattering process 

(1, 1)!PH + (1, 1)!p_q --+ (1, l)ip+q' + (1, 1)!p_a' 

by including an intermediate (N, N)p meson state and 
imposing U(6)w conservation3 at the 3-point vertices­
that is in fact the basic source of d~W'(O) in the 
Reggeization scheme. As the rules for such M­
function calculations have been stated so often,3 we 
shall not repeat them here. The significant point to be 
made is that dii][l](O) devolves upon reducing the 
expression 

F N = fi {(p - m)q'(p + m)}~;[t n d~J/ N! (2) 

for p2 = m2; a straightforward, if tedious, computa­
tion shows that the right-hand side of Eq. (2) reduces, 
for U(v) (2) U(v), to 

F N = (4m2 Iqllq'DNcy(q' 4'), (3) 
where 

q. q' == -q' q' + q' pq' . pJm2 == Iqllq'l cos 0, (4) 

Thus 
dti)[l](O) oc C~(cos 0) (5) 

for U(6) (2) U(6). 
Consider now the functions d[~][6'](O) belonging to 

the B = t family of excitations. These arise from the 
scattering process 

(6,1) + (1,1) --+ (6',1) + (1,1) 

by including an intermediate B = t state of arbitrary 
N. The basic quantities which enter are the vertex 
function 

<C1, 1)1 6~t~:: :~~~l) 1(6, I» 

= 2 [u~~+l IT q~!J/(2m)N(N + I)! 
B k~l 

and the numerator of the propagator 

( 2 2)(m.(Bl ··· BN+l)m.(Al '· .. AN') > 
P - m 'V(Al" . AN) 'V(Bl'··· BN+l') 

= 2 [(P + m)~;:~, IT (p + m)~!,(p - mt1!'J/ 
A,B k~l 

(2m)2N+lN! (N + I)! 
which together provide the expression 

To - -B TA [6]/(2 )4N+l 
[6][6'] - U[6'] BU Am, (6) 
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where 
N 

Tt = (p + m)ZN+l IT {(p - m)q'(p + m)};fl 
1=1 ' 

X t [b~N+l n q~:J/<N + I)!. (6') 

The right-hand side of (6) is not so difficult to simplify 
as it appears to be at first sight, if we make use of the 
following trick. We notice that, since 

Hence, 

F N+1 = (4m
2

Iqllq'I)N+1Ctv+1(COS 0) 
N+1 

= IT {(p - m)q'(p + m)};f: 
1=1 

X [~ll q~~J/<N + I)!, 

of N+1 {(p - m)q'(p + m)}EN+l 

od = N! 
N 

X IT {(p - m)q'(p + m)};f: 
j=l 

X ! [btN+l IT qtZJ. 
B k=l 

[(P + m)q'(p - m) :qJ:F N+1 

8m3 ,2 N 
= - --q- (p + m)~N+l IT {(p - m)q'(p + m)};f: 

N! 3=1 

X ! [b~N+l IT q~~J 
B k=l 

= _8m3q,2(N + l)T;:' (7) 

The advantage of this manipulation lies in the fact 
that the left-hand side can be readily evaluated 
according to techniques which have already been 
described els'ewhere.1 Thus 

of N+1 = (4m2Iqllq'I)N[{(p _ m)q'(p + m)}CY~l 
oq v 

and leads to 

- {(p - m)q(p + m)} 1!1J cY'J (8) 
Iql 

TA = (4m2Iqllq'I)N[(A )ACtv' _ (A )ACtv,] (9) 
B (N + l)v + B N+1 - B N , 

where 

A+ == (p + m)/2m, 

A_ == (p + m)q'(p - m)q(p + m)/8m3 Iqllq'l. (10) 

In this way we have arrived at our multispinor formula 
for d(O) for the degenerate family belonging to B = 1: 

dN(O) ex: [A+C=:V+1 - A_C=:V]/v(N + 1). (11) 

The same trick method can be used with success 
to obtain the B = i. 1 degenerate-series functions. 
Performing the same manipulations as outlined above, 

we get the multispinor expressions for B = i: 
dN (0) -(BIB2)dNAIA.(O) [21] 

[21][21'] = U[21'] BIB. U(AIA.) , (12) 
with 

d~~~2(O) ex: [( _8m3q'2)2(N + 1)(N + 2)r1 

X [(P + m)q'(p - m) ~JAI 
oq BI 

[ 
0 JA

2 X (p + m)q'(p - m) oq B2F N+2 

= [(A )Al(A ) A2Ctv" _ 2(A )Al(A )A.Ctv" + l:Jl + B. N+1 + Bl - B2 N+! 

+ (A_)t~(A_)t:CY"]/(N + l)(N + 2)v2 

(12') 
or, abbreviating to an obvious notation, 

dN(O) ex: [A+ ® A+CN+2 

- 2A+ ® A_CN+! + A_ ® A_C~]; (12") 
B = 1: 

dN(O) ex: [A+ ® A+ ® A+CN+3 - 3A+ ® A+ ® A_CN+2 

+ 3A+ ® A_ ® A_CN+1 - A_ ® A_ ® A_CN], (13) 

relating to 

(13') 

The reader is urged to test the veracity of the results 
for small N by direct explicit calculation. Note that all 
dN (0) are associated with the "threshold" factor 
(4m2 Iqllq'I)N. 

3. CANONICAL d«() FUNCTIONS 

We have only to perform the contractions U" U 

over the Bargmann-Wigner wavefunctions U in Eqs. 
(6), (12), and (13) in order to arrive at the canonical 
forms dit.w' (0). These are straightforwardly done if 
we make use of the basic contractions 

ur,.±A+ur;± = ur,.±A_ur .± = brr, cos iO, 
ur'.'fA+ur± = -ur'.'fA_ur.± = ±brr, sin iO, (14) 

which formulas are easily proved in the rest frame of 
p. ± are helicity indices and r, r' are SU(3) indices 
of the quark wavefunctions. The remaining thing to 
be done is to impose the boundary conditions 

d~. w,(O = 0) = bww' 

to find the over-all normalization factors, and this is 
also easily done from the well-known properties 

CY(I) = rev + N)jr(N + 1)r(v), 

CY'(x) = vcY'::f(x). (15) 

We present below all relevant expressions for the 
reduced functions d~,(O) defined by 

d~.w'(O) = d~A.R'A'(O) = bRR, dlj...{O), (16) 
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where Rand R' refer to SU(3) labels contained in 
W, W'. These are derived by inserting the appropriate 
wavefunctions3 in (6), (12), and (13): 

U[W=6] = UTA' 

[R=6] + [R=3] 
U[W=21] = U(r).,s!') = U(rsll).!') U[rs][).,.] , 

[R=lO] {[R=8] I' } 
U[W=56] = U(rA,8!,,!.) = U(rst)!l"v) + U[r8]1,[.<,.J' + cyc IC • 

The final results for d~,(O) are (p = 6): 

Case: B = 0; [W] = [W'J = 1 

do~(O) = a~vCtv(cos 0), 

aw" == rep + 3B)r(N + 1)W(N + P + 38) 

X 2(2 + p) • .. (68 - 2 + p); (17) 

Case: B = !; [W] = [W'] = 6 

dfi(O) = a~v cos lO[C~+1 - C~v], 
d~H(O) = a1. sin to[CN+1 + CN]' (18) 

Note the close similarity of these expressions with the 
ones encountered5 for SU(2) by putting p = 1. 

Case: B = i; [W] = [W'] = 21 

When [R] = [R'] = 6: 

dIr.(O) = a~v cos2 t o[CN+2 - 2CN+! + CN]' 

dt;(o) = Iia~v cos lO sin to[CN+2 - CN], (17') 

d!!l1(O) = a~v sin2 t o[CN+2 + 2Chl + CN]' 

d/l,(O) = a~v[cos oChz - 2c:hl + cos OCN]. 

For [R] = [R'] = 3 we have instead 

d/l,(O) = a~v[CN+Z - 2 cos OCN+! + CN]' (18') 

Case: B = 1; [W] = [W'] = 56 

When [R] = [R'] = 10: 

aN (0) 3 3 IO[C'" 3C'" 3C'" cm
] if =aNvcos!" N+3- N+2 + N+! - N' 

N r 3 2 dH(O) = y 3a Nv cos to sin to 
X [CN+3 - CN+2 - CN+! + CN]' 

d~u(O) = J3a~v cos lO sin to 
X [CN+3 + CN+2 - C;V+l - CNl, 

d~H(O) = a~v sm3 to[CN+3 + 3CN+2 + 3CN+1 + CN]' 

:IN aN 2 dN uH(O) = n(O) - J3 _!i(0) , 

tiN dN 2dN 
-!teO) = - -nCO) + J3 u(O). (19) 

6 See the Appendix to M. Jacob and G. C. Wick. Ann. Phys. 
(N.Y.) 7, 404, (1959). 

Finally, for [R] = [R'] = 8: 

-N 3 
dU(O) = avN cos to 

(20) 

At this point it is instructive to write down the 
orthogonality properties of these functions. For the 
B = 0 and B = ! functions given above, one can 
definitely state the relations 

B=O: 

J dN(O) dM(O)(sin OJ" dO 

ONM2Vr(N + l)[rOp + l)]2 
= 

(2N + v)r(N + p) 

B= i: 

J d~w' (0) dNW' (O)(sin oy dO 

ONM(N + 2p)r(N + l)(r(iv + l)]2 
= 

N(2N + p)r(N + p + 1) 

Unfortunately, for the B = ! and B = 1 functions, 
such simple orthogonality properties no longer 
existS; there one really requires a full knowledge of the 
U(6) ® U(6) invariant-group element and an exhaus­
tive study of all the group representations, which we 
have not examined in this paper. The general ortho­
normality conditions therefore remain a problem. 
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8 For example. in 0(4). the basic representation functions 

d:~,(O) = (jml e- i9ka/j'm) 

satisfy more involved orthonormality conditions: 

,£J J dio" ,(0) d1o',".(0) sin20 dO = 15/010,15"", 
_~ ~ ~J ~_~. 

We may conjective that the U(v) ® U(v) functions satisfy similar 
sorts of conditions with a summation over various multiplicity 
labels that serve to distinguish between the less degenerate sets of 
states. 
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Cell Model of a Fluid. I. Evaluation of the Partition Function 
and Series Expansions 
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The partition function of a one-dimensional system of particles with all interactions active is formulated 
i~ term~ of Ising ferromagnetic spin states. It is shown how the partition function for two- and three­
dImensIonal systems can be obtained from the one-dimensional one by restricting the number of bonds 
per ~article. After writi~g the partition function in matrix form, the operator of interest is diagonalized 
and ItS trace expressed m the form of a convenient infinite series. The series is shown to be absolutely 
convergent and its analytic properties are briefly investigated. It is then applied to one-, two- and 
three-?imensional s~stems. with ne~rest-neighbor i~tera~tio~s. The validity of th~ model is establish~d by 
summmg the one-dImensIonal senes and companng It wIth the known solutIOn obtainable by other 
meth~ds. T.wo- and. three-dimensional series are. determined by algebraic techniques identical to the 
one-dImensIOnal senes. These are seen to agree wIth the low-temperature expansions obtained by other 
authors .. The '!lethod of this article is seen to have ~he ~dvantage of simplicity and uniformity regardless 
of the dImenSIOn of the system. A subsequent artIcle IS devoted to the thermodynamics of the model. 

1. INTRODUCTION 

It is well known that it has not been possible as 
yet to formulate a completely satisfactory molecular 
theory of the liquid state which correctly portrays 
phase transitions and remains valid in the transition 
region. Basically, the difficulty lies in the high densi­
ties of liquids which approach those of solids, while 
symmetries of the solid state are lacking. Consequently, 
in liquid theory one is forced to deal with a general 
N-body problem without recourse to the simplifications 
and approximations that are available in dealing 
with solids and gases. Nor has it proved feasible thus 
far to extend the cluster expansions and virial series 
to the transition region itself and to liquids.1- 4 While 
these series converge absolutely and generally quite 
rapidly for gases, it has not been possible to extend 
these analytically to other phase regions. In view of 
the work of Yang and Lee, such an extension may 
well be impossible on theoretical grounds,5 since, in 
the thermodynamic limit, it seems probable that the 
logarithm of the partition function is a lacunary 
function6 with a solid wall of singularities surrounding 
the origin in the complex y plane (y = activity). Not 
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surprisingly, there have been very few successful 
attempts to find an exact mathematical representation 
of a system exhibiting a phase transition. Some 
typical exceptions are the two-dimensional Ising 
model,7.8 the ideal Bose gas,3 the spherical Ising 
model,9.10 and the Kac-Baker modeJ.4·11-13 All but 
two of these deal with models in one and two dimen­
sions. While these do not correspond to any real 
system except perhaps a surface film or filament, they 
have the decisive advantage of being mathematically 
tractable. One hopes, then, that some of the con­
clusions and properties of these models may generalize 
to three dimensions. 

We address ourselves in this series of two articles to 
the study of a simple one-dimensional model. Van 
Hove has shown that one-dimensional systems with 
finite-range pairwise potentials with a cutoff will 
show no phase transition.14 Accordingly, the inter­
action potential chosen for the model investigated 
here has an infinite range with a hard-rod repulsive 
core and possesses, as we shall see, variable range 
and depth parameters. In these respects the model 
resembles the Kac-Baker one, but it differs from the 
latter in the analysis and technique of solution . 
Moreover, the potential is a modified Lennard-lones 
one, rather than the exponential interaction potential 
used by Kac and Baker. The system investigated here 
is a cell model of a simple fluid in which the cells have 

7 L. Onsager, Phys. Rev., 65, 117 (1944). 
• B. Kaufman, Phys. Rev., 76, 1232 (1949). 
• T. H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952). 

10 H. A. Gersch, Phys. Fluids 6, 599 (1963). 
11 M. Kac, Phys. Fluids 2, 8 (1959). 
12 G. Baker, Phys. Rev. 122, 1477 (1961). 
13 M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, J. Math. Phys. 5, 

60 (1964). 
U L. Van Hove, Physic a, IS, 951 (1949); 16, 137 (1950). 
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the purpose of specifying the instantaneous location 
of the particles with an uncertainty equal to the cell 
parameter. It is therefore not a lattice gas in the usual 
sense, since the particles are not fixed at their lattice 
sites but are free to move throughout the system. We 
shall find that, by selecting the cell parameter equal to 
the particle's exclusion length, we are able to separate 
completely the repulsive-core potential from the 
attractive tail. This choice is equivalent to introducing 
an exclusion principle into the system which limits 
cell occupancy to one particle or none. It is therefore 
convenient to designate such occupancy by means of 
Ising spin indices. We shall see, however, that the 
spin or-algebraic approach which proved so successful 
in the two-dimensional Ising model appears not to 
lead to a solution in the present instance. This is 
because the infinite-range potential causes every 
particle to interact with every other one, so that in 
the thermodynamic limit the coordination number 
becomes infinite. It is possible, however, to linearize 
the partition function by a Fourier-type transform, 
thereby obtaining a solution of the problem in the 
form of an infinite series which converges absolutely 
for all finite values of the activity. By applying the 
solution to a nearest-neighbor potential, one can 
confirm the validity of the approach, since the series 
can then be summed and compared with the known 
closed-form solution. This calculation at the same 
time lays the ground work for obtaining low-tempera­
ture series in two and three dimensions by identical 
algebraic techniques. We shall prove that, in order to 
obtain such series, one need only modify the inter­
action potential in a suitable way. It will be established 
that by this simple stratagem two- and three-dimen­
sional systems with more limited interactions can be 
generated from the basic one-dimensional model. 
While it is not necessary to restrict the interaction to 
nearest neighbors in these higher-dimensional systems, 
it is essential that the coordination number remain 
small so that the approach be mathematically tractable. 
The resulting series will be seen to agree completely 
with those obtained by other authors. 

The thermodynamics of this model will be explored 
in the second article of this series. We shall find there 
that the behavior is surprisingly realistic and that the 
system undergoes a change of phase under certain 
conditions. 

2. MATHEMATICAL FORMULATION OF THE 
PROBLEM 

A. One-Dimensional System 

The basic system considered is a one-dimensional 
fluid in which every particle interacts with every other 

one. Extension to higher dimensions will be con­
sidered later. Let the particles be distributed on a line 
of length L, bent to form a ring. All distance mea­
surements then occur mod. N. The periodic 
boundary condition is introduced for mathematical 
convenience only; it becomes insignificant in the 
thermodynamic limit. We divide the line into N equal 
segments or cells, each of length I = LIN. Cells may 
be either occupied or empty, particles being free to 
move from one cell to the next. The particles are 
assumed to be completely symmetric and to interact 
with a modified Lennard-Jones potential of the form 

v x _ {+OC! (x < 112), 
( ) - -'lIxI Y (x ~ 112), 

(2.1) 

where x is the separation. between particles, , is the 
potential depth, and y is a parameter fixing the range 
of interaction. The hard-core repulsive interaction is 
most conveniently accounted for by letting the 
cell-size I coincide with the exclusion length of the 
particle and restricting cell occupation numbers to 
zero and one. All other choices of I can be shown to be 
trivial variations of this scheme. The interaction 
potential in terms of the present discrete model is 
then 

v - {O (s = O)} (M d ) 
s - -'lsY (s;l: 0) 0 . N , (2.2) 

where s is the distance between the two particles of 
interest measured in units of the cell parameter I from 
cell center to cell center. The 1> potential is introduced 
to symmetrize the interaction around the ring for 
finite systems. The hard-core repulsive potential 
having been built into the model by the above scheme, 
the potential of the zeroth cell can be chosen arbitrarily 
for mathematical convenience. The 1> potential satisfies 
the following symmetry conditions: 

(2.3) 

Letting nk represent the occupation number of the 
kth cell, the energy of the system is given by 

where it is assumed that there are n particles in the 
system and that the total interaction energy of the 
system can be obtained by summing all pair-wise 
interactions. "Surface" terms (i.e., interactions with 
the boundary) do not occur by virtue of the periodic 
boundary conditions. 
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Now let the occupation number nk be replaced by a 
cell occupation index (Jk = 2nk - 1. The configura­
tional part of the system energy can then be written as 

N N 
Uc = t L' L'(l + (Jr)(1 + (Jr+.)rp. 

r=l.=l 

(2.5) 

where <I> = L~=l rp., and the primed summation 
implies the restriction ~l ar = 2n - N. 

The partition function appropriate for a system of 
n particles is then 

.on = l/(n! hn) f dX I •• -J dXn f dpi .. -J dPn 

X exp {-fJH(PI' ... , Pn; Xl' •.. Xn)} 

= l/(n! An)Zn (fJ = IlkT), (2.6) 

where A = (fJh2/27/"m)t is the thermal wave length and 
results from the evaluation of the momentum inte­
grals.a A straightforward analysis shows that for large 
systems the configurational part of the partition 
function takes the form 

Zn = f dX1 •• -J dXn exp {-fJUcCXI' ... ,xn)} 

= n! zn L exp {-fJUcCal' ... , aN)}, (2.7) 
(0) 

where 

The partition function is then 

.on = (l/Ar' exp {-fJN<I>/4} 

X L exp {-fJ/4(L (Jr(Jr+.rp. + 2<1> L ar} (2.8) 
(0) r,' r 

Since the present investigation is concerned with 
systems subject to phase transitions, i.e., with systems 
in which the number of particles is not constant, it is 
preferable to deal with a grand canonical partition 
function. This also eliminates the awkward restriction 
on the sum of (J's. One then has 

N 

QN = L ~n.Qn' where ~ = exp {fJg} (2.9) 
n=O 

and g is the chemical potential per particle. Writing 
~//A = exp {fJp.} and using the identity 

N 

n = t ! (l + ar), 
r=l 

we obtain 
N N N 

QN = AN ~ exp {~1 ~larar+.O. + 'II ~la+ (2.10) 

where 
I 

L , AN = exp {N('J1 - 0)}, 
ON=-l 

N 

O. = -tfJrp., 0 = LOr' 
r=l 

and'll = lfJ(p. - <1». The remainder of the investigation 
will use this form of the partition function as its point 
of departure. Each term in this sum of 2N terms 
represents one possible configuration or microstate 
of the system. Since the particles comprising the fluid 
are indistinguishable, the probability of finding the 
system in a state of n observable particles is 

Wen) = ANQil ~' exp {L a;a;+oO. + 'II La;}, (2.11) 
'r,8 r 

where a; represents the ith configuration of the rth 
cell and !; implies a sum over all configurations 
consistent with the macroscopic state of the system. 
It is worthwhile noting that the cell structure of the 
system does not imply any spurious symmetry or lattice 
structure. The cells are used merely as a convenient 
mathematical artifice to establish a discrete space 
grid and fix the instantaneous position of the particles. 

B. Multi-Dimensional Systems 

The partition function of two- and three-dimen­
sional systems with a limited number of bonds per 
particles is readily obtained from the preceding 
analysis of a one-dimensional system with all inter­
actions active. Focussing attention first on a square 
array with nearest neighbor interactions only, we find 
that we can construct such a configuration by winding 
the one-dimensional chain around a three-dimensional 
torus (Fig. 1) and letting all interactions vanish except 
those between nearest neighbors in the chain and those 
between nearest-neighbor cells in adjacent rows. 
Figure 2 is a plane projection of such a configuration. 

FIG. I. Toroidal topology of 
2-dimensional model. 
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FIG. 2. Two-dimensional model in plane projection. 

Thus we obtain from Eq. (2.10) the partition function 
for a two-dimensional square array with m cells per 
row simply by use of the following potential: 

Vr = {-' (r = 1, m)} (Mod. N), (2.12) 
o (r ¥= 1, m) 

with CPr given by Eq. (2.3) as before. It is obvious that 
this potential introduces certain spurious interactions. 
In Fig. 2 these are shown by broken lines. While such 
interactions are significant in finite models, they 
become negligible in the thermodynamic limit. One 
can proceed in exactly the same way to obtain the 
partition function of a three-dimensional system. A 
typical square array of 64 cells is shown in Fig. 3. 
For a cubic array of N cells with m cells per row, k 
cells per layer, the appropriate nearest-neighbor 

FIG. 3. Three-dimensional array. 

Fig. 4. Anisotropic nearest-neigh-
bor and next-nearest-neighbor inter- 1; 
action. 

interaction potential is 

v ={-~ (r = 1, m, k)} (Mod. N). (2.l3) 
r 0 (r ¥= 1, m, k) 

Extension of the one-dimensional system partition 
function to higher dimensions is not restricted to 
nearest-neighbor interactions. More complicated inter­
actions can also be accommodated, provided only 
that the number of bonds per cell remains finite and 
sufficiently small to make the analysis feasible mathe­
matically. An element of a typical anisotropic square 
array with nearest-neighbor and next-nearest-neighbor 
interactions is shown in Fig. 4. The partition function 
of such a system can be obtained from Eq. (2.l0) by 
means of the following potential: 

{

-' (r=l), } 
-,: (r = m - 1, m + 1), 

Vr = (Mod. N). -'3 (r = m), 

o (r ¥= 1, m - 1, m, m + 1), 
(2.14) 

In two- and three-dimensional systems, just as in one 
dimension, the cell structure serves merely as a space 
grid for the purpose of specifying the instantaneous 
location of the particles with an uncertainty equal to 
the cell dimension. To take account of the change 
in the momentum integrals in multidimensional sys­
tems, the parameter A must, of course, be redefined 
as follows: A = (f3h2f27Tm)d/2, where d is the dimen­
sionality of the system. 

C. Multiple Cell Occupancy 

One can readily extend the model to take account 
of cell occupancies other than 0 and 1, provided that 
intermediate occupancies are not considered. If, for 
instance, one limits cell occupancy to 0 or m particles, 
the partition function takes the same form as Eq. 
(2.10) if one makes the following definitions: 

CPo = average interaction potential of 
particles in the same cell, 

N-I 

OS = -tf3m2cps; 0' = L Or> 
r~1 

v = tf3m[,u + tel + m)cpo - m<l>], 

AN = exp {N(v - 0')}. 
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For the simple fluid with which this investigation is 
concerned, such a modification is undesirable since the 
cell size would have to be increased, thus reducing the 
fineness of the space grid. In addition, the hard-core 
repulsiw potential could not be satisfied in this case. 

D. Ferromagnetic Systems 

The partition function in (2.10) is identical with that 
of an Ising ferromagnet. 3 . l5 Comparison of the 
definitions of the various parameters for the fluid and 
ferromagnet yields the well-known isomorphisms 
noted by Yang and Lee5 and conveniently summarized 
by Huang.3 The analysis can be broadened consider­
ably, but this will not be done in the present context. 

3. OPERATOR FORMULATION 

Let fli be a state vector representing the state of the 
ith cell and Z be an operator defined as follows: 

(3.1) 

We define now a vector "IP representing the O(th 
configuration of the system: 

(3.2) 

A convenient representation of 1pa is a 2N -dimensional 
one in which it is the direct product of the N two­
dimensional fl-spinors. A corresponding operator Zk 
can be defined in the same space as follows: 

Zk1pa = a~1pa. (3.3) 

In the 2N -dimensional representation the operator 
Zk takes the form 

Zk = I ® I ® ... ® I ® Z ® I ® ... ® I, 
f (3.4) 

kth factor 

where the I's are the two-dimensional identity. It is easy 
to show that in terms of these operators the partition 
function, Eq. (2.10), can be written as 

2N 

QN = AN I1patS1pa = ANT,.(S), (3.5) 
a~l 

where 

S=SlS2, 
N N N 

SI = !! SIr = g exp {~lZrZr+sO.}, 
N N 

S2 = II S2r = II exp {'VZr}. 
r~1 r~1 

The partition functions for small systems are readily 
computed from Eq. (3.5). Such partition functions 

15 S. Fluegge, Handbuch der Physik (Springer-Verlag, Berlin, 
1962), Vol. XIII. 

are tabulated in Appendix A. In attempting a closed­
form solution of the problem it seems natural to 
follow the approach of Kaufman and Onsager,7·8 
setting S2 = I initially. It is obvious that this will not 
be easy since the preceding analysis shows that the 
general one-dimensional system considered here con­
tains the unsolved three-dimensional Ising model as a 
particular subset. The analysis is outlined in Appendix 
B and shows that the operator Sl is not the spin 
representative of commuting rotations, as it is for a 
two-dimensional square lattice, but is rather part of 
a tensor transformation. It does not appear feasible 
therefore to determine the eigenvalues of S in this way. 

4. EVALUATION OF THE PARTITION 
FUNCTION 

In the partition function, Eq. (3.5), consider the 
exponent 

N N N 

U = 11 ZrZr+sO. + 'VI Zr . 
r~1 .~l r~l 

This can be written in the form U = ytcp Y + CPo, 
where y= ~ - ~o, ~ = IZ1,Z2,'" ,ZN), ~o is a 
constant vector yet to be determined, <1>0 is a scalar, 
also as yet undetermined, and <I> is a doubly-cyclic 
matrix16 : 

<1>= 

(4.1) 

i.e., <l>i} = O;-i (we must remember that 0N-r = Or)' 
One finds readily that Vk , the kth normalized eigen­
vector of <1>, is given by Vk = I/N!WkU_l), where 
W kl = exp {27Tkli/N}, while the kth eigenvalue is 

N 

A.k = Icos [(21T/N)krWr· 
r~1 

The A.'S are thus the finite Fourier cosine transforms of 
the 0 potentials. The matrix <I> being symmetric, its 
eigenvectors form, of course, an orthonormal set. 
We now make the following identifications: 

t N N t t N 
~ <1>, = IIZrZr+.O., ~ <I>~o + ~o<l>~ = -'Vlzr, 

~1_1 _1 

(4.2) 

16 The symbols <Il, <Ilo, {, {o, and Vk have the meaning defined here 
only in the present section and must not be confused with the 
corresponding symbols used elsewhere in this paper. 
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One shows easily that '0 = a V N, while 

a = -Ntyj2AN' 

The partition function then takes the form 

QN = BN Tr [exp {yt<1> Y}, 

BN = AN exp {-a2AN}]' (4.3) 

The quadratic form yt<1> Y can be diagonalized in the 
usual way by letting Y = S'Y), where S is an N x N 
matrix whose columns are the eigenvectors of <1>. 

Then we have that 
ill t 1 2 

Y <1> Y = L l'Y)rl Ar · 
r~l 

Remembering that the 'Y)'s are operators, we determine 
their eigenvalues from the following equation: 

N 

'Y)rVl = [l jN!LW_r(S_l)ZS - al\'N]1jJa 
s~l 

= [ljNt~lW_r(S_l)a~ - aOr,N ]1jJa 

= X~1jJa. (4.4) 

The partition function can then be written as follows: 

QN = BN Tr [exp {~11'Y)rI2 Ar} 

= BN{tJ g(Ci ) exp {~1IXr(Ci)12 Ar}. (4.5) 

The sum in the last equation is over all macroscopic 
configurations, g(Ci ) being the degeneracy of the ith 
such configuration, i.e., the number of microstates 
corresponding to the ith macrostates. It proves most 
convenient to choose as the macroscopic configurations 
appearing in the sum the number of particles (n) in the 
system. The sum can then be carried out in terms of 
successive deviations from the perfectly ordered state. 
One readily shows that IXrl 2 is given by 

IXr(n)1 2 = (4jNitl~lCOS [27TjNr(qi - qj)] (r ~ N), 

(N + aNt - 2n)2jN (r = N), 
(4.6) 

where it was assumed that the occupied cells are cells 
ql through qn' One finds that this expression is 
invariant to the substitution n ---+ N - n; i.e., Eq. 
(4.6) is the same for a system of n occupied or n 
empty cells, IXr(n)12 = IX/N - n)12. Before the sum 
in Eq. (4.5) can be carried out, a consistency con­
dition must be satisfied. This results from the fact that 

N 
1jJat 1jJa = L(a~)2 = N. 

r~l 

The consistency condition here is 

xtx = N - 4anjN! + 2aN! + a2
• 

One can give this condition a geometrical inter­
pretation. The original sum in the partition function 
in terms of the a's can be thought of as a sum over the 
corners of an N-dimensional cube having sides two 
units in length. The transformation used above to 
diagonalize the quadratic form yt<1> Y rotates the 
coordinate system and translates the origin. The 
consistency condition then states that distances must 
remain invariant under this transformation. One 
readily verifies that every term in the expansion of 
Eq. (4.5) satisfies this condition. Carrying out the 
sum in (4.5) in terms of successive deviations from the 
perfectly ordered state, after some simplification and 
rearrangement one obtains 

[N/2] {exp {Nil} (fluid), 
Q ,=2C., Tn, CN = 

A N :to exp{N0} (ferromagnet), 

(4.7) 

N ]\T n n 

tn = (ljn!) L' ... L' II II x(qr-q,) , 
ql =1 qn=l r=l s=1 

N 

Xr = exp {SOr}' X = II Xr • 
r~l 

The primed sums indicate that no index may be 
repeated in anyone term, while [m] means "nearest 
integer equal to or less than m." 

5. CONVERGENCE AND ANALYTICITY 

A. Convergence 

As long as N is finite, the series in Eq. (4.7) obviously 
converges, so that the question of convergence is of 
interest only in the thermodynamic limit, i.e., as 
N ---+ 00. Convergence of the series in that limit depends 
on the sign of the exponent 

4[~1~lO(qr-qs) - n0] 

= 4[~1 stO(qr-q,) - nr~lO} (5.1) 

Remembering that in the limit N ---+ 00 symmetries 
due to boundary conditions disappear, we find that 
none of the O's in the double sum occur with a 
multiplicity greater than (n - 1). Hence for any 
attractive interaction with hard core (not necessarily a 
Lennard-Jones potential) the expression in (5.1) is 
less than zero (since Or ~ 0, 'Vr). For example, for a 
potential of constant depth E, expression (5.1) is 
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4n(n - N)€ ~ 0, since € ~ 0 and 0 ~ n ~ N12. Thus 
we have 

[NI2] 

o ~ cosh (Nv) + I lin! cosh [(N - 2n)v] 
n~1 

X a~: .. 'a~~ exp {4[t ~/)ar-Q' - n0 ]}(1- ibn.NI2) 

~ t exp {Nv} n~J:} exp {-2nv} = 2N
-

1 coshN v. 

(5.2) 
Hence 

o ~ QN(V, 0) ~ 2NCN coshN v 

{
(I + exp {2v})"v (fluid), 

= 2 exp {N0} coshN v (ferromagnet). (5.3) 

Consequently, 
(fluid), 0< lim Q~N < {(l + exp {2v}) 

-'''-+00 - 2 exp {0} cosh v ( ferromagnet). 

(5.4) 

The series in Eq. (4.7) therefore has the following 
properties: 

(1) lim QY/ exists; 

(2) q = lim (liN) In (QN) exists; 
N--+oo 

(3) The series representing these functions are 
absolutely and uniformly convergent for all finite 
values of the parameter v. 

B. Analyticity 

The partition function of Eq. (4.7) can be written 
in the form 

[NI2] 

QN = 2CN I an cosh [(N - 2n)v](l - tbn.NI2) 
n~O 

where 
N 

PN (0, y) = I anyn, y = exp {2v}, 
n~O 

N N n n 

an = (lin !)X-n/2 If ... I' II II xar- I1., 
al~1 an~1 r~1 s~1 

(r<s) 

It is readily shown that the coefficients have the 
following properties: 

an=a:, an~ (:), an=aN_n, 

an ~ 0, a o = 1. (5.6) 

Since CN = yN/2 for a fluid, we see that the partition 

function is analytic throughout the entire finite com­
plex y plane, but has a pole of order N at the ideal 
point at infinity. This agrees with physical reasoning, 
since the point y = 0 corresponds to a system of zero 
density, while y ---+ 00 represents a system in which 
every cell is filled, i.e., of density p = 1, where p is 
defined asH 

p = (n)IN. (5.7) 

Conversely, a ferromagnet has poles of order NI2 at 
the origin and at infinity, corresponding to a diverging 
free energy at these points. This behavior is again what 
one would expect on physical grounds since these 
points represent an infinitely large external magnetic 
field aligned with the negative and positive z axis, 
respectively. 

In view of the connection established by Yang and 
Lee between phase changes and zeros of the partition 
function,5 the distribution of these zeros is of partic­
ular interest. One concludes from Eq. (5.5) that the 
zeros of QN coincide with those of the polynomial 
PN • It is apparent from Eq. (5.5) and the properties 
of the coefficients in Eq. (5.6) that the roots occur in 
complex conjugate pairs and inverse pairs; i.e., if 
Yk is such a root, then y: ' y;;-l, and (y:)-1 are roots 
also. Furthermore, no roots can lie on the positive 
real axis for any finite N. Using Yang and Lee's result 
that IJkI ~ 1, it follows at once that all roots must lie 
on the unit circle in the complexy plane. Furthermore, 
if N is odd, at least one of the roots must lie at 
y =-1. 

The analysis can be carried considerably further; 
this will be done in a later publication. 

6. NEAREST-NEIGHBOR APPROXIMATIONS 

In this section the series form of the partition 
function in Eq. (4.7) will be applied to one-, two-, and 
three-dimensional systems with nearest-neighbor inter­
actions. In the one-dimensional case the solution so 
obtained can be checked against the known closed­
form solution to establish the validity of the present 
approach and to develop the algebraic machinery for 
two- and three-dimensional low-temperature series 
approximations. 

" It will be shown in the second of this series [J. Math. Phys. 9, 
1957 (1968), following paper] that the density p is given by p = 
(!)(1 + Tv/NT), where 

[N/2] 
Tv = ~ (N - 2n) . sinh [(N - 2n)v]X-n/2tn(l - i!5n.N/2) 

n~O 

and 
[N/2] 

T = ~ cosh [(N - 2n)v]· x-n/2tn(1 --, !!5n N/.). 
n~O 

Hence for v ....... - CL) or y = 0, p = 0; while for v ....... + CL) or v ....... 
+ CL). p = 1, 
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A. One-Dimensional System 

The potential to be used is 

multilateral with an odd number of sides makes a 
vanishing contribution to the partition function. 

In expanding the primed sums in 14 , one obtains 
V = {-' (r = 1), 

• 0 (r ¥= 1). (6.1) t4 = (1/4!):E~10.030,X12X13X14X2aX24Xa4 
Then 

where 

Xr = exp {4e(<5r .1 + <5r.N- 1)} = 1 + aLlr' (6.2) 

e = 201 = 1.8', a = Xl - 1, 

Ll. = <5r •1 + <5r .N - 1 (modulo N). 

We can now evaluate the partition function term by 
term. Thus [cf. Eq. (4.7)] 

N 

to = 1, tl = L ·1 = N, (6.3) 
0=1 

t2 = t:E~10.X12 = H:E010.x12 - :E010.X12} 
'--' 

= t{:E010.(1 + aLl12) - N} 

= HN2 + 2aN - N) 

= (N/2)(N + 2Xl - 3), 

where the following abbreviated notation was used: 
N N 

:E01 ... On = L ... L, Xi; = XO;-Oj' Llij = Llo;_qj 
01=1 qn=l 

and 

For the next term in the expansion we find 

ta = 1/(3!) :E;10.0aXI2XlaX2a 

(6.4) 

= 1/(3!) :E010,0.(1 + aLl12)(l + aLl1a) . (1 + aLl23) 

X (1 - <501 ,0,)(1 - <501 ,q3)(1 - <5 02,03) 

= 1/(3!) {:E010.03 - 3:E~oa + 2:Ef1o.of}{1 + aLl12) 

X (1 + aLl13)(l + aLl2a) 

= (N/3!)[6x~ + 6(N - 4)X1 + (N - 4)(N - S)]. 

(6.5) 
In arriving at this result the following was used: 

:E010.03Ll12Ll13Ll23 = 0, (6.6) 

which follows directly if one notes that all <5-function 
products occurring in this sum are incompatible. If 
one associates with each Ll function the corresponding 
Boltzmann factor Xl' or, equivalently, the correspond­
ing a factor, one can think of the function Llij as a 
bond between cells qi and q,. From that point of view, 
which will be useful in evaluating higher terms, one 
can say that any triangular configuration of bonds 
makes a vanishing contribution to the partition 
function. This result is readily generalized: Any 
configuration of bonds which includes a closed 

= (1/4!){:E010.030, - 6:E010.030, + 8:E0102030, 
'--' L----l 

= (1/4!)(:E01q'030' ~ (1 + aLlrs) 

(r<s) 

- 6:E0111•11.(1 + aLl12)2(1 + aLlla)2 . (l + aLl2a) 

+ ~., •• [8(1 + aLI...,)' + 3( 1 + aLl. ,,)') - 6N). 

(6.7) 

The sums are easily evaluated except for the first one 
where the algebra becomes somewhat tedious. It can 
be simplified considerably by determining the number 
of ways of distributing one, two, ... , six bonds 
among four cells. In this way, for the entire term one 
has 

14 = (N/4!) [24x~ + 36(N - S)x~ 

+ 12(N - S)(N - 6)X1 + (N - S)(N - 6) 

X (N - 7)]. (6.8) 

In evaluating 15 the following result is helpful: 

! (m) ak =! ± (m) (k) (-l)k-IXi = x;"- 1. 
k=l k k=1Z=O k I (6.9) 

Expansion of the primed sums yields 
5 

t5 = l/(S !):E~1'" 11. II xrs 
r=l 
s=l 

(r<s) 

= l/(S !):E111 ... 11. - 10:E~l1al1'I1' 

+ lS:E11111.l1al1,l1. + 20:E0111.030,05 - 20:Ef10,0yQ,116 
L,.........IL,.........I L-...J I..--J 

5 

- 30:E010.qaQ,06 + 24:E010.QaO,o.} II Xrs 
L..::....:...J L--.J r=l 

= 1/(S!){:E01 . .,116r
TI.(1 + aLlr .} 

(r<s) 

s=l 
(r<s) 

- 1O:E1110.l1aO, (1 + aLl12}2(1 + aLl13)2 

X (1 + aLl14)2(1 + aLl23)(1 + aLl24)(1 + aLl34) 

+ :E11111.l1a[1S(1 + aLl12)4 . (1 + aLl13)2(1 + aLl23)2 

+ 20(1 + aLl12)3(1 + aLl13)3(1 + aLl23)] 

- :E01Q.[20(1 + aLla )6 + 30(1 + aLl12t] + 24N}' 

(6.10) 
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A __ ~A tJq2 \_~r2 \:yq2 

q4 q~ ~ q. 'q4 q. 

(0) Typical Vanishing 
Configurations 

I.~ I.~ .R 
FIG. 5. Typical bond configu­

rations for t •. 

.~ .q2 ·U·2 .qdq2 
~ q. q4 q. q4 < .. 

-0,.1}4J} 
q4 q. q4 q. q4 q. 

(b) Typical Non-Vanishing 
Conf iourations 

The sums occurring here are identical with those 
encountered in previous terms and are evaluated in 
the same way except for the first one. In carrying out 
the first sum one observes that it can be decomposed 
into ten equivalent single-bond terms, 45 equivalent 
two-bond terms, 120 triple-bond terms of which ten 
include triangular bond configurations and therefore 
vanish, etc. Figure 5 shows some typical vanishing 
and non vanishing bond configurations occurring in 
this sum. Reasoning in this way, one finds 

5 

~q,q'Q3Q4q. II (1 + aLlrs) 
1',8=1 
(r<s) 

= ~ql'" q. {1 + 10aLl12 + 45a2Ll12Ll13 

+ 1l0a3Ll12Ll13Ll14 + 15a4Ll12Ll23Ll34Ll14 

+ 125a4Ll12Ll23Ll34Ll45 + 60a5Ll12Ll23Ll34 

X Ll14Ll15 + 10a6Ll12Ll14LllSLl23Ll34Ll35 + zero terms} 

= N[N4 + 20N3(X1 - 1) + 180N2(xi - 2Xl + 1) 

+ 10N(9x~ + 52x~ - 210xi + 228xl - 79) 

+ 20(5x~ + 6xi - 5x~ - 140xi 

+ 315xi - 250x1 + 69]. 

For the entire term one finds 

t5 = (N/5!)[120x~ + 240(N - 6)xi 

+ 120(N ~ 6)(N - 7)xi 

+ 20(N - 6)(N - 7)(N - 8)Xl 

(6.11) 

+ (N - 6)(N - 7)(N - 8)(N - 9)]. (6.12) 

Combining these results, for the one-dimensional 

partition function correct to this term one has 

QN = 2CN{cosh (Nv) + NXll cosh [(N - 2)v] 

+ (N/2)x12(2xl + N - 3) cosh [(N - 4)v] 

+ (N/3 !)x13[6xi + 6(N - 4)Xl 

+ (N - 4)(N - 5)] cosh [(N - 6)v] 

+ (N/4!)x14[24x~ + 36(N - 5)xi 

+ 12(N - 5)(N - 6)Xl 

+ (N - 5)(N - 6)(N - 7)] cosh [(N - 8)v] 

+ (N/5!)xlS[120x~ + 240(N - 6)xi 

+ 120(N - 6)(N - 7)xi 

+ 20(N - 6)(N - 7)(N - 8)Xl 

+ (N - 6)(N - 7)(N - 8)(N - 9)] 

X cosh [(N - lO)v] + ... }. (6.13) 

Equation (6.13) suggests strongly that one should be 
able to write the one-dimensional partition function in 
the following form: 

[NI2] 
QN = 2CN ! x1ntn cosh [(N - 2n)v(1 - tt5n ,NI2)' 

n=O 

where 

tn = {~ i (n) (N - n - 1) X~-k 
n k=l k k - 1 

One can re-express tn in the form 

tn = N ! (n) (N - n - 1) (1 + a)n-k 
n k=l k k - 1 

(6.14) 

(n = 0), 

(n ¥= 0). 

= N nf !/(n) (N - n - 1) (n - k)a l (n ¥= 0). 
n 1=0 k=l k k - 1 1 

(6.15) 

Conversely, from Eqs. (4.7) and (6.2) one has that 

n 

tn = (1/n!)~~l ... qn II (1 + aLlrs) (n ¥= 0). (6.16) 
1',8=1 
(r<S) 

IfEq. (6.14) is to be correct, then these two expressions 
for tn must be equal. While an explicit proof of this 
equality does not seem feasible, the coefficients of a 
were determined from these two expressions for a 
wide range of Nand n by computer. The equality of 
the coefficients in all cases examined presents per­
suasive evidence that the formulation of the partition 
function in Eq. (6.14) is in fact correct. 

It is possible to carry out the sum in Eq. (6.14), 
thus obtaining a closed-form solution for the one­
dimensional nearest-neighbor model which agrees 
with the solution found by other methods. This analy­
sis is carried out in Appendix C, where it is shown that 
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the partition function of such a system has the form 

QN = CN coshN (v){{l + (1 + w)t)N 

+ (1 - (1 + w)t)N}, 

{
exP{Nv} (fluid), 

eN = exp {N€} (ferromagnet), 
(6.17) 

w = (xII - 1) sech2 v. 

Agreement with the known solution of this model 
establishes the validity of the present approach as a 
preliminary to applying this method to systems of 
higher dimensions. IS 

B. Multi-Dimensional Systems 

Considering now two- and three-dimensional 
systems of N cells, the appropriate potentials are those 
of Eqs. (2.12) and (2.13), respectively. The definitions 
of Eq. (6.2) then change as follows: 

€ = !,1n = 
(

2(JI = 2(Jm = 2(JN_I = 2(JN_m 

(2-dim. system), 

2(JI = 2(Jm = 2(Jk = 2(JN_I ~ 2(JN_m 

= 2(JN_k (3-dlm. system), 

(6.18) 

{

(\.l + br.m + br.N- I + br.N- m 
(2-dim. system), 

Llr = 
br.l + br.m + br.k + br.N- I + br.N- m 

+ br •N - k (3-dim. system). 

The change in definition of the Ll functions reflects, 
of course, the change in coordination number of the 
system. One can now proceed to determine the terms 
in the series expansion of the partition function 
algebraically in exactly the same way as in the one­
dimensional case. The expansions of the primed sums 
occurring in tn remain unchanged, as do the coefficients 
(expressed in series form) of the various powers of a. 
Indeed, there are only two changes in this entire 
process. One is the changed value of X defined in 
Eq. (4.7): 

N N {X~ (1-dim. system), 

X = !1 xr = !1 (1 + aLlr) = xt (2-dim. system), 

xi (3-dim. system). 

(6.19) 

Secondly, the value of sums of Ll-function products 
changes because of the changed definition of Ll r • This 
causes a change in the actual numerical value of the 
coefficients of a. Table I shows the values of typical 
such sums. These changes are sufficient, of course, 

18 Further proof of the validity of the model appears in the second 
article, where it is shown that for a hard-rod potential the present 
solution reduces correctly to the Tonks equation of state. 

to modify the actual terms in the series materially. 
As a typical example, one finds that the fourth term 
in the series expansion is given by 

T4 = cosh [(N - 8)v]t4(1 - tb4,NI2) 

4 

(1-dim. system), 

(2-dim. system), (6.20) 

(3-dim. system), 

t4 = 1/(4!)~~lq2q3q<!11 (1 + aLlrs) = {1/(4!)~qlq2q3q4 
(r<s) 

- 6~qlq2q3q4 + 8~qlq2q3q4 + 3~qlq2q3q4 
L--J L--.-I I----IL--J 

4 

- 6~~lq2q3q,) rUI(l + aLlrs) 
(r<s) 

= 1/( 4 !){~qlq2q3q4 [1 + 6aLl12 + 15a2Lll2Lll3 

+ 16a3Ll12Ll13Ll14 + 4a3Ll12Lll3Ll23 

+ 12a4Ll12Ll13Ll14Ll34 + 3a4Ll12Ll23Ll34Ll14] 

- 6~qlq2q3[1 + (3 + 2a)aLl12 

+ (4 + 4a + a2)a3Ll12Ll13Ll23] 

+ ~qlq2[11 + (36 + 42a + 20a 2 + 3a3
) 

X aLl12] - 6N}, 

N 

4! 

[24x~ + 36(N - 5)x~ + 12(N - 5)(N - 6)XI 

+ (N - 5)(N - 6)(N - 7)] 

(I-dim. system), 

[24xt + 432x~ + 24(8N - 85)x~ 

+ 24(N2 - 21N + 18)XI + N3 - 30N2 

+ 323N - 1254] (2-dim. system), 

[72x~ + 1992x~ + 36(13N - 219)x~ 

+ 36(N2 - 31N + 270)Xl + N 3 
- 42N2 

+ 659 N - 3906] (3-dim. system). 

Structuring the other terms of the partition function 
from the one-dimensional one in the same way, one 
obtains for the two-dimensional series 

QN = 2CN{cosh (Nv) + NXl2 cosh [(N - 2)v] 

+ (N/2!)xI4[4xl + (N - 5)] cosh [(N - 4)v] 

+ (N/3!)xI
6[36xi + 12(N - 8)Xl 

+ N 2 - 15N + 62] cosh [(N - 6)v] 

+ (N/4!)xIS[24xf + 432xi + 24(8N - 85)xi 

+ 24(N2 - 21N + 18)x} + N3 

- 30N2 + 323N - 1254] cosh [(N - 8)v] 

+ (N/5!)xIIO[960x~ + 120(N + 43)xf 

+ 1200(3N - 40)xi 

+ 120(5N2 - 132N + 926)x~ 
+ 40(N3 - 39N2 + 536N - 2616)Xl 

+ N4 - 50N3 + 995N2 - 9370N + 35424] 
X cosh [(N - 10)v] + ... }. (6.21) 
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TABLE I. Sums of A-function products for systems of various dimensions. 

Reference figure Sums of A functions 

......... :E., •• A,• 

1\ :E., ••• aAuA13 

b. :E.,.,oaA,.A13A23 

K :E0102.3.,~U~'3Au 

0 :E.'.2.3.,~'2A23AM~U 

6 :E.'.2.a.'.5A'IA23~U~'5~'. 

1:1 :E.'.2.a.'.5~"~U~'.~23~a,A35 

For the corresponding three-dimensional series one 
has 

QN = 2CN{cosh (N'/I) + NXl3 cosh [(N - 2)'/1] 
+ (N/2!)xI6[6x1 + (N - 7)] cosh [(N - 4)y] 

+ (N/3!)xI9[90x~ + 18(N - 12)Xl 
+ N2 - 21N + 128] cosh [(N - 6)'/1] 

+ (N/4!)xI12[72x~ + 1992x~ 
+ 36(13N - 219)x~ + 36(N2 - 31N + 270)Xl 
+ N3 

- 42N2 + 659N - 3906] cosh [(N - 8)'/1] 

+ (N/5!)xI15[5760xf + 120(3N + 426)x~ 
+ 480(32N - 701)x~ 

+ 360(20N2 - 163N + 1844)x~ 
+ 60(N3 

- 57N2 + 1190N - 9216)Xl + N4 

- 70N3 + 2015N2 - 28490N + 169744] 
x cosh [(N - 10)'/1] + ... }. (6.22) 

Since one wishes eventually to go to the thermo­
dynamic limit, it is more useful to work with a series 
expansion of eq = Q~N where q is Kramer's grand 
potential.l9 Using a method due to Domb,20 one 
obtains the following series for a two-dimensional 
system from Eq. (6.21): 

Q~N = C~Ny-i{1 + xl2y + 2(x13 
- xl4)l 

+ 2(3x14 - 7xl5 + 4x16)i 
+ (xl' + 18xl

5 
- 77xl6 + 98xl7 - 40x18)Y4 

+ (8x15 + 44xl6 - 370xl
7 + 799xl8 

- 706xl9 + 225xl
10)/ + ... }. (6.23) 

For a three-dimensional system from Eq. (6.22) in the 

,. D. ter Haar, Elements of Statistical Mechanics (Holt, Rinehart 
and Winston, New York, 1964). 

2. C. Domb, Adv. Phys. 9, 149 (1960). 

Value of sums 

I-Dim. 2-Dim. 3-Dim. 
system system system 

2N 4N 6N 

4N 16N 36N 

0 0 0 

8N 64N 216N 

6N 36N 90N 

0 0 0 

ION lOON 3I8N 

same way one has 

Q~N = C~Ny-i{1 + xl
3y + 3(x1

5 - xl
6)l 

+ 3(5x17 - llx-;S + 6x19)i 
+ (3x18 + 83xl

9 - 309xl
10 

+ 360xl
ll - 137xI12)y4 

+ (48x110 + 429xlll - 2676xl12 + 5055xl13 
- 4041xl 14 + 1185xl15)y5 + ... }. (6.24) 

These series are valid for y :::;: 1. Corresponding series 
for y > 1 can be obtained by the simple transforma­
tion ofEq. (5.5). It is also possible to obtain from (6.21) 
or (6.22) a series for the grand potential. Thus, for the 
three-dimensional system one has 

q = {Jpt 
= lim (l/N) In QN 

N .... oo 

= 1 + xl3y + (3x15 - tX-;G)y2 

+ (15xl7 - 36xl8 + 21tx19)i 
+ (3x1

8 + 83xl
9 

- 3281xl 1o 

+ 405xlll - 162!xl12)y' 
+ (48x110 + 426xl

ll - 2804xl12 + 5532xl13 
+ 4608xl14 + 1406txI15)/ + . . . . (6.25) 

As mentioned in Sec. 4, these series represent succes­
sive deviations from the perfectly ordered state and 
hence are in fact low-temperature expansions. Com­
parison with similar series computed by others using 
entirely different techniques shows complete agree­
ment insofar as the terms overlap and after making 
allowance for differences in notation.2°-22 This serves 
to confirm the validity of the transformation discussed 

n A. J. Wakefield, Proc. Cambridge Phil. Soc. 47, 419, 799 (1951). 
It S. G. Brusn, "History of the Lenz-Ising Model," University of 

California, Lawrence Radiation Laboratory Report UCRL-7940, 
1964. 
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in Sec. 2, whereby a one-dimensional system with 
all interactions active can be converted to a system of 
higher dimensionality with a more limited number of 
interparticle bonds. It is not necessary to restrict the 
bonds to nearest-neighbor ones; additional bonds 
can readily be considered as long as their number 
remains small enough so that the sums of ~ functions 
are manageable. The two- and three-dimensional 
series, it will be observed, were obtained by the same 
algebraic technique as the one-dimensional one. 
Consequently, once a term in the one-dimensional 
series is known, the corresponding term for series in 
higher dimensions can be found without much addi­
tional effort. Since the technique is basically algebraic, 
it lends itself to programming by computer. It was 
pointed out that coefficients for the one-dimensional 
series were verified in this way. It may also prove 
feasible to determine expansion terms for series in 
higher dimensions by this method. 

9. SUMMARY AND CONCLUSIONS 

It was seen that the cell model underlying this study 
describes a simple one-dimensional fluid in which all 
particles interact with one another. The cells, as 
pointed out, serve only to specify the instantaneous 
position of the particles with an uncertainty equiv­
alent to the particle dimension. Artificialities intro­
duced by the model, in addition to this uncertainty in 
position, are the periodic boundary conditions and 
the hard-core repulsive potential that was assumed. 
The latter restricts cell occupancy to zero or one and 
hence causes the system to behave as an assembly of 
fermions. This permits an isomorphism to be estab­
lished between cell occupation numbers and Ising 
spin states so that the Ising formalism can be applied 
to the model. In addition, the fermionlike nature of 
the system results in characteristic behavior, as 
evidenced by the primed sums and their expansion in 
the series formulation of the partition function and 
the commutation rules of the operators in Appendix 
B. This fermionlike behavior also underlies, of 
course, the success of the various operator methods 
and field-theoretical techniques that have been 
applied to the Ising model in recent years. 23- 26 

We saw that in the present model the spin or­
algebraic approach, which proved so successful in 
solving the two-dimensional Ising model, will not 

23 H. S. Green and C. A. Hurst, Order-Disorder Phenomena (Inter­
science Publishers, New York, 1964). 

•• I. D. Schultz, D. C. Mattis, and E. H. Lieb, Rev. Mod. Phys. 
36, 856 (1964) . 

•• R. W. Gifford and R. A. Hurst, J. Math. Phys. 7, 305 (1966); 
8, 1427 (1967). 

28 L. P. Kadanoff, Nuovo Cimento 44, 276 (1966). 

lead to a solution. The difficulty lies in the very much 
larger number of bonds per particle in our model. This 
results in an infinite coordination number in the 
thermodynamic limit. The operators of interest are 
therefore not the spin representatives of plane rota­
tions but turn out to be parts of tensor transforma­
tions. 

It proved possible, however, to diagonalize the 
operator, thus permitting the solution to be written 
as an infinite series. We saw that the series converges 
absolutely for all densities and offers a convenient 
method of examining the analyticity of the partition 
function. The results of this analysis agree with those 
of Yang and Lee. 

In applying the solution to a one-dimensional system 
in which only nearest neighbors interact, we were 
able to verify the validity of the approach and develop 
a straightforward algebraic technique which proved 
very convenient for obtaining low-temperature series 
for two- and three-dimensional systems. These series 
were seen to agree with those obtained by other 
authors using entirely different methods. It is rather 
remarkable that the simple scheme of applying the 
potentials in Eqs. (2.l2)-(2.14) will convert a one­
dimensional system into one of higher dimension but 
with a reduced number of bonds per particle. Looked 
at from that point of view, the unsolved three­
dimensional Ising model is really a subset of the more 
general one-dimensional system that forms the 
central problem of the present series of papers. If 
we can find a closed-form solution to the latter, then 
we have automatically solved the three-dimensional 
Ising model as well. The present analysis also sheds 
some interesting light on the reason why a two­
dimensional array with nearest-neighbor and next­
nearest-neighbor bonds should pose the same level of 
difficulty as the three-dimensional Ising problem. 
From Eqs. (2.13) and (2.14), we see that these two 
systems are mathematically completely isomorphic. 

In the second of this series of two papers the solution 
will be applied to certain potentials for which the 
series can be summed in closed form. We shall see 
that for a system of point particles with no interaction 
potential the model correctly reproduces the equation 
of state of an ideal gas. If, on the other hand, we 
retain the repulsive core and consider a system of 
hard rods, we obtain the well-known Tonks equation 
of state. This solution will be seen to hold in one, 
two, and three dimensions. A one-dimensional fluid 
with only nearest-neighbor interactions is then exa­
mined briefly and is seen to have interesting thermo­
dynamic properties but exhibits no phase transition, 
of course. If we let the range parameter in the 
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Lennard-Jones potential go to zero, we shall find 
that the system does experience a phase transition. 
The thermodynamic properties of this system are 
examined by computer for various volumes and are 
then examined analytically. In the thermodynamic 
limit the transition temperature goes to infinity so that 
a change of phase can occur at any finite temperature. 
Finally, finite systems of different sizes interacting 
with the unmodified potential are examined by com­
puter. They are seen to exhibit very realistic thermo­
dynamic behavior and give a number of indications of 
an incipient phase transitions. One of the most cogent 
of these is the behavior of the pair-correlation func­
tions. There is obvious long-range order up to a 
certain temperature which coincides with the temper­
ature at which the specific-heat curve has a maximum. 
For higher temperatures long-range order changes 
very rapidly to short-range order. Two- and three­
dimensional systems with nearest-neighbor inter­
actions are also examined numerically and are seen to 
have an incipient change of phase at temperatures 
that agree with those of the corresponding Ising 
model within quite close bounds. 

APPENDIX A: PARTITION FUNCTIONS OF 
SMALL SYSTEMS 

The following partition functions were computed 
directly from Eq. (3.5) of the text. All are written for 
a fluid, the symbols having the meaning defined in 
Sec. 2. To obtain the corresponding ferromagnetic 
partition function, it is only necessary to premultiply 
the expression given by the factor exp {N(E> - y)} and 
reinterpret the symbols as follows: 

Xr = exp {8er}, 

CPr = t(Jr + I N - r), 'I' = {3mB, (AI) 

where Jr is the exchange energy of two spins separated 
by r lattice spacings, m is the magnetic moment per 
spin, while B is the external magnetic field. Then we 
have 

Q2 = 2 exp (2y){cosh (2'1') + xl!}' (A2) 

Q3 = 2 exp (3y){cosh (3'1') + 3xII cosh (yn, (A3) 

Q4 = 2 exp (4y){cosh (4'1') 

+ 4xlIx2t cosh (2'1') + 2XIIX2I + x12}, (A4) 

Qs = 2 exp (5y){cosh (5'1') + 5(XIX2)-1 cosh (3'1') 

+ 5(XIX2)-\XI + X2) cosh (y)}, (A5) 

Q6 = 2 exp (6y){cosh (6'1') + 6(X1X 2xb-1 cosh (4'1') 

+ 3(X1X2XX>-2(2x I + 2X2 + x3) cosh (2'1') 

+ (XIX2XX>-3(6xIX2X3 + 3X~X2 + x~)}, (A6) 

Q7 = 2 exp (7y){cosh (7'1') + 7(XIX2X3)-1 cosh (5'1') 

+ 7(XIX2X3)-2(XI + X2 + x3) cosh (3'1') 

+ 7(XIX2X3)-3(X~X2 + 2X1X2X3 
+ XIX: + X~X3) cosh (y)}, 

Qs = 2 exp (8y){cosh (8'1') + 8X-1 cosh (6'1') 

+ 4X-2(2x1 + 2X2 + 2X3 + x4) cosh (4'1') 

+ 8X-\X~X2 + X~X4 + X2X; + 2X1X2X3 
+ 2XIX3X4) cosh (2'1') 

+ X-4( 4X~X~X3 + 8xix~X3X4 + 8X~X2X;X4 

(A7) 

+ 8XIX~X;X4 + 4XIX~X~ + 2x~x~x! + x~x:)}, 

where X = X1X2X3Xt, and 

Q9 = 2 exp (9y){cosh (9'1') + 9X-1 cosh (7'1') 

+ 9X-2(Xl + X2 + X3 + x4) cosh (5'1') 

(A8) 

+ 9x-\xix2 + 2XIX2X3 + 2XIX3X4 + X~X4 
+ XIX! + 2X2X3X4 + tx~) cosh (3'1') 

+ 9X-4(X~X~X3 + 2xix~X3X4 + XiX2X;X4 

+ 2xix2X3X! + 2XIX~X3X! + XiX3X: 

+ 2X1X2X:X4 + XIX2X~X! + x1xix;x4 
+ X~X3X:) cosh (y)}, (A9) 

APPENDIX B: SPINOR-ALGEBRAIC 
FORMULATION 

Starting from Eq. (3.5) in the text, this appendix 
shows that the operator S is not the spin representative 
of a set of commuting plane rotations, but is part of a 
tensor transformation. Hence it does not appear 
feasible to determine its eigenvalues by the spin or­
algebraic approach. In order to reduce the problem 
to its simplest terms, we shall consider only the case 
'I' = 0, i.e., S2 = 1. We are then concerned with the 
operator 

N N 

Sl = II II Dr., where Drs = exp {Zrzr+ses}' 
r=1 s=1 

To proceed we define a set of matrices that are the 
generators of a complete set of linearly independent 
operators that span the space of the operator Sand 
obey the following anticommutation rule: 

(Bl) 

In the 2N -dimensional representation that has been 
adopted for the Zk [cf. Eq. (3.4)], the base matrices are 
the r matrices and all possible products of r matrices. 
It is readily shown that there are 2N independent 



                                                                                                                                    

CELL MODEL OF A FLUID. I 1953 

matrices of this type. We choose the following repre­
sentation for the r's: 

r 2~-1 = Z1 ... Z~_1X~; r 2~ = Z1 ... Z~_1 y~ . (B2) 

We find then that the operator Z is given by 

Z~ = ir 2~r 2~-1 , (B3) 
so that 

Drs = exp {Z,zr+sOs} 

= exp {-OSr2rr2r-1r2(r+S)r2(r+s)-1}. (B4) 

Consider now the operator 

D/lvpa = exp {(0(2)r/lrVr pr a}. (B5) 

One proves readily that 

D/lvpa = cosh (0(2) + r/lrVrpra sinh (0(2), (B6) 

where the fact was used that (r/lr.rpra)2 = 1, pro­
vided that fl ¥= v ¥= p ¥= a, which will be assumed in 
what follows. Let us first examine the properties of a 
related operator 

G/lVP" = exp {(0(2)(r/lrV + rpr,,)}. (B7) 

Observing that 

(r/lrV + r pr,,)2 = 2(r/lrVr pr" - 1), (B8) 

we have 

G/lVP" = cos2 (0(2) + (r/lrV + rpr,,) sin (0(2) 

X cos (0(2) + r /lr vr pr" sin2 (0(2) 

= HS/lv + Sp" + aD/lVP" + b}. (B9) 

Here tanh cp = 1 - cos 0, a = sech cp, and b is related 
to a and cp by the equation 

a2 + b(b + 2) = O. (BlO) 

The operator Sin Eq. (B9) is defined as follows: 

S/lv(20) = cos 0 + r/lrV sin 0 = exp {Or/lr). (Bll) 

It is not difficult to show that this operator is the spin 
representative of a plane rotation in the fl - v plane 
through an angle 20.3•8 We must now investigate the 
properties of the operator G. The analysis is simplified 

rl'rp cos2 0 sin 0 cos 0 

rl'r" -sin 0 cos 0 cos2 0 

rvrp -sin 0 cos 0 -sin2O 

rv r " sin20 -sin 0 cos 0 

We note that 
O=w@w (B20) 

and 
X= r@r, 

if we note that 

[r /lr v' r pr "L = 0 (fl, v, p, a distinct), (BI2) 

so that 

G/lvpa = exp {(Oj2)(r/lrV + rpra) 

= exp {(Oj2)r/lrJ exp {(0(2)rpr,,} 

= S/lv(O)Sp,,(O) = Spa(O)S/lv(O). (B13) 

It follows that G-1G = 1 so that G is a unitary operator. 
One finds then that 

r/lrV = G-1r/lrp 

= exp {-(0(2)(r/lrV + rpra)}r/lrV 

X {exp (0(2)(r/lrV + rpra)} (BI4) 
= r/lrv· 

Similarly, 

rpr" = G-1rpraG = rpr", 

r ~rp = G-lr~rpG = r~rp (IX, fJ ¥= fl, v, p, a). 

(BI5) 
But 

r/lrp = G-1r/lrpG 

= exp {-(Of2)r/lrv}r/l exp {(0(2)r/lrv} 

X exp {-(0(2)rpr,,}rp exp {(0(2)rpr,,} 

= (r/l cos 0 + rv sin O)(rp cos 0 + r" sin 0) 

= r/lrp cos2 0 + (rvrp + r/lra) sin 0 cos 0 

+ r vr" sin2 O. (BI6) 

And, similarly, 

r/lr" = G-1r/lr"G = r/lra cos2 0 + (rvra - r/lrp) 

X sin 0 cos 0 - rvrp sin2 O. (BI7) 

Other transformations follow the same pattern. Let us 
define a new vector X, whose 4N2 components are the 
second rank tensors r~p = r~rp (IX, fJ = 1,2, ... , 
2N). We can write these transformations symbolically 
as follows: 

x=OX. (BI8) 

The nonidentity elements of this transformation are 

sin 0 cos 0 sin2 0 rl'rp 
-sin2 O sin 0 cos 0 rl'r" 
cos2 0 sin 0 cos 0 rvrp . 

(B19) 

-sin 0 cos 0 cos2 0 rvr " 

where w is a plane rotation with components 

I cos 0 
-sin 0 

sin 0 I 
cos 0 

(B2I) 
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and r is a vector having the 2N r matrices as its 
components. Thus Q is a tensor transformation 
transforming r dyadics into themselves. Using 
summation covention and covariant-contravariant 
notation, the transformation appears as follows: 

r /V _ nllvra{J 
-lol.a{J • (B22) 

It follows then that the operator G is the spin repre­
sentative of a tensor transformation. D, on the other 
hand, is associated with the operator G through Eq. 
(B9) but is not itself a spin representative. Accord­
ingly, it does not seem feasible to determine the 
eigenvalues of D by spin or-algebraic analysis. 

APPENDIX C: CLOSED FORM SOLUTION FOR 
THE ONE-DIMENSIONAL MODEL WITH 

NEAREST-NEIGHBOR INTERACTIONS 

We consider first the case v = O. In that case Eq. 
(6.14) becomes 

QN (v = 0) 

= 2CN 1 + N! !-{ 
[N12l n 1 (n - 1) 
n=1k=1 k k - 1 

(N - n - 1) k } x k _ 1 Xl (1 - t<5n,NI2) 

= 2C N 1 + N! - Xl ! , { 
[NI2l( 1) _kN-k(n - 1) (N - n - 1) 
k=l 2k n=k k - 1 k - 1 

(Cl) 

where the order of summation was changed and the 
<5-function term was eliminated by taking advantage 
of the symmetry of the summand with respect to the 
substitution n -"+ N - n. If we now use the following 
relationship (which follows directly from the definition 
of the combinatorial symbol), 

The following identity was also used: 

f (m) ( n ) _ (m + n) 
r=or k-r- k' 

Thus Jor the partition function we have 

QN(V=O)= 2CN (v =0) 1+ ! xl
k 

{ 
[NI2l(N) } 
k=1 2k 

= CN! (N)[1 + (_I)k]xlkI2 
k=O k 

= CN{(1 + xI!)N + (1 - xIl)N} 

(C4) 

= 2NCNexp( -NE)(coshN E + sinhN E). 

(C5) 

This agrees with the well-known solution of the one­
dimensional Ising model in the absence of an external 
magnetic field. 3 •l5 

When v ~ 0, the analysis becomes considerably 
more complex. The closed-form solution of the one­
dimensional Ising model is in that case (cr. Appendix 
D): 

QN = CN coshN (v){[1 + (1 + w)!]N 

+ [1 - (1 + w)!]N}, (C6) 

where w = (Xll - 1) sech2 (v.) For the work to follow 
it is desirable to rewrite this by means of the binomial 
theorem in the form 

QN = 2CN coshN (v)[!l! f (N) (n) (k) 
n=O k=O m=O 2n k m 

x (-l)k-mxlm cosh-2k (v). (C7) 

In order to show that Eq. (6.14) of the text leads to 
this expression, we must then establish the following 
equivalence: 

(C2) cosh
N (V)[J:lkt 10 (~) (~) (~) 

where for a < 0 we define 

( a) = ~ a(a _ 1)· .. (a - b + 1), 
b b! 

we find after some algebra that 

!k(n - 1) (N - n - 1) 
n=k k - 1 k - 1 

= !k( _1)N-2k( -k ) ( -k ) 
n=k N-k-n n-k 

= (N - 1 ). (C3) 
N -2k 

x (_I)k-mxlm cosh-2k (v) 

J, cosh (Nv) +["1
2l! N(n - 1) (N - n - I)Xlk 

n=1 k=1 k k - 1 k - 1 

X cosh [(N - 2n)v](1 - t<5n,NI2)' (C8) 

For m = 0 we must show that 

coshN (v)["1
2l! (N) (n)(_I)kCOSh-2k(V) 

n=O k=O 2n k 
= cosh (Nv). (C9) 

By retracing the steps that led from Eq. (C6) to (C7), 
we find that this proof is trivial. Suppose now that 
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Eq. (C8) holds for m = m; i.e., suppose that 

["I2J i (N) (n) (k)(-ll-mCOSh-2k(v) 
n=m k=m 2n k m 

= (N) cosh-N (vrf J (n - 1) (N - n - 1) 
m n=m m - 1 m - 1 

X cosh [(N - 2n)v](1 - !On,NI2)' (ClO) 

We wish to show that it holds for m = m + I, so that 
the equivalence of the following expression is to be 
proved: 

[!] i (N) (n) ( k )(_l)k-m-lCOSh-2k(V) 
n=m k=m+l 2n k m + 1 

~ ( N ) cosh-N (v) ["I2] (n - 1) (N - n - 1) 
m + 1 n=m+1 m m 

X cosh [(N - 2n)v](1 - tOn,NI2)' (Cll) 

This can be recast in the following more convenient 
way: 

cosh
N (V):~Jkt (~) G) (~) 

X (k - m)( _1)k-m-l cosh-2k ('I') 

= N
2
[!](n-l)(N-n-l)(n_m)(N_n_m) 

m n~m m -1 m-l 

X cosh [(N - 2n)v](1 - to .. ,NI2)' (CI2) 

We now let 

F(N, v, m) 

=[!2J i (N) (n) (k)(_I)k-mCOSh-2k(v). (C13) 
n=m k=m 2n k m 

Then, using the assumed identity, Eq. (CIO), the 
equivalence to be established is 

[¥] i (N) (n) (k)(k _ m)(-ll-m-1cosh-2k(v) 
n=m k=m 2n k m 

= i(coth 'I' a/a'll + 2m)[~ sechN ('I') 

X [!2J (n - 1) (N - n - 1) 
n=m m - 1 m - 1 

X cosh [(N - 2n)v](1 - tOn,NI2)] 

= (N/2m) sechN (V)[¥](n - 1) (N - n - 1) 
n=m m - 1 m - 1 

X {(N - 2n) coth (v) sinh [(N - 2n)v] 

+ (2m - N) cosh [(N - 2n)v](1 - lO .. ,N/2). 

(C14) 

This last equation can be re-expressed as follows: 

[12

] i (N) (n) (k)(k _ m)(-I)k-m-lcosh-2k(v) 
n=m k=m 2n k m 

= (N/m) sechN ('I') 

x.2 .2 - - (N - 2k + 2) [."1/2] { n (k 2) (N k) 
n=m+l k=m+1 m - 1 m - I 

- (n - m) (
n - 1) (N - n - 1) } 
m-l m-l 

X cosh [(N - 2n)v](1 - tOn,NI2), (CIS) 

where the following identities were used (which are 
readily established): 

coth ('I') sinh [(N - 2n)v) 

o (n = N/2), 

cosh [(N - 2n)v] 

= [NI2]-n 
+ 2 I cosh [(N - 2n - 2k)v) 

k=l 

X (1 - !Ok,[NI2]-n) (n =F N/2), 

and 

.2 .2 (N - 2n) 
[NI2] [NI2]-n(n _ 1) (N - n - 1) 
n=m k=l m - 1 m - 1 

X cosh [(N - 2n - 2k)v] 

X (1 - t Ok,[NI2]-n)(1 - On,NI2) 

(CI6) 

= [12
] 1: (k - 2) (N - k)(N _ 2k _ 2) 

n=m+lk=m+1 m - 1 m - 1 

X cosh [(N - 2n)v](1 - !On,NI2)' (C17) 

To complete the proof by induction, one must show 
[cf. Eq. (C12)] that 

(N/m) [!2J i {(k - 2) (N - k)(N _ 2k + 2) 
n=m+1 k=m+l m - 1 m - 1 

_ (n - 1) (N - n - 1)(n _ m)} 
m-l m-1 

X cosh (N - 2n)v](1 - tOn,N12) 

= (N/m2)[12J(n - 1) (N - n - l)(n _ m) 
n=m m - 1 m - 1 

X (N - n - m) cosh [(N - 2n)v)(1 - to .. ,NI2)' 

(CI8) 

Recognizing that v is arbitrary, this is equivalent to 
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establishing the following identity: 

i {(k - 2) (N - k + 1) _ (k - 1) (N - k)} 
k=m+1 m - 1 m m m - 1 

For m = 1 the proof is trivial. The identity is readily 
established in general if one expands the left-hand 
side of (CI9) as 

(: = ~) (N: m) _ (:) (N: : ~ 1) 
+ (m: 1) (N -; - 1) 
_ (m; 1) (N:: ~ 2) + ... 

+ (: ~ ~) (N - ~ + 1) _ (n : 1) (: = ~) 
and uses the following two relations: 

t) - (: = !) = (r ~ 1), 
t) + C ~ 1) = (r: 1). 

(C20) 

(C21) 

(C22) 

This completes the inductive proof of the equivalence 
of Eq. (6.l4) and (C6). 

APPENDIX D: CLOSED FORM SOLUTION OF 
THE ONE-DIMENSIONAL SYSTEM WITH 

NEAREST-NEIGHBOR INTERACTIONS 

From Eq. (2.10) using the potential of Eq. (6.1), 
we obtain 

QN = ANI exp (€ i O'rO'r+1 + vi O'r} 
{ui r=l r=l 

= AN ~ (0'11 p 10'2)(0'21 p 10'3) ... (0',,1 p 10'1) 
~ . 

= ANT,.{pN} = AN(A.~ + A~), (Dl) 

where 

(D2) 

and A+ and A_ are the eigenvalues of P. We find readily 
that 

A± = exp (€){cosh v ± [cosh2 v 

- 2 exp (-2€) sinh (2€)]!}. (D3) 
Hence 

QN = AN exp (N€) coshN (v){[1 + (1 + w)!]N 

+ [1 - (1 + W)!]N}, (D4) 

where w = (XlI - 1) sech2 (v) and Xl = exp (4€). And 
since 

we obtain 

A 
_ {N(V - €) (fluid), 

N- 1 (ferromagnet), 

QN = CN coshN (v){[1 + (1 + w)!]N 

+ [1 - (1 + w)!]N}, 
where 

C _ (exp (Nv) (fluid), 
N - exp (N€) (ferromagnet). 

(D5) 

(D6) 

(D7) 
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In Paper I of this series (preceding paper) the model was formulated mathematically and the solution 
derived in the form of an infinite series. The convergence and analyticity of the solution were investigated. 
It was then applied to one-, two-, and three-dimensional systems with nearest-neighbor interactions, and 
low-temperature series for these systems were obtained. In the present article the thermodynamics of the 
model are investigated. The series solution of the partition function derived in Paper I is applied to systems 
with interaction potentials of increasing complexity. The validity of the model is established by showing 
that in the appropriate limits it leads correctly to the ideal gas and the Tonks equation of state. It is shown 
that the model is capable of portraying phase transitions and gives realistic results thermodynamically. 
Finally various finite one-, two-, and three-dimensional systems are analyzed numerically by high-speed 
computer and their thermodynamic properties and pair-correlation functions are examined. Interesting 
conclusions emerge concerning the range of order in such systems and the probable critical temperatures. 

I. INTRODUCTION 

In the firstl of this series of two articles, a one­
dimensional fluid was examined, in which every 
particle interacts with every other one with a modified 
Lennard-Jones-type potential. The system was cast 
in the mold of a cell model which could be treated by 
means of the Ising formalism. We derived the parti­
tion function for such a system, showed how the 
partition function for two- and three-dimensional 
systems with a limited number of bonds per particle 
could be derived from the one-dimensional one and 
found a solution to the problem in the form of an 
infinite series. This series was shown to be absolutely 
convergent and proved convenient for investigating 
the analyticity of the system. The analysis confirmed 
the results previously obtained by Yang and Lee.2 

It was seen in I that the series could be summed for a 
one-dimensional system with nearest-neighbor inter­
actions and that the resultant closed-form solution 
agreed with that obtainable by matrix methods. This 
served to establish the validity of the model in that 
limit. In addition, the corresponding low-temperature 
series for two- and three-dimensional systems with 
nearest-neighbor interactions were readily obtained 
from the one-dimensional series. Thus it proved 
possible to calculate series expansions in all dimen­
sions by identical algebraic techniques. 

In this article we shall investigate the thermodynamic 
behavior of this fluid model. First, certain potentials 
will be considered for which the system can be 

... Based upon a dissertation submitted to the Graduate Faculty of 
the University of Missouri at Rolla in partial fulfillment of the 
requirements for the Ph.D. degree. Work supported in part by a 
NASA Predoctoral Traineeship and an NSF post-doctoral grant. 

t Present address: Dept. of Math., University of Ottawa, Ottawa, 
Canada. 

1 R. G. Tross and L. H. Lund, J. Math. Phys. 9, 1940 (1968), 
hereafter referred to simply as I or Paper I. 

2 C. N. Yang and T. D. Lee, Phys. Rev. 87, 404, 410 (1952). 

analyzed in the thermodynamic limit. If there is no 
interaction of any kind, we shall find that the model 
leads correctly to the equation of state of an ideal gas. 
If the hard repulsive core is retained, the fluid obeys 
the well-known Tonks equation of state.3 Next a 
system with hard-rod repulsive and nearest-neighbor 
attractive interactions is examined. It has the advan­
tage that one can write the equation of state in closed 
form. Aside from the absence of a phase transition 
the system exhibits interesting and quite realistic 
thermodynamic properties and has the advantage of 
being very tractable mathematically. Another potential 
which allows one to proceed to the thermodynamic 
limit is one in which the range parameter y is allowed 
to go to zero, resulting in an infinitely long-range 
interaction. While this does not correspond to any 
real fluid, it is an interesting limit mathematically. 
One can show rigorously, as we shall see, that such a 
system exhibits phase transitions at all finite tempera­
tures. 

Although it has not been possible thus far to go to 
the thermodynamic limit in systems interacting with 
the general Lennard-Jones potential,! the series 
solution of the partition function, Eq. (4.7) of Paper 
I, is well suited for numerical analysis by high-speed 
computer. Accordingly one-, two-, and three-dimen­
sional systems of finite size are analyzed and their 
thermodynamic properties determined. The results 
are surprisingly realistic. Although no true phase 
transition is encountered, as one would expect for 
systems of finite size, there are a number of indications 
that such a transition may occur in the thermodynamic 
limit. The most convincing of these are the conclusions 
on long-range order that emerge from a study of the 
pair-correlation functions of the system. 

3 L. Tonks, Phys. Rev. SO, 955 (1936). 

1957 
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The point of departure for the analysis in this 
article is the model developed in I and the series 
form of the partition function in Eq. (4.7) 

£NI2] 
QN = 2CN ! T'II; CN = exp (NY) 

'11=0 

t'll = (1.-) l' ... f, IT IT Xqr-Q, 
n! ql=1 qn=1 r=1 8=1 

(r<8) 

N 

Xr = exp {80r}; X = IT Xr 
r=l 

Or = -(!){3rPr; rPr = (t)(Y,. + VN - r) 

Vr = -~/rY 

(1.1) 

{3 = l/kT; e
2v = (I/A) exp {{3(g - r! rPr)}, 

where ~ defines the depth of the potential cell and y 
is a range parameter. (For further definitions see 
Paper 1.) 

II. THERMODYNAMICS OF INFINITE SYSTEMS 

In this section we investigate the thermodynamic 
behavior of certain infinite systems, i.e., systems which 
are infinite in the sense that the solution holds in the 
thermodynamic limit, N -+ 00, where N is the total 
number of cells in the system. This limit implies that 
either the cell parameter 1 = L/N goes to zero (L being 
the length of the one-dimensional system) or the 
length of the system becomes infinite. These two 
limits are not equivalent as we shall see. 

A. Ideal Gas 

We wish first to check the validity of the model in 
the ideal-gas limit and assume the interaction potential 
to be Vr = O. This potential does not, however, 
eliminate the hard-core repulsive interaction which 
was built into the model by our choice of cell param­
eter and the introduction of an exclusion principle. 
We neglect this point for the moment and come back 
to it later. The series, Eq. (1.1), now takes the form 

£NI21(N) 
QN = 2 exp (NY) 'II~0 n 

X cosh [(N - 2n)Y](1 - tr5'11.NI2) 

= f (N) exp (2nY) = (1 + Vf( (2.1) 
'11=0 n AN) 

where we have used the obvious identity 

t'll = - !""!' 1 = . (1) N N (N) 
n! ql=1 qn=1 n 

In Eq. (2.1), V is the "volume" of the system. For the 
basic one-dimensional fluid the volume is, of course, 
the length of the line L. However, since there is no 
attractive interaction among the particles, we may 
assume the cell to be a tiny square of dimensions 
I X 1 or cube of dimensions I X I X 1. The string of 
squares or cubes can then be wrapped around a torus 
as in Sec. 2B of I to generate a two- or three-dimen­
sional system. For higher-dimensional systems we 
must, of course, redefine A in an appropriate way. 
[We must then use the following definition: A = 
({3h2/21Tm)d/2, where d is the dimension of the system. 
This follows directly from integrating the kinetic part 
of the partition function.] 

The hard-core repulsive potential can now be 
eliminated in going to the thermodynamic limit. To 
do so, we let the cell parameter 1 shrink to zero while 
N -+ 00, i.e., we keep the volume V fixed. Then 

Q = lim QN = exp (V~/A) = exp ({3pV). (2.2) 
N-+oo 

We have then that In Q = {3pV = V~/A. From the 
well-known relation (n) = H%Wn Q)]p we then 
obtain the equation of state of an ideal gas4.li 

{JpV = (n), (2.3) 

where ( ) designates an ensemble average or expecta­
tion value. It should be observed once more that in 
obtaining this equation of state from our model we 
were obliged to let the particles shrink to ideal points 
in order to eliminate the built-in repulsive potential. 

B. A Fluid of Hard Rods 

We next consider a fluid of hard rods, i.e., a system 
of particles with a hard repulsive core and no attractive 
interaction. The partition function, before we go to 
the thermodynamic limit, is then the same as that in 
Eq. (2.1), i.e., QN = (1 + l~/A)N. The hard repulsive 
core has, of course, not been eliminated. In order to 
retain the repulsive potential, we must go to the limit 
in a different way: we keep I, the cell parameter, fixed 
while we let N -+ 00. This is tantamount to letting 
the volume go to infinity. For the density ofthe system 
we obtain 

p = ~[%H1/N) In (QN)]p = (1~/A)/(l + l~/A). (2.4) 

Here p = (n)/N is a dimensionless density. [This 
density is related to the usual density as follows: 
p = (n)/N = l/v. If mo is the mass per particle, then 
p = mil/v) = mop/l is the density as usually 

4 K. Huang, Statistical Mechanics (John Wiley & Sons, Inc., 
New York, 1963). 

• D. ter Haar, Elements of Statistical Mechanics (Holt, Rinehart, 
and Winston, Inc., New York, 1964). 
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defined.] One can also think of p as the proportion of 
the line occupied by particles, for we can write p = 
(n)I/NI = Lo/L, where Lo is the length which the 
particles would occupy if they were tightly packed. 
Using (2.4) and keeping the cell parameter 1 fixed, 
one can now go to the thermodynamic limit and 
obtain: 

TABLE I. Relationship between density p, Gibbs free energy g. 
and parameter v. 

p 

g 
v 

o 
-00 

-00 

! 
lIP In (A.Xll/l) 

o 

{3pL = lim In (QN) = (n)/(l - p) (2.5) The density is then 
N-+oo 

or 
pL(1 - p) = pLeff = (n)KT 

which is the well-known Tonks equation of state,3 
with Leff = L(1 - p) denoting the net length of the 
line not occupied by particles, i.e., the free "volume" 
of the system. (We use the symbol p to represent the 
"pressure" of the system in the appropriate units. 
Thus, in a one-dimensional system pressure has the 
units of force.) 

By identical arguments to those given in the preced­
ing section one sees that the analysis holds for systems 
of all dimensions and that consequently Land Leff 
can be replaced by V and Veff , respectively. Thus the 
model yields the correct equations of state for a fluid 
of hard rods, hard disks, or hard spheres. 

One can show in this connection the effect of the 
hard-core potential on the series solution of Eq. (1.1) 
and on the choice of the cell parameter I. This is 
done in Appendix A. 

C. One-Dimensional Fluid with Nearest-Neighbor 
Interactions 

We examine in this section the thermodynamic 
properties of a one-dimensional fluid comprised of 
particles with lIard-core repulsive potential and 
nearest-neighbor attractive interactions. While such a 
fluid is of very limited practical interest, it has the 
advantage of being mathematically tractable since the 
equation of state can be written in closed form. 
Furthermore, there are many striking parallels with 
real fluids, although such a system cannot have a phase 
transition, as we know from Van Hove's work.6 

It was shown in I (Sec. 6A) that the partition 
function of this fluid is given by 

QN = CN coshN (v) 

x {[I + (1 + lO)!]N + [1 - (1 + lO)!]N}, (2.6) 

where CN = exp (Nv) and lO = (xl! - 1) sech2 v. In 
the thermodynamic limit we obtain for the grand 
potential5 

q = {3pl = lim l/N In (QN) 
N-+oo 

= v + In (cosh v) + In [1 + (1 + lO)!]. (2.7) 

• L. Van Hove, Physica 16. 137 (1950). 

p = (n)/N = ~(oq/o~)p = (t)(oq/ov)p 

= (t)[1 + tanh v/(l + lo)!]. (2.8) 

While v is a function of the temperature, interaction 
potential, and Gibbs free energy [cf. Eq. (1.1)], we 
can in fact consider it a free parameter in Eqs. (2.7) 
and (2.8) so that these two equations give the equation 
of state parametrically. Table I gives the relationship 
between p, g, and v. Pressure-density data computed 
from these two equations are plotted in Figs. 1 and 2. 
(Actually q = (3pl is plotted vs p. For a given 
isotherm this is, of course, proportional to p.) The 
graphs show clearly that the pressure of the system is 
reduced by a decrease in the temperature or by an 
increase in the strength of the interaction potential. 
We wish next to compute the isothermal compress­
ibility. This is given by 

KT = -(ljv)(ov/op)p 

= (1/ p)(oP/op)p = ({31/2p2)(op/ov)p 

= ({3lxIl sech2 V)j[p2(1 + lO)f]. (2.9) 

Figures 3 and 4 are plots of compressibility vs 
density corresponding to the p-p plots in Figs. 1 and 2, 
respectively. The behavior is physically reasonable: 
compressibility increases with decreasing temperature 
and increasing strength of the interaction. This 
parameter is, of course, of interest because of its 
relation to the slope of the p-p curve [cf. Eq. (2.9)] 
and its well~known connection with fluctuations in 
the number of particles of the system. The compress­
ibility is therefore a valuable indicator of a change in 
phase and one expects the compressibility curve to 
have a discontinuity at the critical density. No such 
behavior is apparent in these two figures in consonance 
with Van Hove's theorem.6 

The internal energy density of the system is deter­
mined as follows: 

u = (H)j N = -(oq/o{3)s 

= - [(oqjov)p(ov/o{3)s + (oqjo{3)v] 

= -2p(ovjo{3)s + (oqjo{3)v 

= (t)pkT - (~/2) 

x {2p - [X]l sech2 v]/[l + lO + (1 + lO)!]). 

(2.10) 
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FIG. 1. Pressure-vs-density isotherms for a one-dimensional system 
with nearest-neighbor interactions; , = 64k. 
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FIG. 2. Pressure-vs-density curves for various potential-well 
depths for a one-dimensional system with nearest-neighbor inter­
actions; T = I3.34°K. 
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FIG. 3. Compressibility vs density for a one-dimensional system 
with nearest-neighbor interactions; , = 64k, various temperatures. 

DENSITY 

FIG. 4. Compressibility vs density for a one-dimensional system 
with nearest-neighbor interactions; T = I3.34°K; various potential­
well depths. 
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FIG. 5. Internal energy density vs temperature for a one-dimensional 
system with nearest-neighbor interactions. 

Energy density is plotted vs temperature in Fig. 5 
for p = t. One can readily check the validity and 
meaning of the various terms in (2.10) by proceeding 
directly from the partition function. This analysis is 
carried out in Appendix B. It is apparent from (2.10) 
that the zero-point energy density of the system is 
u = - ~p, which corresponds to a zero-point energy 
per particle of - ~ and thus accords with physical 
intuition. 

From (2.10) one can compute the specific heat of 
the system as follows: 

Cv = (ou/oT)v = _k{J2(OU/O{J)p 

= (t)kp + (t)k({J02x1l 

x sech4 y/[(1 + w)~{1 + (1 + W)!)2]. (2.11) 

As is well-known, the interest in the specific heat 
arises from the obvious connection between it and the 
fluctuations in energy of the system. One expects 
these to be very large in the critical region so that the 
specific heat is a valuable indicator of phase changes. 
In the critical region, (2.11) reduces to 

Cv (p = t) = k/4 + h 2 sech2 
€, (2.12) 

where € = (t){J~. Figure 6 is a plot of this relation. 
While the maximum at T m = 0.208~/k obviously 
represents large fluctuations in density, it does not 
correspond to a phase transition. If we let 'f) = 2kT/~, 
we can recast (2.12) in the form 

00 

xL (-l)r+lrexp [-(r -l)/'f)] 
r=O 

...:.. k1/-2 exp [-1/'f}] ('f)« 1), (2.13) 

0.8,--------------------, 

0.4 

'" .... 
> 

U 

0.2 

FIG. 6. Specific heat vs temperature for a one-dimensional system 
with nearest-neighbor interactions; p = !. 

which shows that the configurational specific heat 
approaches zero exponentially as T ~ 0, i.e., faster 
than the T3 law of Debye. 7 

It is possible to eliminate the parameter y in the 
equation of state and to write the pressure as an explicit 
function of the density. One obtains then from Eqs. 
(2.7) and (2.8): 

pl(1 - p) = kTxll 

X {(p - t) + [(p - t)2 + x l p(1 - p)]!}. 

(2.14) 

One may notice in passing that for Xl ~ I this merges 
into the correct equation of state for the Tonks fluid. 
One can rewrite (2.14) in a somewhat more suggestive 
way: 

(2.15) 

where leff = /(1 - p) = (I/N)L(1 p) = (l/N)Leff 
[cf. Eq. (2.5)] and Peff = (p - t) + [(p - 1)2 + 
x l p(1 - p)]!, Jeff thus represents an effective cell 
parameter related to the effective or free "volume" by 
the relation Jeff = lim {(L - Lo)/N}. Similarly Peff 

N~oo 

represents an effective density which, by virtue of the 
interaction potential, is lower than the true density. 
The pressure of the system is thus reduced by the 
interaction as we saw in Fig. 2. One can also cast the 
equation of state in the form of a van der Waals 
equation 

(p + a)(L - b) = (n)kT 
where 

a = p{xl/[(1 - L/2Lo) + (1 - L/2Lo)2 

+ x1(L/Lo - 1)] - I} 

(2.16) 

7 J. M. Ziman, Principles of the Theory of Solids (Cambridge 
University Press, Cambridge, England, 1964). 
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and 
b = Lp = (n)l = Lo. 

The effect of the hard-core repulsion is contained in b, 
while a reflects the effect of the attractive potential. 
It is readily shown that a ~ O. This form of the 
equation of state lends itself to a virial expansion 
which yields 

p = pkT[l + (2 - xI)p + (4 - 5xI + 2X~)p2 
+ (8 - 18xI + 16x~ - 5x~)l + (16 - 56xI 

+ 82x~ - 55x~ + 14x~)P' + (32 -160xI + 340x~ 
- 365x~ + 196xf - 42xDp5 + ... J. (2.17) 

Figure 7 is a plot of the second virial coefficient 
obtained from this expansion and of the true virial 
coefficient for a three-dimensional fluid. The similarity 
of these curves is rather surprising; their limit as 
T- 00, however, is different. From (2.14) it is 
possible to compute all thermodynamic functions in 
nonparametric form. Only a few results will be given 
here. For the internal energy density one finds, for 
example, 

u = (!)pkT - p{{1 - 2(1 - p)/[l + 2«p - !)2 

+ XIP(l - p)!]), (2.18) 

while the specific heat is given by 

C" = (!)kp + 2k(.B{)2{p(l - p)/[l + 2«p - !)2 

+ XIP(1 - p»!]}2{XI/[(P - w + xIP(1 - p)]!}, 

(2.19) 

which for p = ! reduces again to expression (2.12). 
The chemical potential per particle is 

g = kTln (Afl) + 2kTIn {Pelf/[xI(p(1 - p)!]}, 

(2.20) 

00 
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fOR ONE-DIMENSIONAL FLUID 
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FIG. 7. Second virial coefficient vs temperature for a one-dimen­
sional fluid with nearest-neighbor interactions. 

T-O ISOTHERM 

p 

FIG. 8. Degenerate phase transition of the one-dimensional fluid 
with nearest-neighbor interactions. 

where Pelf is given by (2.15). Other functions are 
readily determined from (2.14) but are not included 
here. 

Before leaving this system we observe from (2.14) 
that p = 0 at T = 0 for all values of the density 
except p = 1. For the latter density we find 

limp = lim (kT/l)[! In T + {JkT + gJkT] 
T-+O T-+O 
p .... l 1/-+ 00 

+ finite terms = + 00. (2.21) 

Thus at T = 0 this system experiences a degenerate 
phase transition as shown in Fig. 8. One can also 
arrive at this conclusion by considering the analyticity 
of the partition function. One finds then that the zeros 
of the partition function of this fluid, just like those of 
the corresponding one-dimensional Ising ferromagnet, 
are distributed on the unit circle in the complex y 
plane.s These zeros cannot approach the real axis 
closer than IXmin = 2 cos-I [(1 - XlI)!]. Hence2 a 
phase transition can occur only as T - 0 or Xl - 00, 

and these transitions are degenerate. 

D. A Fluid with Infinite-Range Interactions 

We shall consider next a fluid with an attractive 
potential of infinitely long range, i.e., a potential 
where the range parameter y goes to zero [cf. Eq. 
(Ll)]. A comparable magnetic potential in which all 
exchange interactions are identical has been applied 
by Kittel and Shore to a Heisenberg ferromagnet.9 

For a fluid such a potential has no physical counter­
part; however, it constitutes an interesting limiting 
case to systems with interaction potentials of increas­
ingly longer range. An alternative point of view is also 
possible. It was shown in I that, in considering systems 
with nearest-neighbor interactions, the coordination 
number increases as the dimension of the system is 
increased. The system considered here could therefore 
be thought of as a limiting case to a sequence of 

8 T. L. Hill, Statistical Mechanics (McGraw-Hill Book Co., Inc., 
New York, 1956). 

• C. Kittel and H. Shore, Phys. Rev. 138, 1165 (1965). 
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nearest-neighbor systems of increasingly higher dimen­
sionality. Specifically, then, the potential we wish to 
examine is 

Vs = {O (s = O)} (Mod. N). 
-, (s ~ 0) 

(2.22) 

If we substitute this potential in the partition function, 
Eq. (Ll), we find that 

tn = (1/n!)q~~' . 'q~~ exp (2 il ~Jl') 
(r<s) 

= (:) exp [n(n - l),Bn (2.23) 

Consequently the partition function takes the form 

N (N) QN = CNn~o n x-n(N-n) cosh [(N - 2n)v] (2.24) 

or 

QN =! (N)ynx-n(N-n), 
n=O n 

wherey = exp (2'11), CN = exp (Nv), and x = exp (fn). 
The sum in (2.24), although suggestive, is not readily 
evaluated. It is suited, however, to numerical evalua­
tion and theoretical analysis. We present some numer­
ical results first. For the density one obtains 

p = (t)(aq/av)p = W(1 + T.lNT) , (2.25) 
where 

T(v, x) = nt(:)x-n(N-n) cosh [(N - 2n)v] 

and 
Tv = (aT/a'll).,. 

For the compressibility we find: 

KT = (f31/4p2)[Tv.lNT - (2p - 1)2N], (2.26) 

where Tvv = (a2T/av2).,. The internal energy density is 

u = (t)pkT - n(N - l)p - (T.,/NT)], (2.27) 

1000 2000 !COO 4000 sooo 1000 7000 8000 

TEMPERATURE (Ok) 

FIG. 9. Specific heat vs temperature for a one-dimensional system 
with infinite-range interactions; p = t. 

FIG. 10. Typical experimental specific-heat curve. (See Refs. 10 
and 11.) 

where T., = (aT/ax)v' Finally, the specific heat is 

Cv = (t)kp + k(f3,)2 

X {(1/NT)[(2p - 1)NT., - T.,J2/[(2p - 1) 

X NTv - Tvv] + (l/NT2)(TT.,., - T!)}, (2.28) 

where T.,v = (a2T/axav) and Tvv = (a2T/av2
).,. 

Figure 9 is a plot of specific heat vs temperature 
for systems ranging in size from 10 to 240 cells and for 
a density of p = t. It appears from the graphs that 
the maxima tend to some sort of a limit, although it is 
not clear what this limit is. However, inspection of 
the data in Table II suggests that the quantity N'f3m 

TABLE II. Tabulated data on the maxima of the specific heat 
curves in Fig. 9. 

System size Temperature of specific-
(N) heat maxima (Tm) N~f3m 

10 193.95 3.30 
20 438.35 2.92 
50 1233.76 2.69 

100 2637.53 2.43 
200 5558.49 2.30 
240 6729.81 2.28 

approaches a limit 2.0. The analysis which follows at 
the end of this section shows that this is in fact the 
correct limit. One also observes from Fig. 9 that the 
specific heat curves assume a characteristic shape. A 
typical experimental specific-heat curve is shown in 
Fig. 10. It is based on the curves obtained by Nix and 
Shockley for alloys exhibiting typical order-disorder 
phase transitions.1o A similar specific heat curve for 
xenon was published recently by Edwards, Lipa, and 
Buckingham,u It is quite apparent that the curves in 
Fig. 9 approach the characteristic shape of the 
experimental curves. Pressure-density curves are 

10 F. C. Nix and W. Shockley, Rev. Mod. Phys. 10, 1 (1938). 
11 C. Edwards, J. A. Lipa, and M. J. Buckingham, Phys. Rev. 

Letters 20, 496 (1968). 
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FIG. 11. Pressure-vs-density isotherms of one-dimensional systems 
with infinite-range interactions. 

presented in Fig. 11. It is obvious that the isotherm of 
the 240-cell system at its "critical" temperature (i.e., 
the temperature where the specific heat curve has a 
maximum) is very nearly that of a system undergoing 
a phase transition. Conversely, the 80000 K isotherm, 
which is well above the "critical" temperature for this 
system, shows no such behavior. For comparison the 
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P 
FIG. 12. Compressibility-vs-density curve for a one-dimensional 

system of 240 cells with infinite-range interactions. 

"critical" isotherm for a very much smaller system 
also gives no indication of any phase change. "Crit­
ical" isotherms for systems of intermediate size (not 
shown to avoid confusion) gradually approach a 
phase transition with increasing system size. 

A compressibility-vs-density plot for the 240-cell 
system at its "critical" temperature appears in Fig. 12. 
The compressibility curve very clearly approaches a 
discontinuity which is in keeping with the nearly 
horizontal isotherm in Fig. 11. Since the system is 
finite there is, of course, no true discontinuity, but the 
maximum value of the KT curve cannot be determined 
from the computer data. 

Figures 11 and 12 show quite convincingly that the 
system approaches a change of phase. It is possible to 
generalize and confirm the numerical results by 
analyzing Eq. (2.24). Suppose that T m is the maximum 
term in the partition function, then clearly 

q = lim (lIN) In (QN) = 'Ii + lim (liN) In (Tm) + R. 
N~oo N~oo 

(2.29) 
Here 

R = lim (JIN) In (1 + I TnlTm) = 0, 
N-+oo n 

since there are N terms appearing in the argument of 
the logarithm, and I TnlTml < 1 so that 

IRI < lim (liN) In N = O. 
N .... oo 

In the thermodynamic limit we can thus determine all 
thermodynamic functions from the maximum term, 
T m' Since we are interested in phase transitions, 
furthermore, it suffices to examine the case p = !. 
i.e., 'Ii = O. To find the maximum term in the sum 

Tn(x,O) =! (N)x-n<N-n) 
n~O n 

we observe that the summand can be written as an 
exponential by means of the Stirling approximation. 
Noting that the summand attains a maximum as the 
exponent does, we obtain the following condition: 

In (Nln - 1) + (2n - N)P' = o. (2.30) 

Letting nlN = p as before [where we have used (2.29)] 
this leads to the following transcendental equation: 

z = tanh (az), (2.31) 

where z = (2p - 1) and a = NP'/2. 
One obvious solution is p = t, which does not 

correspond to a phase transition. However, if we 
now plot the curves fl(Z) = z and h(z) = tanh (az) 
as in Fig. 13, we see that two other solutions are 
possible corresponding to z = 2p - 1 = ±Zl' or 
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FIG. 13. Graphic solution of Eq. (2.31). 

p = t ± Xl' It is obvious that these additional 
solutions can exist if and only if the curve f2(Z) has a 
slope at the origin greater than 1, i.e., if a > 1. Hence 
a phase transition can occur only if N{n > 2; then p 
is "truly a multiple-valued function of the pressure, 
having the values p = t + Zl, t, and t - Zl' all corre­
sponding to the pressure p = (kT/I) lim (l/N) In (Tm). 

N-oo 

The critical temperature of the system must therefore 
be given by the condition Nfn = 2. This, then, 
confirms the limit of the quantity N(J~ discussed 
in connection with Table II. We note that in the 
thermodynamic limit the critical temperature is 
infinite. For finite systems the preceding conclusions 
hold only approximately, since in that case T m is no 
longer the only significant term. There is then also a 
contribution from the remainder term. Table III 
allows a comparison of the "critical" temperatures of 
finite systems obtained numerically and from the 
relation a = 1 (which, as pointed out, does not hold 
exactly for such systems). For infinite systems one 
notes that lim a = 00 so that from Eq. (2.31) Z can 

N-oo 

only take on the values ± 1 ; i.e., p is restricted to the 
values zero and one. Consequently the phase transition 
of this system in the thermodynamic limit is a de­
generate one resembling that in Fig. 8. 

m. ANALYSIS OF FINITE SYSTEMS 

In Sec. II we examined various fluids with 
interaction potentials that allowed us to go to the 

TABLE III. Comparison of critical temperatures for a one­
dimensional system with infinite-range interactions. 

N Tc (Numerical) T: (Analytic)8 TcfT; 

10 193.95 320 0.60 
20 438.35 640 0.68 
50 1233.76 1600 0.78 

100 2637.53 3200 0.82 
200 5558.49 6400 0.87 
240 6729.81 7680 0.88 

a The analytically determined temperature To holds exactly only 
in the thermodynamic limit. For the finite systems considered here 
it is an approximation. 

thermodynamic limit. This section is devoted to an 
investigation of systems in which every particle 
interacts with every other one, i.e., which interact with 
the full Lennard-Jones potential. In that case we 
cannot go to the limit N -+ 00. However, the series 
solution of the partition function, Eq. (1.1), is well 
suited to J:?umerical analysis. Hence we consider sys­
tems of finite and in fact quite modest size for which 
the thermodynamic properties were determined by 
means of an IBM 360 model-40 computer. Computer 
time increased very rapidly with system size so that 
it was not feasible to investigate systems with more 
than 15 cells. Some caution is in order in speaking of 
the thermodynamic functions of such systems since we 
are dealing here with finite assemblies and cannot go 
to the thermodynamic limit. We shall denote these 
functions by their usual symbols but interpret them in 
a common-sense way. 

A. Formulation of the Problem for Numerical 
Analysis 

We define a function T as follows [cf. Eq. (1.1)]: 

[N/2] 

T(v, (J, N) = ! Tn. (3.1) 
n=O 

The grand potential is then given by 

q = (Jpl = v + (l/N) In (2T). (3.2) 

The density of the system is 

p = (t)(l + T.lNT) , (3.3) 

where Tv = (oT/ov)p' For the compressibility one 
obtains: 

KT = ((J1/4 p2)[Tvv/NT - (2p -1)2N], (3.4) 

where Tvv = (()2Tfov2)p. The internal energy density 
is 

N 

u = (t)pkT + p! Vr - Tp/NT, (3.5) 
r=l 

where Tp = (oT/ofJ)v' For the specific heat one finds 

Cv = tkp + kfJ2[(Tpp/NT) - (1/N)(Tp/T)2] 

+ kfJ2[(Tvp) - (2p - I)NTp]2/ 

[NT«(2p - 1)2N2T - Tv.)]' (3.6) 

where Tpp ' Tvp ' etc., have the obvious interpretation. 
We next wish to find a pair-correlation function 

that is amenable to numerical analysis. For this 
purpose we define an average correlation parameter as 
follows: 

(3.7) 
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One observes that Si = 1 if cells in the system sepa­
rated by i cell parameters are either all occupied or all 
empty. If one cell is occupied while the other is empty 
for every pair of cells separated by i cell parameters, 
then perfect anticorrelation exists and Si = -1. 
Finally, Si = 0 corresponds obviously to a state of no 
correlation. In order to find the relationship between 
the correlation parameter defined above and the usual 
pair correlation functions, we restrict ourselves to the 
case p = t since we are principally interested in the 
order of the system in the transition region. It is shown 
in Appendix C that this relationship is as follows8 : 

N 
Si = (ljN) ~ C(2l(<1r , <1r+i ) - 1, (3.8) 

r=1 

or in terms of the Kirkwood correlation functions, 
which have found more frequent use in dealing with 
fluids: 

N 

Si = lj(N - 1) ~ g(2l(<1r' <1r+i) - 1. (3.9) 
r=1 

For convenience we shall refer to the correlation 
parameter Si simply as correlation function in what 
follows. 

The correlation functions are readily computed 
from (1.1) by noting that 

Si = (!N)(ojoOi) 

X In {~exp (~1 ~1 <1r<1r+s0. + V ~1 <1r)} (3.10) 

It follows then that: 

(3.11) 

where 

18. = (OTjOOi). = 8(OTjoxi). 
[N12] 

= ~ cosh [(N - 2n)v]X-n/2{(tn)8t - 8n} (3.12) 
n=O 

and 

(tn)8/ = (OtnjoOi) 
N N n n 

= (8jn!) ~' ... ~' II II x(Qr-Q8l t5(q,.-q.l.i' 
Ql=1 Q,,=1 r=1 8=1 

(r<.l 

(We assume for convenience that N is odd.) 

B. Results for One-Dimensional Systems 

Specific-heat curves for systems ranging in size from 
two to fourteen cells are shown in Fig. 14. The curves 
are for a potential-well depth of ~ = 64k which 
corresponds roughly to that of Neon.12 One observes 

11 W. Band, An Introduction to Quantum Statistics (D. Van 
Nostrand Co., Inc., New York, 1955). 
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FIG. 14. Specific heat vs temperature for a one-dimensional 
system; , = 64k; Y = 6; p = t. 

that the maxima of these curves becomes higher and 
steeper with increasing system size and moves toward 
lower temperatures. Table IV summarizes this 
information. The term "critical" temperature is used 
loosely in this table and in what follows to mean the 
temperature at which the specific-heat curve has a 
maximum. It is apparent that the specific-heat maxima 
approach a limit; however, from the information 
available one cannot say with any certainty what this 
limit is. If one expands ~jkT. in inverse powers of N 
and fits the expansion parameters to the numerical 
data, one obtains 

~jkT. ~ 6.43 - 31.16jN + 87.36jN2. (3.13) 

Table IV also shows the values of ~jkTc obtained from 
this equation. The fit is seen to be excellent for 
systems of six cells or more. If Eq. (3.13) were to 
remain valid for larger systems one would conclude 
that lim ~jkT. = 6.43 which, for the neonlike 

N-oo 
potential used in Fig. 14 would correspond to T. ~ 
WOK. 

Specific-heat curves for different potential-well 
depths are plotted in Fig. 15 for a 12-ceU system. The 

TABLE IV. Summary of critical data for one-dimensional 
specific heat curves. 

Critical UkT. 
System size temperature 

(N) (T.) True Eq. (3.13) 

2 26.68 2.39 12.69 
4 20.90 3.06 4.10 
6 17.99 3.56 3.66 
9 15.64 4.09 4.04 

10 15.14 4.22 4.18 
11 14.74 4.34 4.32 
12 14.33 4.44 4.44 
13 14.08 4.55 4.55 
14 13.76 4.65 4.65 
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FIG. 15. Specific-heat vs temperature for a one-dimensional system; 
N = 12; various potential-well depths; y = 6; P = !. 

maxima of these curves occur at higher temperatures 
as the potential-well depth is increased. Comparable 
curves for a fixed depth of the potential well but for 
various range parameters are shown in Fig. 16. It 
appears from these data that the effect of increasing 
the effective range of interaction, i.e., of decreasing 
the parameter y, is similar to that of increasing the 
potential-well depth. Both shift the maxima to higher 
temperatures. One can incorporate the y and ~ 
dependence into an equation similar to (3.13) 

~/kTc = ocr exp {em - 1)/lOO} 

X [1.53 - 7.42/N + 20.80/N2], (3.14) 

where m is given by ~ = 2mk and 

ocr = y - (y - 1)(y - 2)(y - 3)/(18 + 2y). 

This equation fits the numerical data with quite good 
accuracy. 

Pressure-vs-density data for systems of various 
sizes are plotted in Fig. 17. As the size of the system 
increases, the interaction becomes more effective and 
the pressure for a given density is reduced. 'Figure 18 
shows the change of the p-p isotherms with temperature 
for a 12-cell system. Pressure is seen to decrease with 
decreasing temperature as one would expect. There is, 
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FIG. 16. Specific-heat vs temperature for a one-dimensional system 
with different potential range parameters; N = 10; , = 64k; p = !. 
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FIG. 17. Pressure-vs-density isotherms for one-dimensional systems 
of various sizes; T = lOoK; , = 64k; Y = 6. 

however, no indication ofa phase transition. However, 
in Fig. 19, which depicts the "critical" isotherms for a 
lO-cell system with various interaction potentials, we 
observe a noticeable inflection and flattening of these 
curves. This is rather reminiscent of the curves in 
Fig. 11 and could presage a change of phase. Interest­
ingly enough it is found that all critical isotherms fall 
within the narrow band bordered by the curves 
marked A and B. This seems to suggest that a law of 
corresponding states may apply approximately. At the 
critical density one finds from the upper curve, which 
coincides with all but two of the isotherms, that 
pl/kTc = Pcpl = 0.135. Hence, PcPcVc = Pcpi/Pc = 
0.270. Hill shows in Table II, p. 232, that the mean 

'; 
"-
~ 

FIG. 18. Pressure-vs-density isotherms for a one-dimensional 
system; N = 12; , = 64k; various temperatures. 
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FIG. 19. "Critical" pressure-vs-density isotherms for a one-dimen­

sional system with different interaction potentials; N = 10. 

value of this parameter for Ne, N2 , A, and CH4 is 
0.292.8 The potentials plotted in Fig. 19 are approxi­
mately those for Ne and A. Consequently the critical 
value obtained from the present one-dimensional 
model lies within 7.5 % of the experimental value for 
real three-dimensional fluids. 

Compressibility curves for systems of various sizes 
are plotted in Fig. 20. These are seen to exhibit normal 
fluid behavior, without any indication of a phase 
transition. Figure 21, on the other hand, shows 
compressibility evidencing some rather interesting 
anomalous behavior. These curves are the analogs of 
those in Fig. 19 for a potential-well depth of 64k. 
The anomalies clearly correspond to the inflections in 
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FIG. 20. Compressibility vs density for one-dimensional systems of 

various sizes; T= lOoK;, = 64k; Y = 6. 

ranging in size from 5 to 15 cells are plotted in Fig. 23 
for a temperature of 32°K and a density of p = t. 
These are seen to agree quite well qualitatively with 
experimental curves and curves for radial distribution 
functions computed by other methods.8.13.14 Correla­
tion is largest for nearest neighbors, then drops off and 
approaches zero. However, one observes an absence of 
the local maxima and minima that are usually so 
characteristic of these curves. The difference in behav-

6n---.-~~-'------------------' 

4 

2 

slope in Fig. 19 and may be associated with an incipi­
ent phase transition. This behavior appears even more 
clearly in Fig. 22, where pressure and compressibility 
isotherms are plotted on the same graph. Both are for 
a 12-cell system at its "critical" temperature. The 
inflection in the p-p curve and the corresponding 
anomaly in the compressibility curve are plainly visible. 

The pair-correlation functions for selected systems 

FIG. 21. Compressibility vs density for a one­
dimensional system with various potential ranges; 
N= 10;, = 64k. 

ior appears to be due to the discrete nature of the 
cellular model used here. De Boer has shown that the 
undulations are due to contributions to the potential 
of average force from the screening effect of particles 

13 S. Fluegge, Handbuch der Physik, Vol. XIII, (Springer Verlag, 
Berlin, I 962). 

14 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular 
Theory of Gases and Liquids (John Wiley & Sons, Inc., New York, 
1954). 
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FIG. 22. Pressure and compressibility vs density for a 12-cell one­
dimensional system; T= 14.33°K; ~= 64k. 

surrounding the particle of interest.15 The effect, 
according to de Boer, is to superpose an extra repulsive 
force at distances smaller than 1.5/, an extra attractive 
force between 1.51 and 2.2/, and a small repulsive force 
at larger distances. In the present model all potentials 
are averaged over the whole cell. Thus the variations 
discussed by de Boer are smeared out over the entire 
cell and are more than compensated for by the 
attractive Lennard-Jones potential. In Fig. 24 we see 
the effect of temperature on correlation for a 13-cell 
system. At temperatures well below the critical point 
one sees that correlation is perfect, or very nearly so, 
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FIG. 24. Pair-correlation functions for a 13-cell system at various 
temperatures; ~ = 64k; Y = 6; P = t· 

throughout the entire system. Long-range order 
exists. As the temperature increases, correlation is 
gradually reduced, less so for nearest-neighbor cells 
and more for cells far removed from one another. 
Long-range order changes to short-range order. The 
drop in correlation is particularly marked for tempera­
tures higher than the critical one. This is shown more 
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FIG. 23. Pair-correlation functions for one-dimensional systems of T(Ok) 
various sizes; T = 32°K; ~ = 64k; Y = 6; P = t· 

FIG. 25. Pair-correlation functions vs temperature for a 13-cell 
15 J. de Boer, Rept. Progr. Theoret. Phys. (Kyoto) 12, 305 (1949). system; , = 64k; Y = 6; P = t· 
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FIG. 26. Specific heat vs temperature for typical two-dimensional 
systems; , = 64k; p = t. 

clearly in Fig. 25 where the correlation functions for 
this same system are plotted against temperature. We 
see that nearest-neighbor correlation decreases only 
slowly; however, the longer-range correlations drop 
off markedly as the critical temperature is approached 
and passed. The graph shows very clearly how long­
range order changes to short-range order at the 
"critical" temperature. The behavior is completely 
analogous to that found by Kaufman and Onsager in 
their investigation of the two-dimensional Ising 
ferromagnet. 16 Since in the two-dimensional Ising 
model this behavior is associated with a phase 
transition, one surmises that in the present instance it 
might be indicative of an incipient change of phase. 
The surmise is reinforced by the behavior discussed in 
connection with Fig. 22. 

C. Results for Two- and Three­
Dimensional Systems 

Section 2B and 6B of Paper I dealt with applica­
tion of the present model to multi-dimensional 
systems. In this section we present some results for 
small two- and three-dimensional systems with 
nearest-neighbor interactions only that were obtained 
by computer. The potential used was: 

v = {-64k 
8 0 

two-dimensional three-dimensional 
system system 

(s = 1, m) 

(s~l,m) 
(s =1, m, k)} Mod. N. 
(s ~ 1, m, k) 

(3.15) 

Two-dimensional systems accessible within the 
restriction N ~ 15 are those having 4, 6, 8,9, 10, 12, 
14, and 15 cells, respectively, while three-dimensional 
systems are confined to N = 8 and 12. 

11 B. Kaufman and L. Onsager, Phys. Rev. 76, 1244 (1949). 
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FIG. 27. Specific h.eat vs temperature for two typical three-dimen­
sIOnal systems; , = 64k; P = i. 

Specific-heat curves for typical two- and three­
dimensional fluids are shown in Figs. 26 and 27, 
respectively. As in the one-dimensional case, the 
curves exhibit a characteristic peak which is shifted 
to higher temperatures with increasing dimensionality 
of the system. Table V summarizes the "critical" 
temperature data available for these systems. For the 
two-dimensional system the exact value for the ratio 
UkTc is 1.76,17 It is seen that the values in Table V 

TABLE V. "Critical" temperature data for two- and three­
dimensional systems for' = 64k, p = i. 

"Critical" temperature 
(Tc) UkTc 

System 
size 2-Dim. 3-Dim. 2-Dim. 3-Dim. 
(N) system system system system 

6 36.76 1.74 
8 39.62 59.63 1.61 1.07 
9 40.10 1.59 

12 39.34 61.32 1.62 1.04 
14 35.65 1.79 

fluctuate about the exact ratio within approximately 
± 10 %. These fluctuations are attributable to the 
small size of the systems investigated, the differences 
in symmetry of the systems, and the consequent 
strong influence of boundary effects (spurious inter­
actions). (The 14-cell system, for example, consists of 
two rows of seven cells each, while the 12-cell one has 
three rows of four cells. There are thus obvious 
differences in symmetry.) For the three-dimensional 
system, Wakefield's value of the corresponding ratio 
is generally considered the most accurate13 : 

exp {-2J/kTc} = 0.641. 

17 L. Onsager, Phys. Rev. 65, 117 (1944). 
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FIG. 28. Pressure vs density, two-dimensional systems; t = 64k; 
T= Te. 

In terms of the parameters of the present model this is 
equivalent to '/kTc = 1.05. (~for the nearest-neighbor 
fluid corresponds to 4J for the ferromagnet.) Other 
estimates of this ratio range from 0.98 to 1.09.13 The 
values obtained from the model considered here fall 
well within this range and differ from the best value 
by less than 2 %. This accuracy is most likely due to 
the perfect and almost perfect cubic symmetry of these 
two systems. It is nonetheless remarkable that such 
close agreement should be obtained for assemblies of 
so small a size. 

Pressure-vs-density graphs for typical two- and 
three-dimensional systems are shown in Figs. 28 
through 30. They exhibit normal fluid behavior except 
that there is, of course, no phase transition. Lowering 
the temperature and increasing the system size are 
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FIG. 30. Pressure-density curves for an eight-cell three-dimensional 
system; t = 64k. 

both seen to lower the pressure for a given density. 
In addition, one observes again the rather character­
istic inflection of the isotherms. The compressibility 
curves for the 9-cell two-dimensional system in Fig. 31 
correspond to the p-p curves in Fig. 29. One clearly 
discerns anomalous behavior in these curves at 
temperatures below the "critical" one. This same 
behavior and the correlation between the inflection 
of the p-p curve on the one hand and the correspond­
ing inversion of the KT-p curve on the other is shown 
even more clearly in Fig. 32, where these two curves 
for a l2-cell three-dimensional fluid have been super-
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FIG. 29. Pressure-density curves for a nine-ce1l two-dimensional FIG. 31. Compressibility-vs-density isotherms for a nine-cell two-
system, various temperatures; t = 64k. dimensional system; t = 64k. 
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FIG. 32. Pressure-and-compressibility-vs-density isotherms for a 
12-cell three-dimensional system. 

posed on the same graph. Since we know that two­
and three-dimensional systems in the thermodynamic 
limit are subject to phase transitions, one surmises that 
this behavior in the pressure-and-compressibility 
isotherms is indicative of an incipient transition. The 
analysis in Sec.II.Dand in particular Figs. 11 and 12 
lend further credence to this surmise. 

IV. CONCLUSIONS 

The fluid model examined in this series of two 
articles was seen to combine mathematical conven­
ience with considerable flexibility. Despite its simplicity 
it proved capable of yielding realistic and consistent 
thermodynamic results and of portraying phase 
transitions correctly. In I it was found that the 
introduction of a cellular structure made an otherwise 
difficult problem mathematically much more tractable. 
The price paid for this simplification was an uncer­
tainty in the instantaneous locations of the particles 
comprising the system. One could only say that a given 
particle is located within a certain cell with an un­
certainty proportional to the cell parameter. By 
keeping the cell size smaIl and in fact letting it 
coincide with the particle's exclusion sphere it was 
possible to keep this uncertainty within reasonable 
bounds. The model then represents an approximation 
to real physical systems but is not exactly equivalent 
to any such system. This is not the only approxima­
tion incorporated in the model. Others include the 
assumption that t~e system can be treated classically, 
the restriction of the configurational energy to pairwise 
interactions, the adoption of the Lennard-Jones 
potential with hard-core cutoff for the interaction 
energy, etc. These latter approximations are fairly 
standard, however, in theoretical investigations of 
this type and appear to be quite reasonable for simple 

nonquantum fluids such as the inert gases. The 
discrete cellular structure also does not seem to affect 
the thermodynamic behavior of the model too adver­
sely. In any event, qualitative agreement with the 
behavior of real fluids is seen to be quite good and 
even phase transitions can be reproduced in a quali­
tatively correct manner. Since the basic model investi­
gated here is a one-dimensional one, qualitative 
agreement is perhaps all that can be expected. None­
theless, on occasions we found quantitative agreement 
as well. The critical ratio PoPov. mentioned in Sec. II 
is a case in point. Such agreement may, of course, be 
fortuitous. 

Despite the relative mathematical simplicity of the 
model it is surprisingly versatile. We noted this in I 
already; where we saw how the basic one-dimensional 
system in which all particles interact with one another 
can be converted into a two- or three-dimensional one 
with more limited interactions. It proved possible by 
virtue of this transformation to obtain series expan­
sions in all dimensions by an identical straight-forward 
algebraic method. Also, we noted there that the model 
offers a convenient method for investigating the zeros 
of the partition function, thereby providing further 
insight into the analyticity of that function and 
therefore into the nature of the phase transitions to 
which it may give rise. Current research is being 
focused on this area. 

In the present article we have explored this versa­
tility of the model further by applying it to various 
types of systems in order to investigate their thermo­
dynamic behavior. Thus we saw that the model 
correctly and almost trivially yields the equation of 
state of an ideal gas and of a Tonks gas in the limit of 
no interaction and of only a hard-core interaction, 
respectively. This provided further evidence of the 
validity of the model, at least in that limit, over and 
above the analysis in 1. The one-dimensional fluid with 
nearest-neighbor interactions, which was investigated 
next, offered the unique advantage that the equation of 
state and all thermodynamic functions can be written 
in closed form. This system consequently offers a 
mathematically very tractable model for investigating 
thermodynamic behavior in a fluid having attractive 
interactions of limited range combined with a hard 
repulsive core. Obvious limitations of the system are 
its one-dimensional nature and the consequent (by 
virtue of Van Hove's theorem) absence of a phase 
transition. Nonetheless the behavior of this system 
turns out to be surprisingly realistic in many ways. 

If one is primarily concerned with phase transitions, 
the one-dimensional fluid with attractive forces of 
infinite range (i.e., where y -- 0) provides an interest-
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ing test case. While physically this obviously does not 
correspond to any real system, it represents an interest­
ing limit exhibiting typical transition behavior. 
Investigation of finite systems of this type showed how 
a phase transition is approached gradually with 
increasing system size without need for recourse to a 
Maxwell-type construction. In a 240-cell system the 
pressure-density isotherm is practically indistinguish­
able from that of a fluid undergoing a true phase 
transition, while the compressibility curve shows a 
very realistic approach to a true discontinuity. Exact 
analysis confirms the numerical results and indicates 
that in the thermodynamic limit this fluid has an 
infinite critical temperature. 

In investigating finite one-, two-, and three­
dimensional systems of quite modest size the series 
solution of the partition function used in this study 
proved quite convenient for computer analysis. It 
was found that small one-dimensional fluid systems 
interacting with the full Lennard-Jones potential 
exhibit many of the characteristics of real fluids. 
There is, however, no phase transition for systems of 
so small a size. Nevertheless several indicators suggest 
that if one could investigate larger systems one would 
see an approach to a phase transition just as one did 
in the case of the infinite-range fluid: 

(1) The maxima of the specific-heat curves seem to 
approach a limiting critical temperature, other than 
absolute zero, and also approach a typical shape. 

(2) The pressure-density isotherms begin to show 
a typical inflection that is usually associated with 
systems approaching a phase transition. The com­
pressibility isotherms display a corresponding in­
version which could well presage an approach to a 
discontinuity. 

(3) Analysis of pair-correlation functions with 
respect to temperature shows quite conclusively that 
long-range order prevails at low temperatures and 
changes quite abruptly to short-range order as the 
"critical" temperature of the system is passed. 

Analysis of small two- and three-dimensional 
systems with nearest-neighbor attractive interactions 
indicates that the "critical" temperatures obtained 
from their specific-heat maxima agree within a few 
percent with those obtained by other methods in the 
thermodynamic limit. The excellent agreement 
achieved is rather surprising in view of the V(~ry small 
size of the systems investigated here and the conse­
quently quite pronounced effect of spurious inter­
actions. These systems exhibit the same behavior in the 
pressure-and-compressibility isotherms as that 
mentioned in (2) above. Since we know from other 
evidence that two- and three-dimensional systems 

in the thermodynamic limit are subject to phase 
transitions, one can by analogy construe this analogous 
behavior of the pressure.and·compressibility isotherms 
as further indication of a possible approach to a phase 
transition in the one-dimensional case. 

The model investigated in this study appears quite 
promising and worthy of further examination. It 
would be of particular interest to investigate the 
general one-dimensional system with all interactions 
active in the thermodynamic limit. To that end one 
must either aim at finding a closed-form solution or a 
valid approximation. Alternatively one should try to 
extend computer analysis to very much larger systems. 
These approaches are currently being investigated. 
Other present research is concerned with critical 
exponents and it is hoped that some results concerning 
these will be available in the near future. 
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APPENDIX A: THE HARD-CORE POTENTIAL 
AND CELL PARAMETER 

We first wish to show the connection between the 
hard-core potential and the primed sums that occur 
in the series solution, Eq. (1.1) of this article or Eq. 
(4.7) of I. Let us temporarily revoke the convention 
adopted in I for mathematical convenience that 
Vo = CPo = 0 (Mod. N). Instead we write the po­
tential explicitly as follows: 

'YJ. = {'he (S = O)} (Mod. N). (AI) 
_'/S1 (s ~ 0) 

where 'he = + 00 is the hard-core potential. The 
corresponding Boltzmann factor is 

z. = exp {-{In.} = {exp (-{l'he) (s = O)} 
exp ({l'/S1) (s ~ 0) 

(Mod. N). (A2) 

The hard-core part of z. can be written as (1 - 15 •. 0) so 
that the entire Boltzmann factor becomes: 

Z8 = (1 - 158•0) exp ({lV.) 

V - {O (s = 0) (A3) 
• - _'/s1 (s ~ 0). 

It will be observed that V8 is the potential of Paper I 
with the convention Vs = CPs = 0, which is seen to 
arise naturally in this way. Consider now the primed 
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sums in Eq. (1.1) 
N N n n 

tn = (ljn!) I' ... I' IT IT X(qr-q,)' (A4) 
Q1=1 q,,=1 r=l 8=1 

( .. <s) 

The primes imply that no index may be repeated in any 
given term of the sum. Hence one can also write 

N N n n 

tn = (lin!) L ... L IT IT (1 - b(ar-q,»X(ar-a,) 

01=1 a,,=11''{r\!j1 

N N n n 

= (l/n!) L ... I IT IT Z(tl,-a,) , (AS) 
q,,=l1'=l 8=1 

(,.<.) 

where the sums in (AS) are now unrestricted and 
where Eq. (A3) was used. Thus the primed summations 
arise from the hard-core repulsive potential and 
incorporate the exclusion principle that has been built 
into the model. The expansion of these primed sums 
is given, for the first few terms, in Sec. 6 of I. 

Next, we wish to clarify the relationship that exists 
between the cell parameter 1 and the hard-core 
repulsive potential. Let d be the diameter of the 
particle's exclusion sphere (the particle's exclusion 
length in one dimension). Suppose we choose a cell 
parameter such that 10 < d. Then each particle 
occupies - [-d/lo] = m' cells, where [] means 
"nearest integer equal to or less than." The entire sys­
tem has Lllo = k cells where k > N, N being given by 
LII and I is the usual cell parameter used in this study 
(/ = d). Assuming for convenience that m is odd, we 
define m = (t)(m' - 1). The appropriate true po­
tential is now given by (A2). In view of the change in 
cell dimension we must rewrite Eq. (A3) as follows: 

z. = (1 - 15.,0 - 15.,1 - ••. - <5.,m - bs,N-1 

- ••• - b.,N_m) exp «(Jv.). (A6) 

Upon introducing this Boltzmann factor into the 
expression for In one finds that one can write 

k k n n 

tn = (l/n!) L'" I IT IT(1 - m'b(ar-a,»X(qr-q,) , 
ql=l <1 .. =1 1'=1 8=1 

( .. <s) (A7) 

for a fluid of hard rods x. = 1, so that one has: 

tn (x, = 1, "Is) = (l/n!)k(k - m') 

X (k - 2m') ... (k - (n - l)m'). (A8) 

Letting now k = Nm' (we shall choose 10 such that N 
is an integer), we find In = (~)(m')n and the partition 
function is: 

k (N) m'N(N\ 
Qk = n~o n (m,)nyn = ~o n(t (A9) 

(~) = 0 for n > N, we obtain: 

m'N(N) 
Qk = n~o n rt = (1 + 'Yj)N = [1 + (m'loIA)~]N 

= (1 + l~jA)N = QN' (AIO) 

This is the same as Eq. (2.1) and shows that choosing 
the cell parameter smaller than the particle's exclusion 
length is a trivial variation of the choice adopted in 
this study. It was pointed out in I that a choice of 
I > d would not be useful in the present context. 

APPENDIX B: COMPUTATION OF THE INTER­
NAL ENERGY DENSITY BY A DIFFERENT 
METHOD FOR THE ONE-DIMENSIONAL 

FLUID WITH NEAREST·NEIGHBOR 
INTERACTIONS 

The following analysis serves to check the validity 
and meaning of Eq. (2.10). Obviously the first term in 
this equation is the kinetic contribution and reflects the 
one degree of freedom of the system. It requires no 
further analysis. To proceed with the other terms we 
define the following quantities: 

N+ = Expected number of occupied cells = (n). 
N_ = Expected number of empty cells = N - (n). 

N++ = Expected number of nearest-neighbor cells 
with both cells occupied. 

N __ = Expected number of nearest-neighbor cells 
with both cells empty. 

N+- = Expected number of nearest-neighbor cells 
with one cell occupied and one empty. 

The following relations are easily seen to hold 
between these quantities: 

2N++ + N+- = 2N+ 
2N __ + N+- = 2N_ (Bl) 

N++ + N __ + N+- = N. 

Let us define a parameter (short-range order param­
eter) (J as follows: 

(J = (I/N>(i1(Jr(Jr+1) = (l/N)(N++ + N __ - N+_) 

= 1 - N+_IN = 1 + 4'Yj - 4p, (B2) 

where 'YJ = N++!N. One can determine (J from the 
partition function as follows [see Eq. (2.10) ofI]: 

(J = AN! N I {f (J1'(l'1'+l 
{u} 1'=1 

X exp [€ '~1 (J.(I'8+1 + 11 ,~ (l'8J} / QN 

= (1/ N)[(ojo€) In EN]", (B3) 

where y = exp (211) and 'YJ = m'y. Observing that where € = ()1 = (!)(J' and EN = Al/QN' We have 
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then, using (2.7), 

a = (a/ae){e + In (cosh v) + In [1 + (1 + w)!n. 

= 1 - [2xIl sech2 v]/[1 + w + (1 + w)!]. (B4) 

For the configurational energy of the system we have: 

where CPs = -W2)(~s,1 + ~s,N-I)' Carrying out the 
summations indicated one obtains 

Uc = - ~[(N/4) + (N/2)(2p - 1) + (N/4)a], (B6) 

so that, using (B4), we have 

i has occupation index ai given that cell j has occupa­
tion index aj • Let us suppose that we can write this 
conditional probability in the form 

W(ai/a j) = W(ai)(1 + M;j) = 0)(1 + M;;}. (C2) 

Then 
W(a;, a j) = (t)(1 + M;;). (C3) 

Now, given that cell j has occupation index a j' the 
probability that cell i has the same occupation index 
and the probability that it has the opposite index are 
mutually exclusive events. Consequently, 

(a;a) = (probability that cells i and j have the same 
occupation index) (+ 1) + (probability that 
cells i and j have opposite indices) (-1) 

U c = Uc/N = M;j' 

= -~{p - [xII sech2 v]/2[1 + w + (1 + w)!n. and so 

(B7) W(ai , aj) = W(1 + (aia j»). (C5) 

This is exactly the configurational part of (2.10). By 
means of (B 1) and (B2) one notes that (B6) can be 
rewritten 

This represents just the interaction of all nearest­
neighbor occupied cells, as one would expect on 
physical grounds. 

APPENDIX C: RELATIONSHIP BETWEEN 
VARIOUS CORRELATION FUNCTIONS 

We wish to establish the relationship between the 
correlation parameter used in this study and defined 
in (3.7) on the one hand and the usual pair-correlation 
functions. Attention is confined to the case p = t for 
reasons indicated following Eq. (3.7). The a priori 
probability that a cell is occupied or empty is t. The 
joint probability that cells i and j have occupation 
indices ai and a j , respectively is 

W(a;, a j) = W(aj)W(a;/a j) = mW(a;/aj), (C1) 

where W(aila j ) is the conditional probability that cell 

We can therefore write the correlation parameter in 
the following form, with the help of Eqs. (3.7) and 
(C5) 

N 

S; = (4/N) I wear> ar+i) - 1. (C6) 
r~l 

One readily verifies that this equation yields the correct 
limiting values of + 1, -1, and 0 for perfect corre­
lation, perfect anticorrelation, and no correlation 
respectively. 

In terms of the usual pair-correlation function, 
defined as follows: 

(C7) 

we can write the correlation parameter in the following 
formS: 

N 

S; = (1/ N) I C(2)(ar> ar+i) - 1. (C8) 
r~1 

Or, in terms of the Kirkwood correlation functionsS: 

N 
S; = l/(N - 1) I g(2)(ar , ar+i) - 1. (C9) 

r=l 
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Class of Exact Invariants for Classical and Quantum 
Time-Dependent Harmonic Oscillators * 

H. R. LEWIS, JR. 

Los Alamos Scientific Laboratory, University o/California, Los Alamos, New Mexico 

(Received 21 September 1967) 

A class of exact invariants for oscillator systems whose Hamiltonians are 

H = (l/2~) [p2 + 02(t)q2] 

is given in closed form in terms of a function p(t) which satisfies 

£2 d2p/dt2 + O'(t)p - p-3 = o. 
Each particular solution of the equation for p determines an invariant. The invariants are derived by 
applying an asymptotic theory due to Kruskal to the oscillator system in closed form. As a consequence, 
the results are more general than the asymptotic treatment, and are even applicable with complex O(t) 
and quantum systems. A generating function is given for a classical canonical transformation to a class of 
new canonical variables which are so chosen that the new momentum is any particular member of the 
class of invariants. The new coordinate is, of course, a cyclic variable. The meaning of the invariants is 
discussed, and the general solution for p(t) is given in terms of linearly independent solutions of the 
equations of motion for the classical oscillator. The general solution for p(t) is evaluated for some special 
cases. Finally, some aspects of the application of the invariants to quantum systems are discussed. 

I. INTRODUCTION 

The systems to be discussed are those for which 
there is a Hamiltonian of the form 

H = ...!. [p2 + O\t)q2], 
2E 

(1) 

where q is a canonical coordinate, p is its conjugate 
momentum, O(t) is an arbitrary complex function of 
t, and E is a positive real parameter. If the system is a 
quantum system, then q and p satisfy the usual 
commutation relation 

[q,p] = iii. (2) 

For brevity, we refer to a system whose Hamiltonian 
is given by Eq. (1) as a time-dependent harmonic 
oscillator. 

For a time-dependent harmonic oscillator there is a 
class of exact invariants I of the form1.2 

1= ![p-2q2 + (pp _ Ep'q)2], 

where p is any function of t satisfying 

E2p" + 02(t)p _ p-3 = 0, 

(3) 

(4) 

and the prime denotes differentiation with respect to t. 
Equations (3) and (4) define a class of invariants 

• Work performed under the auspices of the U.S. Atomic Energy 
Commission. 

1 H. R. Lewis, Jr., Phys. Rev. Letters 18, 510 (1967); also an 
erratum: Phys. Rev. Letters 18, 636 (1967). 

• Professor K. R. Symon has brought to my attention that these 
invariants are related to quantities used in the analysis of beam 
oscillations in an alternating-gradient synchrotron. See, for example, 
E. D. Courant and H. S. Snyder, Ann. Phys. (N.Y.) 3, I (1958). 

because p may be any particular solution of Eq. (4). 
The quantity I is an invariant for quantum as well as 
classical systems. 

If Eq. (4) be solved recursively to give p as a series in 
positive powers of E, then that p can be substituted 
into Eq. (3) to give I as a series in positive powers of E. 

For classical systems with real 0, that series for I is the 
usual adiabatic-invariant series whose leading term is 
proportional to (EH)/O. The study of the adiabatic 
invariant has received considerable attention in the 
literature,3-11 often in connection with the motion of 
a charged particle in a particular electromagnetic 
field. 12 Recently, KruskaP3 has developed a general 

3 A. Einstein, Inst. intern. phys. Solvay, Conseil phys., Rapports 
et discussions, 1,450 (1911). 

4 R. M. Kulsrud, Phys. Rev. 106, 205 (1957). 
• F. Hertweck and A. Schliiter, Z. Naturforsch. 12a, 844 (1957). 
• G. Backus, A. Lenard, and R. Kulsrud, Z. Naturforsch. 15a, 

1007 (1960). 
7 S. Chandrasekhar, The Plasma in a Magnetic Field, R. K. M. 

Landshotf, Ed. (Stanford University Press, Stanford, 1958), p. 3. 
8 A. Lenard, Ann. Phys. (N.Y.) 6, 261 (1959). 
• L. M. Garrido, Progr. Theoret. Phys. (Kyoto) 26, 577 (1961). 
10 J. E. Littlewood, Ann. Phys. (N.Y.) 21, 233 (1963); also, Ann. 

Phys. (N.Y.) 29, 13 (1964). 
11 G. Knorr and D. Pfirsch, Max-Planck-Institut flir Physik und 

Astrophysik (Munich, Germany), Report No. MPI-PAE/P1.15/65, 
1965. 

12 The equations of motion for a classical time-dependent har­
monic osci1lator with complex q and p are exactly equivalent to the 
equations of motion for a charged particle moving nonrelativistically 
in the electromagnetic field for which the scalar potential is zero and 
the vector potential is A = !h(t)Bo X r, where h(t) is a function of 
time, Bo is a constant vector, and T is the position vector. (See the 
reference given in Footnote 5.) With these electromagnetic potentials, 
the magnetic field B is given by h(t)Bo , and the electric field E is 
given by -(l/2c)(dh/dt)Bo X T. The quantities nu) and E in Eq. (I) 
are, respectively, !B(t) and the ratio of mass to charge of the particle. 

There has been some confusion in the literature about the gener­
ality with which the equations of motion for a time-dependent 

1916 
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asymptotic theory of a class of nearly periodic classical 
systems, among which is included the classical time­
dependent harmonic oscillator with real O. The class 
of exact invariants defined by Eqs. (3) and (4) was 
derived as a result of applying KruskaI's asymptotic 
theory to the classical oscillator with real 0.14 It is 
possible to apply the theory to that system in closed 
form, in terms of q, p, and the function pet), without 
demanding the adiabatic results in the limit of small E. 

As a consequence, from the asymptotic theory we 
obtain exact, nonasymptotic results that are even 
applicable with complex 0 and quantum systems. This 
is apparently the first example of an application of 
Kruskal's theory in which nonasymptotic results are 
obtained, or in which the structure of the functions 
defined in the theory can be examined in detail. 
Possibly this example can serve as a model for 
application of the theory to more complicated 
problems to obtain similar results. 

In Sec. II we derive the invariant defined by Eqs. 
(3) and (4) starting from KruskaI's asymptotic theory. 
In Sec. III we give a generating function for a classical 
canonical transformation to new canonical variables 
which are so chosen that the new momentum is I. 
The new coordinate is a cyclic variable, as it must be, 
since I is an invariant. In that section we also discuss 
the interpretation of I and its relation to the adiabatic 
invariant series, and we give the general solution for 

harmonic oscillator are equivalent to the equations of motion for a 
particle moving in a uniform but time-dependent magnetic field. 
(See the references given in Footnotes 5, 7, 9, and II.) The point 
that is sometimes overlooked is that there are many possible electric 
fields that are consistent with the uniform magnetic field. The 
electric field given above is the only axially symmetric electric field, 
for which the charge density is everywhere zero, that is consistent 
with the uniform but time-dependent magnetic field h(t)Bo. However, 
if the symmetry and charge-free restrictions are removed, then there 
are other electric fields possible. We can change E without changing 
B by introducing any space- and time-dependent scalar potential 
t:p and by adding to the vector potential the gradient of any space­
and time-dependent scalar function X. The charge density corre­
sponding to the new electric field is proportional to 

V"[t:p + (i/c)ox/otj. 

Even if this expression vanishes, the new electric field can still differ 
from the one given above. The equations of motion for a particle 
moving in the new electromagnetic field are generally not equivalent 
to the equations of motion for a time-dependent harmonic oscillator. 

13 M. Kruskal, J. Math. Phys. 3, 806 (1962). 
14 See also R. M. Kulsrud, Princeton University Plasma Physics 

Laboratory Semiannual Report No. MATT-Q-20 (July I, 1962-Dec. 
31, 1962). The existence of this unpublished reference was kindly 
made known to me by Dr. Clifford Gardner after the present work 
was completed. The last term of Eq. (5) of the reference should be 
multiplied by f, with corresponding changes in subsequent equa­
tions. Except for that error, an invariant equivalent to I was derived 
by Kulsrud in this reference by a different method. His objective was 
to obtain the asymptotic series representation of the adiabatic 
invariant of the system in positive powers of E. It was apparently not 
realized that the result obtained was an exact, nonasymptotic result; 
that a class of exact invariants had been defined, rather than just 
the one adiabatic invariant; and that the result is applicable to 
classical systems with complex n and to quantum systems. 

p in terms of linearly independent solutions of the 
equations of motion for a classical oscillator. The 
function p is given explicitly in Sec. IV for some special 
cases. In Sec. V we show that I is a constant of the 
motion for a quantum time-dependent oscillator, 
derive its eigenvalues and eigenstates, and calculate 
the expectation values of H in those eigenstates. A 
complete discussion of the quantum system in terms 
of I will be given later .15 

II. DERIVATION OF THE INVARIANT START­
ING FROM KRUSKAL'S THEORY 

A. The Equations in Standard Form 

We begin by considering a classical time-dependent 
harmonic oscillator for which 0 is a real function. 
In that case Hamilton's equations of motion for the 
system can be written in the standard form to which 
KruskaI's asymptotic theory13 is applicable. The usual 
form of Hamilton's equations of motion is 

dq oH 1 
-=-=-p, 
dt op € 

dp = _ oH = _ ! 02(t)q. 
dt oq E 

(5) 

In order to apply KruskaI's theory, these equations 
must be replaced by an equivalent first-order auton­
omous system, all of whose solutions are periodic 
in the independent variable in the limit € = O. This 
can be achieved by introducing a new independent 
variable s, defined by s = tiE, and treating t as an 
additional dependent variable. The system of equations 
so obtained can be represented compactly as 

dx/ds = F(x, E), (6) 

where x and F(x, E) are vectors defined by 

x = (q,p, t), 

F(x, E) = (p, -02(t)q, E). (7) 

Because t is now a dependent variable, this system is 
autonomous. The E = 0 system, obtained by replacing 
F(x, E) in Eq. (6) by F(x, 0), is 

dq/ds = p, 

dp/ds = -02(t)q, 

dt/ds = O. 
(8) 

The solution of the last equation is t = const and, 
therefore, the other two equations are just the 

15 H. R. Lewis, Jr., and W. B. Riesenfeld, "An Exact Quantum 
Theory of the Time-Dependent Harmonic Oscillator and of a 
Charged Particle in a Time-Dependent Electromagnetic Field" (to 
be published). 
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p 

FIG. 1. Defini­
tion of the vari­

~(t)q abIes v and v. 

harmonic-oscillator equations with a constant fre­
quency. Since 0 is real, this means that the dependent 
variables of the € = 0 system are all periodic in s with 
period 21T/0(t). Therefore, Eq. (6) is indeed of the 
standard form required by Kruskal's theory. 

B. More Appropriate Variables 

The next step in applying Kruskal's theory is to 
transform variables from x to so-called "more appro­
priate variables" y = Vex) and v = N(x). These vari­
ables are to be defined such that y, a two-component 
vector, is constant on the integral curves of the € = 0 
system, and such that v, an angle variable, changes 
monotonically by an amount 21T around each of those 
closed curves. The definition of the more appropriate 
variables that we use is 

y = Vex) = (v, t), 
and 

v = N(x) = tan-1 [-p_J, (9) 
O(t)q 

where 
v = [02(t)q2 + p2]!. 

The relation between the variables (v, v) and the 
variables (q,p) is shown in Fig. 1. The inverse trans­
formation is given by 

x = [~t) cos v, v sin v, tJ 
The equations satisfied by y and v are16 

dy/ds = €g(y, v), 

dv/ds = "p(Y, v), 
where 

(10) 

(11) 

€g(y, v) = r· V x Y = € (v d ~t 0 
cos2 v, 1), 

dIn 0 . 
"p(Y,v) = r.VxN = -0 - €--SlflVCOSV. (12) 

dt 

11 The quantities v, N, and tp correspond, respectively, to the 
quantities -21111, -21T 1, and -21Ttp defined by Kruskal. 

C. Nice Variables 

The reason for defining the more appropriate 
variables is to provide a convenient means for defining 
one further transformation of variables-from the 
more appropriate variables to so-called "nice vari­
ables," 

z = Z(y, v), 
and 

cp = .p(y, v). (13) 

The variable z is a two-component vector and cp is an 
angle variable. The functions Z and .p are to be chosen 
such that the equations of motion for the oscillator, 
written in terms of z and cp, are 

dz/ds = €h(z), 

dcp/ds = w(z), (14) 

where h(z) and w(z) are functions independent of cp 
that are to be determined along with Z(y, v) and 
.p(y, v). 

The motivation for defining nice variables is that 
we can use them to specify an important set of closed 
curves known as rings. The rings are those curves on 
which z is constant, and they are closed because cp is an 
angle variable. The definition of the rings does not 
depend on the variable s because, by virtue of the 
fact that the function h(z) appearing in the first of 
Eqs. (14) is independent of cp, the family of rings is 
continuously mapped into itself if each ring is allowed 
to change with s according to Eqs. (14). In our 
oscillator problem it is possible to choose the rings 
such that they lie in the planes given by t = const, 
and we shall choose them in that way. As a result, the 
rings can be used to define an invariant I in terms 
of an action integral: 

where 

1= J...1 pdq 
21T Jring 

q = X 1(z, cp), 

p = X2(z, cp). 

(15a) 

(15b) 

This invariant is the one given by Eqs. (3) and (4). 
The equations that must be satisfied by Z, .p, h, and 

ware easily determined. The periodicity conditions 
on Z and .p that result from taking cp and v to be 
angle variables are 

Z(y, v + 21T) = Z(y, v), 

.p(y, v + 21T) = .p(y, v) + 21T. (16) 
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The partial differential equations that must be satisfied 
subject to these periodicity conditions can be derived 
by substituting Eqs. (13) into Eqs. (14), performing 
the differentiations, and using Eqs. (11) to eliminate 
dy/ds and dv/ds. The equations are 

az 
Eg • Vy Z + tp - = Eb[Z(y, v)], 

ov 

0<D 
Eg. Vy<D + tp ov = w[Z(y, v)]. (17) 

Thus, to calculate the invariant /, we must first solve 
Eqs. (17) for Z and <D subject to the periodicity 
conditions. Then we must invert the transformation to 
nice variables to obtain q and p in terms of z and rp. 
Finally, we must evaluate the action integral given in 
Eq. (ISa). 

Kruskal showed that nice variables can be found 
which are asymptotic series in positive powers of E, 

and he gave a prescription for finding the terms of the 
series recursively. He also showed that the inverse of 
the asymptotic transformation to nice variables exists 
and can be constructed. For our oscillator problem 
it is possible to find a class of transformations to nice 
variables expressed in closed form. The transforma­
tions depend on the function p which is defined by Eq. 
(4), and each particular solution of that equation 
determines a transformation. The recursive solution 
of Eq. (4) in positive powers of E gives the asymp­
totic transformation considered by Kruskal. 

Probably the major complication of Eqs. (17) is that 
the terms to the right of the equality signs are unknown 
functions of unknown functions, and the first step in 
solving the equations is to remove that complication. 
The clue to doing so is obtained by actually carrying 
out the recursive solutions of Eqs. (17) for two or three 
terms of the series, and then to notice that the de­
pendences of these terms on their arguments can be 
represented as follows: 

Z(y, v) = {Zl(y, v), Zz<y, v)} 

= {V/l(t, v), t}, 

<D(y, v) =/2(t, v), 

b[Z(y, v)] = {Zl(y, v)kl(t), I} 

= {V/l(t, v)kl(t), I}, 

w[Z(y, v)] = k2(t). 

(18) 

The next step is to realize that these special forms of 
the unknown functions are completely consistent 
with Eqs. (17) and with the periodicity conditions. 
We now take Eqs. (18) as a special ansatz for finding a 

class of particular solutions of Eqs. (17). By substitut­
ing Eqs. (18) into Eqs. (17) we obtain the following 
equations for 11(t, V),/2(t, v), kl(t), and k2(t): 

E oft + tp Ofl = Efl[kl(t) _ din 0 cos2 v], 
at av dt 

E ~; + tp ~2 = k2(t), (19) 

where, as before, 
din 0 . 

tp = - 0 - E -- SIn V cos v. 
dt 

The periodicity conditions on Z and <D require 

11(t, v + 21T) =/l(t, v), 

12(t, v + 21T) = 12(t, v) + 21T. (20) 

We have now replaced the problem of solving Eqs. 
(17) subject to the periodicity conditions on Z and <D 
by that of solving Eqs. (19) subject to the periodicity 
conditions on/} and 12 . By so doing we have achieved 
an enormous simplification. Firstly, Eqs. (19) do not 
involve unknown functions of unknown functions. 
Secondly, the equations for 11 and 12 are not coupled. 
Thirdly, 11' 12' k}, and k2 do not depend on the 
variable v. 

It is convenient to approach the problem of solving 
Eqs. (19) by the method of characteristics. The two 
sets of characteristic equations are 

and 

dv 
E- = tp, 

dt 

dfl = fI[ki _ din 0 cos2 v], (21) 
dt dt 

E(dv/dt) = "t', 

E(dI2/dt) = k 2 • (22) 

We shall solve Eqs. (19) via their characteristic 
equations by first solving them for a special choice of 
O(t), and then generalizing that method of solution to 
include arbitrary choices of O. In determining the 
solutions, for a general 0 as well as for the special 
choice, we shall always take 11,/2' k I , and k2 to be 
0(1) in E, so that they agree with the asymptotic 
treatment given by Kruskal. This will mean that the 
function pet) will be taken as a solution of Eq. (4) 
that is 0(1) in E. However, after the problem has been 
solved with those restrictions, we shall notice that we 
still have valid solutions for 11 '/2' k I , and k2 even if 
pet) is taken to be any particular solution of Eq. (4), 
without regard to its order in E. 
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D. A Special Case 

We can learn how to solve the characteristic 
equations [Eqs. (21) and (22)] with an arbitrary O(t) 
by first solving them with an O(t) for which the 
E(d'Vldt) = 1jl equation is separable. We choose 

o = 1/(B - At), 

where A and B are constants, so that 

dIn 0ldt = AO. 

Then Eqs. (22) take the form 

E d'V = _1_ (1 + EA sin 'V cos 'V), 
dt At - B 

(23) 

E(d!2/dt) = k2. (22') 

The general solutions of these equations are given by 

-1 { tan 'V + E(A/2) } t 'V = tan 
cp(, ) {I - [E(A/2W}f 

_ {1 - [E(A/2)]2}f In (At _ B) = C, 
EA 

1 It !2 - : k2(t') dt' = const, (24) 

where C = const. Thus, the general solution of the 
second of Eqs. (19) is 

!2(t, 'V) = ~ r k2(t') dt' + x[ cp(t, 'V)], (25) 

where X is an arbitrary function. In order to satisfy 
12(t, 'V + 27T) = 12(t, 'V) + 27T, we take X such that 
X(w) = w. (A constant could be added to this, but it 
would be redundant, because of the indefinite integral 
in the expression for 12') Then, in order that 12 be 
0(1) in E, we take k2 such that 

Fklt') dt' = {1 - [E~A/2)]2}! In (At - B) + EF2(t), 

where F2 is an arbitrary function that is 0(1) in E. The 
expressions for 12(t, 'V) and k2(t) are then 

!2(t, 'V) = tan-1 { tan 'V + E(A/2) } + F (t) 
{1 _ [ECA/2)]2}! 2, 

k2(t) = -{I - [E(A/2)]2}! _1_ + EF~(t). (26) 
B - At 

In order to find 11 and kl' we must integrate Eqs. 
(21). For the 0 given by Eq. (23), those equations 
can be written as 

E d'V = _1_ (1 + EA sin 'V cos 'V), 
dt At - B 

diIJdt = iI[k1(t) - AO cos2 'V]. (21') 

The first' of these equations has already been solved 
[Eqs. (24)]. Using that solution, we rewrite the 
second equation as 

d In!l/dt = k1(t) - G(t, C), 
where 

AO 
G(t, C) = { 2}f t 2' 

1 + {-E(A/2) + {1 - [E(A/2W}! tan [ C - 1 - [E~A/2)] IO(t')dt']} 

The general solution of this equation is given by 

In!1 - f{k1(t') - G[t', cp(t, 'V)]} dt' = const. 

The integral involving G can be brought into a stand-

ard form17 by changing the variable of integration 
from t' to 

co = cp(t, 'V) _ {I - [E~A/2)]2}!f'O(t") dt". 

The result is 

fG[t" cp(t, 'V)] dt' 

I
w COS2 co 

= ~ {I + [E(A/2)t} cos2 co + {1 - [E(A/2)t} sin2 co - 2[E(A/2)]{1 - [E(A/2)]2}f sin co cos co 

where {/ 2}! t 
W = cp(t, 'V) - 1 - [E~A 2)] I O(t') dt' 

= tan-1 { tan 'V + E(A/2) }. 
{I - [E(A/2)]2}! 

Remembering that any function of cp(t, 'V) may be 
added to the integral, we can write the value of the 

17 W. Gr6bner and N. Hofreiter, Integraltafel, Erster Teil: 
Unbestimmte Integrate (Springer-Verlag, Vienna, 1961), 3rd ed., 
p.124. 



                                                                                                                                    

INV ARIANTS AND TIME-DEPENDENT HARMONIC OSCILLATORS 1981 

integral as 

fG[t', ~(t, v)] dt' 

Aft = "2 O(t') dt' + tIn (cos2 W 

+ {-E(A/2) cos W + {I - [E(A/2)]2}! sin W}2) 

= ~ ftO(t') dt' + tIn [ 1 + tan
2 

v J. (27) 
2 1 + tan2 W 

Thus the general solution of the first of Eqs. (19) is 

Inf1 = f{k1(t') dt' - G[t', ~(t, vm dt' + X[~(t, v)] 

= fk1(t') dt' -1 fO(t') dt' 

[
1 + tan

2 
v ] - tin 2 + X[~(t, v)], 

1 + tan W 

where X is an arbitrary function. In order to satisfy 
f1(t, v + 27T) = f1(f, v), and simultaneously to make 
f1 be 0(1) in E, we must take X to be a constant func­
tion: 

Inf1 = {kit') dt' -1 fO(t') dt' 

- t In [ 1 + tan
2 

v J. 
1 + tan2 W 

We now introduce another function, F1(t), such that 

ft Aft 
k1(t') dt' = "2 O(t') dt' + In FtCt), 

where F1(t) is an arbitrary function that is 0(1) in E. 

The expressions for flU, v) and k1(t) are then 

f1(t, v) = FtCt)[l + tan
2 WJl 

1 + tan2 v 

(

1 + { tan v + E(A/2) }2)! 
{I - [E(A/2)]2}! 

= F1(t) 2' 
l+tanv 

k1(t) = ! A + din F1 . 
2 B - At dt 

(28) 

Thus, with Eqs. (26) and (28), we have solutions of 
Eqs. (19) and (20) for our special O. We shall generalize 
these solutions to a wider class of solutions that are 
also valid for an arbitrary O. 

E. 11,[2' k1' and k2 for Arbitrary n 
We now turn to the solution of Eqs. (19) for 

arbitrary 0 and, as with the special case, work with the 
characteristic equations, Eqs. (21) and (22). The 
initial step is to generalize the first of Eqs. (24) to 
find a function ~(t, v) such that ~(t, v) = C = const 
is an integral of E(dvjdt) = 'If. This is equivalent to 

requiring ~(t, v) to satisfy 

o~ o~ 
E- + 'If-=O. 

ot ov 
(29) 

It is convenient to replace the variable v by u = tan v, 
so that Eq. (29) becomes 

E o~ _ [0(1 + u2
) + €U d In 0Jo~ = O. (30) 

ot dt OU 
As a generalization of the first of Eqs. (24), we let 
~(t, v) be of the form 

~(t, v) = tan-1 ( u + Eg1(t) ) 
{I - [Eg2(t)]2}! 

+ .~ F{1 - [Eg3(t'W}!0(t') dt', 

where gl, g2' and g3 are functions to be determined 
such that ~ satisfies Eq. (30). If we substitute ~ into 
Eq. (30) and clear of fractions, we obtain a quadratic 
expression in u that must vanish. Setting the coeffi­
cients of 1, u, and u2 equal to zero separately, we 
obtain three equations for gl' g2' and g3. After some 
manipulation, we find that these functions can be 
replaced by the single function pet) defined by Eq. (4). 
The final expression for ~(t, v) in terms of pet) is 

~(t, v) = tan-1 [p2( 0 tan v - E d ~~ P) ] 

+ ~ Fp-2(t') dt', (31) 

where p is any particular solution of 

E2p" + 02(t)p - p-3 = O. (4) 

The particular solution of Eq. (4) that appears in the 
first of Eqs. (24) is 

p = {I - [E(A/2)]2}-!(B - At)!. 

The determination of f2 and k2 now proceeds 
exactly as in the special case. The general expression 
for 12 is given by Eq. (25), and we again take X such 
that X(w) = w. Assuming for the moment that pet) 
is 0(1) in E, we choose k2 such that); is 0(1) in E also: 

Fk2(t
l

) dt' = - Fp-2(t') dt' + EF2(t), 

where F2(t) is an arbitrary function that is 0(1) in E. 

Then the final expressions for f2(t, v) and k2(t) are 

f2U, v) = tan-1 [p2( 0 tan v - E d ~~ P) ] + F2(t), 

k2(t) = - p-2(t) + EF~(t). (32) 

Even if we drop the requirement that pet) and F2(t) 
be 0(1) in E, Eqs. (32) represent a valid solution of the 
second of Eqs. (19), with the correct periodicity 
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condition on f2(t, '1'). We do drop that requirement 
and thereby obtain a more general solution. 

We now determine fl and kl . Using the solution 
of the €(d'l'/dt) = tp equation, we write the second of 

As in the special case, the solution of this equation is 
given by 

In!l - f{kl(t') - G[t', rp(t, v)]} dt' = const. 

The integral involving G[t', rp(t, '1')] can be represented 
by a formula similar to Eq. (27), which holds for the 
special case. In particular, it can be represented by 

fG[t" rp(t, '1')] dt' = frl(t') dt' 

+ tin {cos2 W + [-r2(t) cos W + r3(t) sin W]2}, 

where 

1 It W = rp(t, '1') - ~ p-2(t') dt', (33) 

and where'l"2' and'3 are functions to be determined. 
By differentiating this formula and clearing of 
fractions, we obtain a homogeneous quadratic equa­
tion in sin Wand cos W. Satisfying the equation 
separately for the coefficients of sin2 W, sin W cos W, 
and cos2 W, we obtain equations for '1, '2' and '3' 
After some manipulation, we find that the integral 
can be represented in terms of pet), with no further 
need of '1, '2' and '3' The result is 

fG[t" rp(t, '1')] dt' = In 0 - tin p-2 

{ [
din p _. ] 2} + tIn cos2 W + 0-2 

€ dt cos W + P 2 sm W . 

(34) 

Using this formula, we can now write the general 
solution of the first of Eqs. (19) as 

In!l = f{kl(t') - G[t', rp(t, v)]} dt' + X[rp(t, '1')] 

= fkl(t') dt' - In 0 + tIn p-2 

- t In {cos2 W + 0-2 
[ € d ~~ p cos W 

+ p-2 sin W r} + X[rp(t, '1')] 

= fkl(t') dt' - In 0 + tin p-2 

[
1 + tan

2 
'I' ] - tin 2 + X[rp(t, '1')], 

1 + tan W 
(35) 

Eqs. (21) as 

where 

d In!l = kl(t) - G(t, C), 
dt 

where X is an arbitrary function. As in the special 
case, we take X to be a constant function, and we 
choose kl such that 

fkl(t') dt' = In 0 - tin p-2 + In Fl(t), 

where Fl is an arbitrary function. We no longer require 
p, Fl,fl' or kl to be 0(1) in E. The final expressions 
forfl(t, '1') and kl(t) are 

{
I + tan2 W}t 

!l(t, '1') = Flt) 2 
1 + tan 'I' 

{
I + [p2( 0 tan 'I' - E d ~~ P) T}t 

= Fl(t) 2 ' 
1 + tan 'I' 

(36) 

F. The Invariant 

The transformation from x = (q,p, t) to nice 
variables Z = (Zl' Z2) and q;, which is defined by Eqs. 
(9), (13), (18), (32), and (36), can now be written as 

Zl = Fl(t)0(t){q2 + l[ P - Eq d ~~ pTt. 

(37) 

q; = tan-l [p2(~ - € d ~~ P) ] + F2(t). 

The rings, defined by z = const, are simply ellipses 
in the planes defined by t = const. The inverse 
transformation, from the nice variables to x, is 

Zl 
q = Xl(z, q;) = ± FlO[l + tanZ (q; _ Fz)]t' 

Z{€ ~ + p-z tan (q; - Fz) ] 

P = X 2(z, q;) = ± FlO[l + tan2 (q; _ F2)]t 

(38) 

At this point it is easy to calculate the invariant I by 
means of Eq. (15a). The result is 

I_!(~)2 
- 2 FlOp' 
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or, expressed in terms of q and p, 

1= t[p-2q2 + (pp - ep'q)2]. (3) 

Although, in order to satisfy the requirements of 
Kruskal's asymptotic theory, we originally assumed 
Q to be real, it is clear that the derivation of the 
invariant in no way depends on that. As a matter of 
fact, it is easy to verify dI/dt = ° for the general case 
of Q, q, and p complex, with any particular solution 
of Eq. (4), by differentiating Eq. (3), using Eqs. (5) 
to eliminate dq/dt and dp/dt, and using Eq. (4) to 
eliminate d 2 p/dt2

• We shall see later that I is also an 
invariant of the quantum time-dependent harmonic 
oscillator even if Q is complex. Throughout the 
remainder of this paper, we shall allow Q to be 
complex, except where the contrary is explicitly 
stated. 

ill. GENERAL DISCUSSION OF I AND p 

A. A Generating Function 

Having found the explicit form of the invariant I, 
it is possible to define a transformation to new canon­
ical variables in which the new momentum is the 
invariant itself. A generating function of the canonical 
transformation can also be found. Is KruskaP3 showed 
that the new canonical coordinate Q and its conjugate 
momentum P can be taken as 

and P in terms of q, Q, and t: 

p = p-2q(epp' - tan Q), 

P = tp-2q2(l + tan2 Q). 

When that is done, we find that a suitable generating 
function and new Hamiltonian are 

F(q, Q, t) = -tp-2q2(tan Q - epp'), 

K = (1/ e) p-2p. (41) 

Equation (4) is necessary in deriving this expression 
for K. Since K does not involve Q, we see again that P 
is an invariant provided that p satisfies Eq. (4). 
Hamilton's equations of motion written in terms of 
Q and Pare 

dQ aK 1_2 
-=-=-p, 
dt ap e 

dP = _ aK = 0. 
dt aQ 

(42) 

It is interesting that the first of these equations can be 
written as 

This is of the same form as the equation expressing 
conservation of angular momentum for a particle of 
mass e moving in an axially symmetric force field, if 
we interpret (pit p) as a generalized radius, Q as a 
generalized angle, and P as a generalized angular 

(39) momentum. 

[The arbitrary function F2(t) has been arbitrarily set 
equal to zero.] It is simple to check that the Poisson 
bracket of Q with P satisfies 

[Q,P] = 1 

for any pet), even if pet) does not satisfy Eq. (4). 
The transformation to the variables Q and P can be 

generated by a function F(q, Q, t) by the following 
schemeI9 : 

p = aF/aq, 

P = -(aF/aQ), 

K = H + (aF/at), 

(40) 

where K is the Hamiltonian appropriate to the new 
canonical variables. The first two of these equations 
may be integrated to give F(q, Q, t) by expressing p 

18 More than one generating function can be found, one of which 
is given in Ref. 1. A much simpler generating function is given in the 
present paper. 

11 H. Goldstein, Classical Mechanics (Addison-Wesley Pub!. Co., 
Inc., Cambridge, Mass., 1950), p. 240. 

B. Interpretation of I 

To within a constant factor, the invariant I is the 
most general invariant of a time-dependent harmonic 
oscillator that is a homogeneous quadratic form in q 
and p. This is because there is a two-parameter family 
of functions pet) that satisfy Eq. (4). By writing the 
most general such invariant in terms of two linearly 
independent solutions,/(t) and get), of 

2 d2q 2 
e dt2 + Q (t)q = 0, (43) 

and then using the equivalence between I and the 
general homogeneous quadratic invariant, it is possible 
to write the general solution of the nonlinear equation 
for p(t) in terms of l(t) and get). 

We can write the general solution of Eqs. (5) in 
terms of I and g as 

q = Dd+ D~, 
p = e(D1f' + D~'), 
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where Dl and D2 are arbitrary complex constants. 
Solving these equations for Dl and D2 in terms of q, 
p,/, and g, we obtain 

Dl = (E(].)-l(Eg'q - gp), 

D2 = (E(].)-l(fp - Ej'q), 

where (]. is a constant (the Wronskian) defined by 

(]. =/g' - gj'. (44) 

U sing these expressions for the constants Dl and .D2 , 

we can write the most general invariant that is a 
homogeneous quadratic form in q and p as 

A2Di + B2D~ + C2D1D2, 

where A, B, and C are arbitrary complex constants. 
The allegation is that this is proportional to I. That is, 

A2 Di + B2 D; + C2 D1D2 = 2E21, 

where E is another arbitrary complex constant. By 
expanding both sides of this equation and comparing 
terms, it is seen that the equation is indeed correct, 
provided that A, B, C, and E are related by 

and provided that p is given by 

where 

Yl = ±1 
and 

Y2 = ±1. (45) 

This is the general solution of Eq. (4), written in 
terms of /(t), get), and the constants (A/E), (B/E) , 
Yl' and Y2' In Sec. IV we shall use Eq. (45) to work 
some examples explicitly. 

Before leaving the question of the interpretation of 
I, we make note of an interesting connection between 
the classical time-dependent harmonic oscillator and 
the Schrodinger equation. Equation (43) is of the same 
form as the time-independent, one-dimensional 
Schrodinger equation if we let t represent the spatial 
coordinate and q represent the wavefunction. For 
bound states 0 is imaginary, and for continuum states 
o is real. Thus, the invariant I specifies a relation 
between the wavefunction and its first derivative. 

C. The Adiabatic Invariant Series 

It is possible to solve Eq. (4) recursively to give p 
as a series in positive powers of E2 or (1/E2). If we take 
that solution in positive powers of E2 whose leading 
term is O-i, substitute it into Eq. (3), and expand the 
result in powers of E, then we obtain the usual adia­
batic invariant series. As we shall see in Sec. IV, 
there are examples in which the solutions of Eq. (4) 
that are 0(1) in E can also be obtained in analytic, 
closed form. In some examples at least, the analytic 
solutions have series expansions in positive powers of 
E2 which are convergent. Sometimes the radius of 
convergence is even infinite, as is the case when the 
analytic solution is a polynomial in E2. When there is a 
convergent series expansion of that p which approaches 
O-i as E approaches zero, then the adiabatic invariant 
series is a convergent expansion of an exact irivariant, 
usually with a different radius of convergence. It 
would be interesting to know how general these 
results are. In any event they give new insight into the 
nature of the adiabatic invariant series. 

The recursive solution of Eq. (4) in positive powers 
of E2 whose leading term is O-i is given in the Appendix 
to order E6. 

IV. EXAMPLES 

In this section we use Eq. (45) to calculate p 
explicitly for some soluble cases. 

A. n = const 

We take as the linearly independent solutions of 
Eq. (43): 

/= sin (~ t), g = cos (~ t). 
The Wronskian is 

(]. = -(Oj€), 

and the general solution for p is 

p = y10-
1
{ (~r cos

2 (~ t) + (~)2 sin
2 (~ t) 

+ 2Y{ (~r (~r -02r sin (~ t) cos (~ t)t 
If we want p to be 0(1) in E, then we must take 

(A/E)2 = (B/E)2 = ±O. 
In that case p becomes 

p = Yl(Y20 )-!. 

B. n = br1 

In this case we take the linearly independent solu­
tions of Eq. (43) to be 

/= ti+.<, g = ti-A, 
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where 

The Wronskian is 
IX = -2A, 

and the general solution for p is 

P = Yl(2d)-1{ (~rtl-2A + (~ft1+2A 

+ 2Y{ (1f (~r -(2d)2]\( 

For € < 2b, A is imaginary, so that 

t2A = ti21AI = ei21A/ln t. 

If we want p to be 0(1) in €, then we must take 

AjE = BjE = 0, 

in which case p becomes 

p = Yli!+hb-!-[I - (€/2b)2]-lt!-. 

C. n = btml2, m ¢ -2 

The solution of this example is in terms of Bessel 
functions. 20 We take the f and g to be 

f = t!-Jp(y), g = t!-Np(y), 
where 

y = 2b t(m+2)/2 
€(m + 2) 

and 
f3 = I{(m + 2). 

The Wronskian is 

0( = (m + 2)/7T, 

and the general solution for pis 

p = Yl €(m 7T+ 2) t!-{ (~)2N~(Y) + (~)2J~(Y) 

+ 2Y{ (~r (~)2 - €2(m7T~ 2)]!-JP(Y)Np(y)t 

As € approaches zero, y approaches infinity. By using 
the asymptotic forms of Jp and Np , we find that we 
must take 

(A/E)2 = (BjE)2 = ±[€(m + 2)]/7T 

if we want p to be 0(1) in €. In that case p becomes 

p = y{€(:2: 2)]\!-[H~1)(Y)H~2)(y)]!-, (46) 

20 E. Jahnke et al., Tables of Higher Functions (McGraw-Hili Book 
Company, New York, 1960), 6th ed. 

where 

H~l) = Jp + iNp and H12) = Jp - iNp. 

We obtain an interesting specialization of Eq. (46) 
if we choose 

m 1 -=----1, n=0,±1,±2,"', 
2 2n + 1 

so that 0, f3, and yare given by 

o = bt-2n/(2n+1), f3 = n + 1, 

Y = ~ (2n + 1)t1/(2n+1). 
€ 

Then Eq. (46) becomes 

P = YIAb-!-t n/(2n+1) IG(t, €)12, 

where 

G(t, €) = [i(-l)k (n + k)! 
k=O k! (n - k)! 

x ( € )k t-k/(2n+1)]!-. 
2ib(2n + 1) 

This p is a polynomial in €2 and, therefore, its expan­
sion in powers of €2 has an infinite radius of conver­
gence. 

V. QUANTUM SYSTEMS 

In this section we still consider systems whose 
Hamiltonians are given by Eq. (1), but we now require 
that q and p satisfy the commutation relation 

[q,p] = iii. (2) 

By using this commutation relation, it is straight­
forward to show that the invariant I, now considered 
as an operator, is also a constant of the motion for 
the quantum system for any function p that satisfies 
Eq. (4). That is, I satisfies 

dJ oJ 1 
dt = at + iii [1, H) = 0. (47) 

Therefore, I has eigenstates whose eigenvalues are 
time-independent. 

We now restrict attention to the special situation in 
which p(t) is a real function, as is always possible if 
0 2 is real. Tn that case the eigenstates and eigenvalues 
of I can be found by a method that is completely 
analogous to the method introduced by Dirac21 for 
finding the eigenstates and eigenvalues of the Hamil­
tonian for a harmonic oscillator (0 real and time­
independent). We first introduce "raising" and 

21 P. A. M. Dirac, The Principles of Quantum Mechanics (Claren­
don Press, Oxford, 1947), 3rd ed. 
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"lowering" operators, at and a, that are defined by 

t 1 [-1.( , )] a = --t P q - I pp - ep q , 
(21i) 

a = ~ [p-lq + i(pp - ep'q)]. (48) 
(21i) 

These operators satisfy the relations 

[a, at] = 1, 

liaat = 1+ tli. (49) 

The operator a operating on an eigenstate of I 
produces an eigenstate of I whose eigenvalue is Ii 
lower than that of the original eigenstate. Similarly, 
a t acting on an eigenstate of I increases the eigenvalue 
by Ii. Once these properties are established, the 
normalizability of the eigenstates of I can be used to 
demonstrate that the eigenvalues of I are (n + t)li, 
where n is zero or a positive integer. Letting In) 
denote the normalized eigenstate of I whose eigenvalue 
is (n + t)li, we can express the relation between 
In + 1) and In), to within an arbitrary time-dependent 
phase factor, as 

In + I) = (n + I)-tat In). (50) 

The condition which determines the state whose 
eigenvalue is tli is 

a 10) = O. (51) 

The wavefunction in the q representation associated 
with the state whose eigenvalue is iii can be calculated 
easily. Denote that wavefunction by 'Yo. It is deter­
mined by the differential equation that is obtained by 
writing Eq. (51) in the q representation: 

{p-Iq + i[ -ilip(ojoq) - ep'q]}'Yo = O. 

The normalized solution of this equation is 

'Yo(q, t) = ei6°(7T'lil)-1 exp [ - 2~:2 (1 - iepp')} 

(52) 

where 150 is an arbitrary real quantity that may depend 
on t but is independent of q. 

By means of Eqs. (49), we can use operator tech­
niques to calculate the expectation value of the 

Hamiltonian in a state In). The result is 

It is interesting to note that the expectation values of 
H are equally spaced at every instant and that the 
lowest value is always obtained with n = 0, just as 
with the harmonic oscillator. 

All of the quantum-mechanical results reduce to the 
usual ones for a harmonic oscillator if we take Q to be 
real, positive, and constant, and take p = Q-t, so 
that 1= eHjQ. A further and more complete discus­
sion of the application of the invariant 1 to quantum 
systems will be given in a later paper.15 

APPENDIX: SERIES FOR p IN POWERS OF £2 

The recursive solution of Eq. (4) in positive powers 
of e2 was carried out and checked to order ee with 
the IBM 7094 computer, using the IBM. FORMAC 

computing system. The leading term was chosen to be 
Q-t. The result is 

p = Po + P2e2 + p,E' + Peee + .... 
In the following expressions for the coefficients, 
derivatives with respect to t are indicated by the 
notation 

Q(n) = dnQjdtn. 

The coefficients are 

Po = Q-t, 

P2 = 'lQ-tQ(2) - l.~ifQ-t-Q(1)\ 

p, = --lilQ-liQ(') + l"sQ-¥Q(3)Q(1) 

- ~giQ-l.·Q(2)Q(1)· + 1229SQ -¥Q(2)' 

+ HtQ-¥Q(1)', 

Pe = l~SQ-¥Q(e) - IlsQ_l.7Q(S)Q(1) 

- IlsQ_l:Q(4)Q(2) + ~aQ-¥Q(4)Q(1)' 
+ rg~Q-¥Q(3)Q(2)Q(1) 
- 2N/Q-¥Q(3)Q(1)3 _ 15\Q-¥-Q(3)' 

+ 2 ~~lP-Q- ".3Q(2)Q(1)' 

~ll11i.1"\-¥1"\(2)·I"\(1)· + 1H1.Q--\'!!'Q(2)3 
- 2048:"01 :"01:"01 1024 

_ 2g~~~:z.Q-¥Q(1)6. 
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Representations of the Three-Dimensional Rotation Group in 
Terms of Direction and Angle of Rotation 

MOSHE CARMEU· 
General Physics Research Laboratory, Aerospace Research Laboratories 

Wright-Patterson Air Force Base, Ohio 

(Received 1 March 1968) 

We find the irreducible representations of the three-dimensional pure rotation group by Weyl's 
method, which makes use of the homomorphism of the special unitary group of order two onto the whole 
three~di~ensional. rotati~m ~roup. The repres~ntations are realiz~d, ~owever, in terms of the angle of 
rotatIOn In a specIfied dIrectIon and the spherical angles of the dIrectIOn of the rotation rather than in 
terms of the familiar Euler angles. The results are then compared with those obtained by different methods 
and the advantages of the present technique are pointed out. We also derive the differential operators 
corresponding to infinitesimal rotations about the coordinate axis in terms of the new variables. 

1. INTRODUCTION 

Recently, the irreducible representations of the 
rotation group Oa were given in terms of a param­
etrization of the rotation through the finite angle 
and direction of the rotation.1- 3 The expression 
obtained for the matrix elements of the operator 
exp (bpn • J), 

(ml exp (bpn • J) In), (1.1) 

where J = (J1 , J2 , J3) are the usual infinitesimal 
generators of 0 3 , was shown to be rather simple. In 
Eq. (1.1), 'If' is the angle of rotation in a direction 
specified by the unit vector n, the latter being ex­
pressed by its spherical angles 

n = (sin (J cos cp, sin (J sin cp, cos (J). (1.2) 

Such a parametrization is possible since every rotation 
can be realized as a rotation about some axis through 
a suitable angle 'If'. In all previous discussiqns on the 
representations of Oa the parameters used to be taken 
as the Euler angles. 

The new representation was also shown to be useful 
in discussing the behavior of wavefunctions under 
rotation in a prescribed direction. Presumably, for 
many applications one would prefer a parametrization 
in terms of the new variables instead of the Euler 
angles.2 

Consequently, the orthogonality relations between 
the matrices (1.1) were demonstrated. Also, two sets 
of Hermitian operators with the usual commutation 
relations were introduced and their action on the 
matrices (1.1) was found. 3 

In this paper we deduce the new form by an alter­
native method which was originally suggested by 

• This work was initiated while the author was at the Department 
of Physics and Astronomy, University of Maryland, College Park, 
Maryland. 

1 H. E. Moses, Ann. Phys. (N.Y.) 37, 224 (1966). 
• H. E. Moses, Nuovo Cimento 4OA, 1120 (1965). 
3 H. E. Moses, Ann. Phys. (N.Y.) 42, 343 (1967). 

Weyl and has been widely adopted as a method for 
finding the representations of 0 3 when Euler's angles 
are used.4 The method is based on the fact that Oa is 
homomorphic to the unimodular unitary group of 
order two (SU2), such that to every rotation g E 0 3 

there correspond two matrices =Fu E SU2 and, con­
versely, to every U E SU2 there corresponds some 
rotation g E 0 3 , It thus follows that the description of 
the representation of Oa is equivalent to that of SU2 ; 

a representation g --+ Tg of Oa is single- or double­
valued according to whether or not Tu is equal to 
T_u ·5 

We point out that, by using Weyl's method, one 
can obtain a general invariant result that is a function 
of U E SU2 , valid for any parametrization one uses to 
describe the rotation [see Eq. (3.9) below]. To find 
the representations of 0 3 in terms of the new param­
eters, one has merely to express u in terms of these 
param~ters, as is the case when the Euler angles are 
employed. This, indeed, can easily be done (see Sec. 
2 below). Thus the present method is much easier for 
the interested physicist to follow than the previous 
works1- a since it is most closely related to the usual 
derivation of the representation, such as Wigner's,4 
when the Euler angles are used; the two forms be­
come two particular realizations of the same represen­
tation. 

In addition, by having the results as functions over 
the group SU2 , certain relations will be obtained which 
are then invariant under change of the parameters. As 
an example, the orthogonality relations between the 
matrix elements of the irreducible representation can 
be written as an invariant integral6 over SU2 [see Eq. 

• E. P. Wigner, Group Theory and its Applications to the Quantum 
Mechanics of Atomic Spectra (Academic Press Inc., New York 
1959). ' 

5 M. A. Naimark, Linear Representations of the Lorentz Group 
(Pergamon Press, Inc., New York, 1964). 

6 A. Weil, Actualites Sci. Ind., No. 869 (1938). [This article was 
also published as a book: L'integration dans les groupes topologiques 
et ces applications (Hermann & Cie., Paris, 1940).] 

1987 
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(3.15)]. Hence the relations are valid for any param­
etrization, and one does not have to prove them 
separately for the new variables, as is done in Ref. 3. 

After mentioning some elementary facts about the 
rotation group in Sec. 2, we find the explicit form of 
the unitary matrix U E SU2 corresponding to a rotation 
in a specified direction in terms of 1p, e, and 4>. Typi­
cally, the unitary matrix is expressed in terms of 
Euler's angles.4.5 

In Sec. 3 we derive the matrix elements of the irre­
ducible representation in terms of 1p, e, and 4>. For 
completeness, we briefly review the method for deriving 
these matrix elements as functions of U E SU2 , but 
after that we substitute for U its expression as a function 
of 1p, e, and 4>. The matrices obtained are then 
compared with those obtained in Refs. 1 and 2. 

Finally, in Sec. 4 we derive the differential operators 
corresponding to infinitesimal rotations about the 
Ox1 , Ox2 , and OXs in terms of the new variables. 
The corresponding operators when Euler's angles are 
used are well known in the literature. We here use a 
method similar to that of Gel'fand and Shapiro.7•s 

Throughout this paper we will adopt the notation 
and terminology of Naimark.5 

2. PRELIMINARIES 

An orthogonal matrix describing a rotation with 
angle "p about some direction n is given by2.9 

gr. = ~,. cos 1p + n,.11.(1 - cos 1p) - E,stllt sin 1p, 

(2.1) 

where n is given by (1.2) and r, s, and t run from 1 to 
3. Rotations gl(1p) , g2(1p) , and gS(lp) around OX1, 
OX2, and OXa are obtained from (2.1) by putting the 
proper values of e and 4>.10 The infinitesimal matrices 
gr corresponding to rotations about the axis Ox, are 
defined byll 

g, = [dd gr( "P)] 
1p tp=o 

(2.2) 

71. M. Gel'fand and Z. Va. Shapiro. Usp. Mat. Nauk 7,3 (1952), 
Am. Math. Soc. Transl. Ser. 2 .• 2, 207 (1956). 

81. M. Gel'fand. R. A. Minlos. and Z. Va. Shapiro. Representa­
tions 01 the Rotation and Lorentz Groups and their Applications 
(Pergamon Press. Inc .• N~w York •. 1963). . 

• The direction of rotation here IS taken opposite to that of Refs. 
1-3 and is in accordance with Ref. 5. 

10 These matrices are given by 

gl(tp) = (~ c~~ tp -s~n tp) • .... 

o sm tp cos tp 

11 The gr are related to gr(tp) by gr(1p) = exp (1pgr). and are given by 

gl= G ~ -D· .. ·· 

and satisfy the commutation relations 

[gr' gs] = Erstgt · (2.3) 

We denote a representation of Os in an n-dimen­
sional Euclidean space R by g ~ Tg and for con­
venience12 we put 

(2.4) 

The basic infinitesimal operators of the representation 
are then obtained by 

Ar = [dAre 1p)] . (2.5) 
d1p tp=O 

A representation of Os is uniquely determined by its 
basic infinitesimal operators Ar • The determination of 
all the finite-dimensional representations of Os is 
based on the fact that the operators Ar satisfy the same 
commutation relation that exists among the infinitesi­
mai matrices gr: 

(2.6) 

The Ar are skew-Hermitians, A; = -Ar' since, 
without loss of generality, every finite-dimensional 
representation of Oa can be considered to be unitary. 

Defining 

H'f = iAl ± A 2 , H3 = iAs, (2.7) 

one finds that 

[H'f, Ha] = ±H'f, [H+, H_l = 2Hs , 

Hl = H_, H~ = Ha. (2.8) 

The problem then reduces to the determination of 
H ,H3 satisfying conditions (2.8). This is answered 
by'fthe followings: Every finite-dimensional representa­
tion of Oa is uniquely determined by a nonnegative 
integer or half-integer j, the weight of the represen­
tation. The space of the representation corresponding 
to such a number j has the dimension 2j + 1; the 
operators H'f' Ha of this representation are given 
relative to its canonical basis f-; , f-i+1' ... ,jj by 

H+fn = an+1fn+l' H-fn = anfn-l, Hafn = nfn, 

an = [(j + n)(j - n + 1)]1, (2.9) 

where n = -j, -j + 1," ',j,13 

12 Ar(tp) are called the basic one-parameter groups of the given 
representation and define one-parameter groups of operators that 
satisfy A.(tp,)Ar(tp.) = A.(tpl + tp.); they are differentiable ~unctions 
oftpandmaybeexpandedasAr(tp) = exp (tpAr). where ArlS defined 
by Eq. (2.5). . 

13 It also follows that for each j there corresponds an irreducI~le 
representation of 0 3, If the operators H"F and !f3 of a representation 
of 0 3 in a (2j + l)-dimesional space are given relative to .so~e 
basis I-I. 1-1+1 •...• jj. then by Eqs. (2.9). that representation IS 
irreducible. 
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We now find the unitary matrix U corresponding to 
the rotation g, Eq. (2.1). They are related by14 

grs = t Tr «(1rU(1sUt ), 

U = T (1 + (1r(18gr.)/2(1 + Tr g)!, 

where (1r are the Pauli matrices 

(2.10) 

(2.11) 

(11 = (0 1) (12 = (0 i) 
1 0' -i 0 ' (13 = (~ _~). 

(2.12) 
Using Eq. (2.1), a direct calculation gives 

U= T 
(

cosY!. + i sin J!. cos e 
2 2 

i sin J!. sin ee -it/> 
2 

i sin J!. sin eeit/> ) 

cos J!. -~ sin J!. cos e . 
2 2 

(2.13) 

This is the unitary matrix U E SU2 corresponding to a 
rotation with angle 1jJ around the direction n specified 
by e and 1>. The corresponding matrix when Euler's 
angles are employed is weIl known in the literature.5 

It will be noted that u( -1jJ, e, 1» = u-1(1jJ, e, 1». 
The unitary matrices U1 (1jJ) , U2 (1jJ) , and U3(1jJ) , 

corresponding to the rotations gl(1jJ), g2(1jJ) , and 
g3(1jJ) around the axis of coordinates, are obtained 
from (2.13)15: 

( 

cos ~ i sin ~)\ 
u1(1jJ) = T , •• 1jJ tp 

I sm- cos-
2 2 

( 

tp . tp) 
cos"2 -sm"2 

u2(tp) = T , 
sin J!. cos J!. 

2 2 

(2.14a) 

(2.14b) 

(2. 14c) 

Using these matrices, the operators Ar(tp) of SU2 will 
be determined in the next section. 

3. MATRIX ELEMENTS OF AN IRREDUCIBLE 
REPRESENTATION 

A matrix u of SU2 can be considered as that of a 
linear transformation of the space of all pairs of 

14 J. N. Goldberg, A. J. Macfarlane, E. T. Newman, F. Rohrlich, 
and E. C. G. Sudarshan, J. Math. Phys. 8,2155 (1967). 

15 The infinitesimal matrices Ur corresponding to rotations around 
Oxr , 

Ur = [dur(1p)ld1p]",=o, 

are related to the Pauli matrices by Ur = Of (if2)o •. 

complex numbers at, ~2): 
2 

fP = 1Upq~q (p = 1,2). (3.1) 
q=1 

A representation of SU2 can be obtained if one 
considers several pairs (~i, m, ... , (~~, ~~) and 
forms all products ~fl ... ~:k, letting PI' ... ,Pk take 
the values 1,2, independently.s Under the transforma­
tion (3.1), this product transforms like 

(3.2) 

The products ~p ... ~:k may be considered as a 
vector in the linear space Rk of a1l2k complex numbers 
~Pl ... Pk. The linear transformation T~k) of the space 
Rk is then given by 

2 

t PI ... Pk = 1 UP1Q1 ·• •• UPkqk~I" . qk. (3.3) 
Qt," . ,(]k=l 

The correspondence u ....... T~k) is a representation of 
SU2 , not irreducible in general, since the subspace 
Sk of Rk of all symmetrical vectors ~ is invariant with 
respect to all the operators T~k). The correspondence 
u ....... T~k) is irreducible, however, in the space Sk' We 
denote this representation by Zk ,16 

An equivalent realization of the representation Zk 
is obtained if one identifies the space Sk with the 
(k + I)-dimensional space of homogeneous poly­
nomials P(Z1, Z2) of degree k in the two complex 
variables Z1 and Z2 and sets up a one-to-one corre­
spondence between ~ of Sk and P(ZI , Z2) in the form 

2 

P(Z1' Z2) = 1 ~Pl'" PkZP1 ••. ZPk' 
Pl~ •.• ~Pk=l 

(3.4) 

The operator T~k) for this new realization of the space 
Sk is then given by 

T~)P(Z1' Z2) = p(z~, z;), 
2 

z~ = .2 UpqZ p (q = 1,2). (3.5) 
p=1 

Introducing a new variable Z = Z1/Z2, the polynomial 
P(ZI, Z2) can be written as z~p(z), where p(z) is a 
polynomial in z of degree not exceeding k. The 
operators T~k) of the representation Zk are then given 
by 

(3.6) 

This relation gives, in particular, the operators 

16 It will be noted that Zk is the spinor representation of weight 
k12. For more details see Ref. 5. 
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Ar(1p) = Tu,{tp) when the matrices ur(1p), Eqs. (2.14),17 
are used.1S 

It follows that every irreducible finite-dimensional 
representation of SU2 is uniquely determined by 
some nonnegative integer or half-integer j = kj2, the 
weight of the representation.19 The functions 

j-n 

inez) = (_I)i-n [(. _ )~ (. ),]t' (3.7) 
J n.J+n. 

where n = -j, -j + 1, ... ,j, form a canonical 
basis for the representation Zk in the space Sk .20 Using 
Eq. (3.6), one finds 

i 

T'!:>Jn(z) = ! T;" .. (u)im(z), (3.8) 
m=-; 

where T;" .. (u) are the matrix elements of the operator 
Tu of the irreducible representation of weight j 
relative to the canonical basis, which corresponds to 
an arbitrary rotation g. Its explicit expression is21 

Ti (u) = (_1)2i-m-n[(j - m)! (j + m)!]t 
mn (j _ n)! (j + n)! 

X ~ Ci-nCHn ua ui-m-aui-n-a m+n+a 
k. a i-m-a 11 12 21 U22 , 

(3.9) 

where the summation runs from a == max (0, -m - n) 
to min (j - m, j - n), and C;:. denotes the number of 
combinations of m elements from n: 

C:;. = n!j(n - m)! mL 

In Eq. (3.9) the indices m and n take the values -j, 
-j + 1, ... ,j;j = 0, !, 1, !, 2, .... 

11 For the determination of the operators A,(1p), one needs u,(1p) 
only for small values of1p. The signs in (2.14) are determined by the 
conditions lim u,(1p) = 1 when 1p -.. O. Hence the + sign must be 
used. 

18 For example, Aa(tp) is given by 

Aa(tp)p(z) = e-iktp/2p(eitpz). 

The basic infinitesimal operators A, are obtained by differentiating 
such relations with respect to tp and putting tp = O. For Aa, for 
example, one obtains 

AaP(z) = i(Z~ - tk)P(Z), 

Consequently, one obtains 

H+p = -op/oz, 

H_p = Z2(Op/OZ) - kzp, 

HaP = -z(op/oz) + tkp. 

19 Conversely, for any nonnegative integer or half-integer j, 
there exists an irreducible representation of SUa of weight }. A 
representation of weight j can be realized as the representation Zlo' 
where k = 2j; and every finite-dimensional irreducible representa­
tion of SUa is equivalent to one of the representations Zk' 

'0 This can easily be seen by checking that H±f" and Hal" are 
indeed given by Eqs. (2.9) when/" is put for p in the corresponding 
equations of Footnote 18. 

21 It will be noted that T~ .. (-u) = (_1)2IT~ .. (u). Thus the 
representation is single-valued for integer j and double-valued for 
half-integer j. In the sequel the matrix u of Eq. (2.13) will be taken 
with the + sign. 

To find the matrix elements (3.9) in terms of the 
variables 1p, e, and 4>, we simply substitute for UPQ 

their expressions as functions of these variables. These 
expressions were calculated in Sec. 2 and are given 
by Eq. (2.13). We obtain 

T;"n(u) = (_1)2i-m-n[(j - m)! (j + m)!]! 
(j - n)! (j + n)! 

x (cos ~ - i sin ~ cos e f+nei<P(n-m) 

X ~ Ci-nCi+n (1 _ . 2'!f. • 2 e)a k. a ;-m-a sm sm 
2 

( 

• • 1p. )2i-2a-m-n 
X I sm- sm e 

2 
(3.10) 

The matrix T;"n(u) can also be written in the form 

T;"n(u) = (_1)2i-m-n[(j - m)! (j + m)!]t 
(j - n)! (j + n)! 

x (i sin ~ sin ee-;<pr-
n 

( 
1p 1p )m+n 

X cos 2: - i sin 2: cos e S(j, m, n, x), 

where22 
(3.11) 

S(j, m, n, x) 

= 2m- i(j - n)! (j + n)! 

(x + l)a(x _ 1);-m-a 

x! a! (j _ n - a)! (j - m - a)! (a + m + n)! 

and x is defined by 
(3.12) 

x = 1 - 2 sin2 (1pj2) sin2 e. (3.13) 

If the direction of the rotation is reversed, 1p will 
then have to be replaced by -1p in the above formulas 
since u-1(1p, e, 4» = u( -1p, e, 4». The matrix elements 
are then given by 

Ti u-1 = [(j - m)! (j + m)!]t 
mn() ( . _ )' ( . + )' J n. J n. 

X (i sin ~ sin ee-i<Pr-
n 

x (cos~ + iSin~coser+"s(j,m,n,x). 
(3.14) 

This form of the matrix elements was first obtained 
by Moses through different methods. 

22 It will be noted that SU, m, n, x) is equal to the Jacobi poly­
nomial P~p(x) when s = j - t(\m + nl + 1m - ni), IX = 1m - nl 
and f3 = 1m + nl· 
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We conclude this section by pointing out that the 
matrix Tj satisfies the invariant orthogonality relationS 

f T!.n(u)T!~~l(u) du = 2j ~ 1 bjjlbmmlbnnl' (3.15) 

The integral in (3.15) is an invariant integral over 
SU2 , independent of the parametric representation 
of the rotation group. In fact, relations similar to 
(3.15) are valid for any compact group.23 

4. DIFFERENTIAL OPERATORS CORRESPOND­
ING TO INFINITESIMAL ROTATIONS 

We are now in a position to find the differential 
operators corresponding to infinitesimal rotations 
about the coordinate axis, namely, the operators AI, 
A2 , and A3 (see Sec. 2) and, consequently, the oper­
ators H~ , H 3 • These operators are well known in the 
literature when the Euler angles are employed. We 
here apply Gel'fand and Shapiro's method1 to derive 
these operators in terms of the new variables. 

Let g ~ Tg be an irreducible representation of weight 
j of the group 0 3 and let T mn = T/"n be its matrix 
elements. We consider these elements as functions of 
the rotation g, Tmn = Tmn(g). Since g~ To is a 
representation, we have Toa' = ToTo" In terms of 
matrix elements, the last relation is 

j 

TmnCgg') = ! TmzCg)Tzn(g'), (4.1) 
!=-j 

where T mn(gg') are the matrix elements of the operator 

g(tp, e, 1» 

Too" Define a transformation U such that 

Uo·Tmn(g) = Tmn(gg')· 

Comparing Eqs. (4.1) and (4.2), we obtain 
; 

Ug.Tmn(g) = ! Tzn(g')Tm!(g)· 
!=-; 

Furthermore, one can show that 

Uu,Uu- = Uu'g_' 

(4.2) 

(4.3) 

(4.4) 

It thus follows that the transformation Uo' realizes a 
representation of 0 3 in the space of 2j + 1 functions 
of the mth row of the matrix Tg [compare Eq. (3.8)], 
and that the matrix elements of Ug • are T!n(g').24 

To find the operators Ar we take g' as the rotation 
through some angle (J. around the axis OXr and 
expand the relation (4.2) in powers of (J..1.12 Expansion 
of Tmn(gg'), which we denote by Tmn(ip, 0, ¢), gives 

Tmn(ip,O, ¢) = Tmn(tp, e, 1» 

[
OTmn dip oTmn dO oTmn d¢] +(J. ---+--- +--- + .... 

otp d(J. ae d(J. 01> d(J. <%=0 

(4.5) 
To obtain Ar we have to determine 

dip I dOl and d¢ I 
d(J. <%=0' d(J. <%=0' d(J. <%=0 

for each case. 
Now the matrix of the rotation g is a function of the 

angles tp, e, and 1>, which, by Eq. (2.1), has the form 

cos tp sin2 e cos 1> sin 1>(1 - cos tp) sin e cos e cos 1>(1 - cos tp) 

+ sin2 e cos21>(1 - cos tp) - cos e sin tp + sin e sin 1> sin tp 

- sin2 e sin 1> cos 1>(1 - cos tp) cos tp sin e cos e sin 1>(1 - cos tp) (4.6) 

+ cos e sin tp + sin2 e sin2 1>(1 - cos tp) - sin e cos 1> sin tp 

sin e cos e cos 1>(1 - cos tp) sin e cos e sin 1>(1 - cos tp) cos tp 

- sin e sin 1> sin tp + sin e cos 1> sin tp + cos2 e(l - cos tp) 

The matrix of rotation gg' is given by some angles ip, 
0, and ¢ which depend on the rotation angle (J. and 
which are equal to tp, e, and 1> when (J. = O. Ex­
pansion of the matrix gg' in a power series in a. gives 

o d-I gg' = g( tp, e, 1» + (J.{a g dtp 
tp (J. a=O 

og dO I og d¢ I } + -- + -- + .... (4.7) 
oe d(J. a=O 01> d(J. ",=0 

23 See, for example. L. S. Pontrjagin. Topological Groups (Prince­
ton Univ. Press, Princeton, N.J., 1946); M. A. Naimark, Normed 
Rings (P. Noordhotf Ltd., Groningen, The Netherlands. 1959). 

To find Al we identify g' with the rotation with angle 
(J. around OXI given byIO 

gI(a.) = (00

1 

co~ (J. -s~n (J.) 
sin (J. cos (J., 

=G ~ ~) + (J.(~ ~ 
o 1 0 1 

(4.8) 

---
24 The representation g' ~ U., in the space of fUllctions T mz{g), 

1= -j, -j + 1,'" ,j, is irreducible, and the Tm,(g)form a canonical 
basis in this space. Hence the operators H± and H 3 of this representa­
tion satisfy the relation (2.9). See Ref. 7. 
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Therefore 

On the other hand, ggl is given by (4.7) when gl = g'. 
Comparing these two expressions for ggl, we obtain 
equations from which 

can be determined for the case of rotation about OXI' 

We obtain25 

2 sin () cos cp sin ~(-sin () sin cp d;P I 
2 doc a=O 

+ cos () cos cp de I ) 
doc a=O 

+ (-cos J!. + sin2 
() cos2 cp cos ~) dip I = 0, 

2 2 doc a=O 

(4. lOa) 

2 sin () sin cp sin ~ (sin () cos cp d;P I 
2 doc a=O 

+ cos () sin cp de I ) 
doc a=O 

+ (-cos J!. + sin2 
() sin2 cp cos J!.) dip I 

2 2 doc a=O 

= sin ()( cos () sin cp sin ~ - cos cp cos~), (4. lOb) 

() . "Pdel "P. ()dipl 2 cos sm - - + cos - sm -
2 doc a=O 2 doc a=O 

= cos () sin cp sin J!. + cos cp cos J!.. (4.l0c) 
2 2 

25 One obtains nine equations; only three of them are independent. 
Our equations (4.10) are obtained by equating the diagonal elements 
of the matrices (4.7) and (4.9). 

The solution of Eqs. (4.10) is 

d;P I = t cosec f) (cos f) cos cp - cot ~ sin cp) , 
doc a=O 2 

de I = ! (sin cp + cot J!. cos () cos cp) , 
doc a=O 2 2 

-.J! = cos cp sin f). d-I 
doc a=O 

(4.11) 

Using Eq. (4.5), we find 

Al = cos cp sin f) ~, + ! (sin cp + cot J!. cos f) cos cp) ~ 0"P 2 2 of) 

+ t cosec () (cos () cos cp - cot J!. sin cp) ~ . 
2 ocp 

(4. 12a) 

The operators A2 and A3 are found in a similar way: 

A2 = sin cp sin () ~ - ! (cos cp - cot ~ cos f) sin cp) ~ 
0"P 2 2 of) 

+ t cosec f) (cos () sin cp + cot J!. cos cp) ~ , 
2 ocp 

(4.12b) 
01 "P. 0 10 

A = cos () - - - cot - sm f) - - - - . 
3 O"P 2 2 o() 2 ocp (4. 12c) 

Using these results and Eq. (2.7), for H+, H_, and 
H3 we obtain26 

H± = ie±i"'{sin f)~ + !(=Fi + cot~ cos f))~' 
0"P 2 2 o() 

+ l cosec f) (cos f) ± i cot~) a:}' (4. 13 a) 

( 0 1 "P. a 1 0) 
H3 = i cos () o"P - "2 cot 2. sm () o() - "2 ocp . 

(4.13b) 
26 An operator with similar expressions was also introduced in 

Ref. 3, but with no explanation of the way by which they came to it. 
Of course, the operators H± and H., using Eqs. (2.9) and (4.13), 
satisfy the following relations with respect to the canonical basis 
T!n,-i' T:n,-i+l' ... , T!n,i: 

H±T;"n(g) = [(j ± n + 1)(j =F n)]iT!..n±l(g), 

HsT!.n(g) = nT!.n(g)· 
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