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In order to define spinor fields on a space-time M, it is necessary first to endow M with some further
structure in addition to its Lorentz metric, This is the spinor structure. The definition and the elementary
implications of the existence of a spinor structure are discussed. It is proved that a necessary and
sufficient condition for a noncompact space-time M to admit a spinor structure is that M have a global

field of orthonormal tetrads.

INTRODUCTION

It is sometimes convenient to formulate general
properties which any space-time! should have if it is
to be of physical interest. For example, one would
normally reject space-times having closed timelike
curves,? and possibly also those having incomplete
geodesics.® It has been argued,* based on a recent
paper of Aharonov and Susskind,® that another
property we might require of a physically reasonable
space-time M is that M admit globally defined spinor
fields.®* Now, in order that spinors may be defined on
M, it is necessary that M satisfy certain global
conditions.* In the case of space-times (but not, in
general, for other signatures or dimensions), these
conditions have the following consequence: Every
noncompact’ space—time on which spinors may be
defined carries a global field of orthonormal tetrads.
This, our main result, is proved in Sec. II.

In Sec. I we review the definition of a spinor field
and the basic properties of space-times which admit
such fields.

The Appendix contains a proof that every space-
time is paracompact.

* U.S. Air Force Office of Scientific Research postdoctoral
fellow.

By a space-time we understand a mathematical object: a
4-manifold with a C© metric of signature (+, —, —, —).

% See, for example, H. Reichenbach, The Philosophy of Space
and Time (Dover Publications, Inc., New York, 1958), Sec. 21.

3See C. W. Misner, J. Math. Phys., 4, 924 (1963); R. Geroch,
““What is a Singularity in General Relativity?,” Ann. Phys. (N.Y.)
(to be published).

4 R. Penrose, ‘‘The Structure of Space-Time” in Battelle Recontres
in Mathematics and Physics: Seattle, 1967, C. DeWitt, Ed. (W. A.
Benjamin, Inc., New York, 1968).

%Y. Aharonov and L. Susskind, Phys. Rev. 158, 1237 (1967).

¢ Note that we are not concerned with the existence of spinor
fields having special properties, but merely with whether or not the
notion of a spinor field is well defined.

? This assumption is quite reasonable from the physical point of
view because every compact space-time is known to have closed
timelike curves. “Compact” and “‘noncompact” refer, of course,
to the entire 4-dimensional space-time manifold.

I. SPINOR STRUCTURE

Let P be a point of a space-time M. A spinor® at P
consists, at least, of a rule which assigns to each®

orthonormal tetrad w at P an array of complex
numbers &4 B (w), this array given only up to an
over-all sign. The individual numbers in each array
are labeled by indices A4,---,B,---,C,---,
D', ,whoserangeis 1,2. Tocomplete the definition
we must specify how such an array is to change under
a change in the choice of tetrad. Let v and w be two
tetrads at P, and suppose that the Lorentz transforma-
tion L which carries v to w preserves the time direction
and the spatial parity, i.e., that L is in the restricted
Lorentz group £,. Since® the group SL(2, C) of uni-
modular complex 2 X 2 matrices is the universal
covering space of the (doubly connected) group £,
there corresponds to the element L precisely two
elements 4+ U4y of SL(2, C)."® We now require that the
arrays associated with the tetrads v and w be related as
follows:
LB w)y = £UA, - OF e -
U (U R ). (1)

A sign ambiguity still remains in Eq. (1). It is the
condition that this “two-valuedness” can be con-
sistently eliminated over the entire space-time M that
places some restrictions on the global structure of M.

Let us first of all complete our definition of a spinor
at the single point P. Fix a reference tetrad w at P,
We now deal, not with the set ¥ of all tetrads at
P, but rather with the collection ¥ of all pairs (v, «),

8 See, for example, F. A. E. Pirani, in Lectures in General Rela-
tivity, Brandeis Summer Institute in Theoretical Physics, 1964 (Prent-
ice Hall, Inc., Englewood Cliffs, N.J., 1965). See also Ref. 4.

® We shall be concerned only with those tetrads having a certain
preassigned temporal and spatial orientation.

1° This ambiguity in sign cannot be removed in a continuous way.

The situation is similar to the sign ambiguity in choosing a normal
vector field to a M&bius band embedded in Euclidean 3-space.
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where v € ¥ and « is a path in ¥ from » to w.1! The
pairs (v, ) and (u, ) are considered to represent the
same point of ¥ if 4 = v and if the path « can be
continuously distorted into the path 8 while keeping
its endpoints fixed. In other words, ¥ is the universal
covering manifold of the six-dimensional manifold V.
(Intuitively, we may think of ¥ as a collection of
tetrads at P, but such that a tetrad is considered to be a
different object on rotation through 360°, while it is
left unchanged by a rotation through 720°) The
crucial property of ¥ is that any two elements v and w
of ¥ are transformed into each other by a unique
element U4, of SL(2, C). We may now define a
spinor at P as a rule which assigns to each element
v of ¥ an array &4 B/ (v) of complex numbers
such that if v, w e ¥ are related by U4, e SL(2, C),
then

gL B (W) = Uy

(U™ (U B B (). ()

R 2
05 4

This definition would serve also to define spinor fields
over all of Minkowski space, since a tetrad at any
point can be referred to the origin by means of
parallel transport.

Unfortunately, in a general space-time M, it is not
possible to set up a continuous correspondence
between the tangent space of each point of M and that
of a single fixed point P € M. What is required in
order to define spinor fields on M is to do globally
what we have just done locally at P. One must take the
covering space of the 6-manifold of tetrads at each
point of M and then piece together this 4-dimensional
collection of 6-manifolds. The process of “piecing
together” results in a fiber bundle.

Let the space-time M have a given time and space
orientation, and let B be the principal fiber bundle®
of oriented orthonormal tetrads on M. That is, B is a
10-manifold. Each point of B consists of a tetrad at a
single point of M. The group of B is the restricted
Lorentz group £,, while the fiber over a point P € M
is the collectiont of tetrads at P having the prescribed
temporal and spatial orientation. A spinor field
on M could now be defined (up to sign) as a mapping,
with the appropriate transformation properties, from
Binto arrays of complex numbers. To correct the sign
ambiguity, we must have a fiber bundle whose fiber
is not W', but rather the universal covering space ¥

11 Our ¥ is essentially the collection of spin frames at P. See E. T.
Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).

12 See, for example, N. Steenrod, The Topology of Fibre Bundles
(Princeton University Press, Princeton, N.J., 1951).
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of W. A spinor structure’® on M is defined as a second
principal fiber bundle B [with group SL(2, C)] over
M, along with a 2-1 mapping ¢:B — B, such that:

(1) @ maps each fiber of B into a single fiber of B;

(2) ¢ commutes with the group operations. That is,
for each UeSLQ2,C), ¢ U= A(U)- ¢, where
A:SL(2,C)— £, is the covering mapping of the
restricted Lorentz group.’*

A space-time M, if it has any spinor structure at all,
does not have a unique one unless M is simply
connected.

Given a spinor structure B, a spinor field on M may
be defined,'® just as before, as a mapping & of B into
arrays of complex numbers such that & transforms
as in Eq. (2).

The mere fact that a spinor formalism is useful in
some calculations is a rather unsatisfactory reason to
include the existence of a spinor structure among the
“reasonable physical conditions” on space-times.
However, an argument due to Penrose,? based on a
gedanken experiment of Aharonov and Susskind,®
makes the assumption of a spinor structure somewhat
more plausible. The Aharonov-Susskind apparatus
consists of a box which may be separated into two
halves. If we join the two halves together, a current
flows from one half to the other. If we now separate
the halves, rotate one through 360° while keeping the
other fixed, and then rejoin the halves, the direction
of current flow is reversed. Thus the Aharonov-
Susskind boxes behave somewhat like a spinor in that
they are capable of keeping track of a relative rotation
through 360°. This experiment demonstrates that the

13 See Ref. 4. Essentially because of the way that the Lorentz
group is embedded in the general linear group GL(4, R), there is a
one-to-one correspondence between the spinor structures on a
(space- and time-oriented) space-time M and the spin structures on
the tangent bundle of the underlying manifold of M. See J. Milnor,
L’enseignement math., 9, 198 (1963); also ‘“Remarks Concerning
Spin Manifolds,” in Differential and Combinatorial Topology,
S. S. Cairns, Ed. (Princeton University Press, Princeton, N.J., 1965),
p- 55.

14 1t is well known that a necessary and sufficient condition that
a space- and time-oriented space-time M have spinor structure is
that the second Stiefel-Whitney class of M vanish. See Ref. 13.

15 Penrose (Ref. 4) has introduced a generalization of this definition
which may be more convenient when conformal transformations
are contemplated. Define an orthotetrad at P as a collection of four
vectors k%,, i = 1, 2, 3, 4, at P which satisfy

k??)k(‘z)gae = My,

where 4 is a positive number and where 7;; is the matrix diagonal
(+1, —1, —1, —1). Now define a spinor as a rule which assigns to
each orthotetrad k at P an array of complex numbers &4 .0.5): (k)
such that (a) under a Lorentz transformation the array behaves as
in Eq. (2), and (b) under the transformation k%, — uk%, the array
transforms as follows:

EALLIE (k= g

Here n is the conformal weight of the spinor.
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two-valuedness of spinors can be realized physically
by macroscopic systems. If such Aharonov-Susskind
boxes could be moved throughout space-time (i.e.,
along curved world lines and over regions of non-
vanishing curvature) and be intercompared with one
another—all without their loosing track of the
“spin-orientation’ information—we would, in princ-
iple, have an experimental means to measure the
spinor structure of our own universe.

Two conditions, each necessary and sufficient for the
existence of a spinor structure, can be obtained fairly
easily from the definitions.'® These conditions provide
some insight into the global implications for a space—
time of our requirement that it carry spinor fields.

Let B be the bundle of oriented frames of the space—
time M. Then M has a spinor structure if and only if
the fundamental groups'” of B and M are related as
follows:

m(B) ~ m(M) © = (T). €)

[Recall that m; (V) = Z,.] To see the implications of
this equation, assume for the moment that Eq. (3)
holds. We may then take a (double) covering space of
B, this space obtained by “unwrapping ¥',” i.e., by
annihilating =;(¥) while leaving m,(M) unchanged.
Such a covering space turns out to be just a spinor
structure B on M. Thus the existence of a spinor
structure is equivalent to the statement that we may
“unwrap each of the fibers on the bundle of frames
without at the same time unwrapping any of the
underlying manifold M.”

Consider next a closed curve y in B which lies
entirely in the fiber over one point P of M. Suppose y
is so chosen that it cannot be contracted to a point
while remaining in the fiber (i.c., y corresponds to a
rotation of a tetrad at P through 360°). We now permit
y to be distorted throughout the entire bundle B.
That it still be impossible to contract y to a point is a
necessary and sufficient condition that M admit a
spinor structure (assuming, once again, that M is
space- and time-oriented). This is just the result we
should have expected intuitively. Consider a (one-
index) spinor attached!® to a frame at P € M. When
the frame is rotated through 360° at P, the spinor
reverses its sign. This rotation of the frame defines a
curve in the fiber of B over the point P. Suppose now
that this curve can be contracted, in B, to a point.
We then arrive at a contradiction because a “‘sign
change” (which occurs when the curve is in the fiber

16 See Refs. 4 and 13.

17 See, for example, A. H. Wallace, Introduction to Algebraic
Topology (Pergamon Press, Inc., New York, 1957).

18 That is, &, by definition, changes as the frame w is changed,
so that the components of & relative to w are constant.
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over P) has been continuously distorted to “no sign
change” (which occurs when the curve has finally
been contracted to a point).

We mention one further property of spinor struc-
tures: A space- and time-oriented space-time has a
spinor structure if and only if each of its covering
manifolds does.!® It is of interest to compare spinor
structure and other global properties of space-times
with respect to behavior under taking a covering
manifold. It is known,? for example, that (1) the
experimental evidence on nonconservation of C, P,
and CP in elementary-particle reactions, (2) the CPT
theorem, and (3) the strong principle of equivalence®
together imply that our universe must be orientable.
However, from one point of view this result places no
restrictions whatever on the underlying manifold of
our universe: any space-time (whether orientable or
not) has a covering manifold which, while representing
exactly the same physical universe, is necessarily
orientable. We see that the question of the existence
of spinor fields is very different from the question of
the existence of an orientation in that we cannot
“create” spinor structure merely by taking a covering
manifold.

We conclude Sec. I with an example of a space-time
which has no spinor structure. In fact, we may just as
easily display what is, in a sense, to be clarified
shortly—the “‘generic” example. Let 4, and 4, each
be a copy of the cross product of the closed unit 2-
disc (polar coordinates 6, and r, < 1, i =1, 2) with
the 2-dimensional plane (polar coordinates ¢, and p,).
We now identify the boundaries (each diffeomorph-
ically S* x R?) of 4, and A, as follows: the point
(01,71, ¢1, p1) of A; is identified with the point
(B2, ras @, po) of A, if

b, = 0,, Py = @, + Moy,

n=ry=1, p =p,,

where m is a fixed nonnegative integer. That is, for
each m we define a 4-manifold (without boundary)
M., . (In fact,? the M, are precisely the collection of
all R® bundles over S% In particular, M, = tangent

1% This is so essentially because the spinor structure involves the
second homotopy group of M, while the operation of taking a
covering space acts only on the first homotopy group.

20 R. Geroch, ‘““Singularities in the Spacetime of General Rela-
tivity,” Ph.D. thesis, Dept. of Physics, Princeton University, 1967
(unpublished). The same type of argument has been used by
Ya. B. Zeldovich and I. D. Novikov (““The Topology of the Universe:
Restrictions from Elementary Particle Physics,” submitted to Zh.
Eksp. Teor. Fiz. Pis’ma Redaktsiya; English transl.: JETP Letters)
to obtain a slightly different result.

*1 R, H. Dicke, Science 129, 621 (1951).

2% See Ref. 12, p. 96.
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bundle of $?.) We remark that each M,, may be given
a metric of Lorentz signature.?

If m is odd, then, no matter what Lorentz metric
is placed on M,,, M, has no spinor structure. To
verify this, choose a closed curve y which lies entirely
in the fiber over the point p, = 0,r, = 0, of M, and
which is not homotopically zero in the fiber. Observe
that if m is odd, then y may be distorted to a point in
the bundle of frames of M,, by sliding it over the
2-sphere p; = 0, p, = 0.

Our example is the generic one in the following
sense. Let M be a space-time which cannot be given a
spinor structure. Then there must be some closed
curved y Iying in the fiber over a point P € M such that,
while y is not homotopically zero in the fiber, it can be
contracted to a point in the entire bundle of frames.
Contract y to a point, while at the same time project-
ing its path into M. We thus obtain the image S in M
of a 2-sphere. Suppose® that § can be so chosen that
it is smooth and does not intersect itself. Then we may
select a neighborhood ¥ of § which is topologically a
2-dimensional vector bundle over S2 Since it contains
S'as a subset, Vitself does not admit a spinor structure,
and must therefore be just one of the M,, for m odd.
That is, the space-time M contains an open subset
which is diffeomorphic to one of the AM,,, m odd.

II. GLOBAL SYSTEMS OF TETRADS

Our main result reexpresses the existence of a
spinor structure in more familiar terms.

Theorem: Let M be a noncompact’ space-time.
Then M has a spinor structure if and only if there
exists on M a global system of (orthonormal) tetrads.2

Proof: Suppose first of all that M has a spinor
structure B. Since M is a space-time, it is paracompact
(see the Appendix). Therefore®® M may be triangu-
lated.?” (Since M is noncompact, there will necessarily

28 See L. Markus, Ann. Math. 62, 411 (1955). In fact, this result
of Markus has been strengthened slightly (Ref. 4): Every noncom-
pact 4-manifold may be given a time-oriented Lorentz metric which
has, in addition, no closed timelike curves.

24 [n fact, we need only require for this argument that there be
some 2-submanifold S of M such that § is diffeomorphically an S2,
and such that S, considered as an element of 7,(M), is not in the
kernel of the homomorphism A in the (exact) homotopy sequence
of the bundle B (Ref. 12, p. 91):

A
> my(B) > M) —>m (F) > - - -

Can such an S always be found?

% We actually prove slightly more than this. If M has spinor
structure B, then the global system of tetrads (considered now as a
cross section T of B) can be so chosen that T may be lifted to a
cross section of B.

28 See J. H. C. Whitehead, Ann. Math., 41, 809 (1940).

27 8. S. Cairns, Introductory Topology (Ronald Press, New York,
1961), p. 76.
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be an infinite number of simplices.) Choose?® a se-
quence M;, M,, - - - of subcomplexes of M such that:
(1) Each M, is, as a topological space, a compact
4-manifold with boundary. (It follows that each M,
must consist of only a finite number of simplices.)
@QM>M, ,,i=23-;andUM, =M.

(3) Each connected component (;f M, - M,
contains at least one boundary 3-simplex, i = 2,3, - - -,

The underlying group of the bundle B is SL(2, C).
But SL(2, C) is topologically R® x S§%, and so its
homotopy groups are easily calculated:

7ASL2, ) ~ 7, (R®) ® m(S%) ~ m,(S°).

It is convenient to list these groups here for later
reference:

m(SL2, C)) =0, w(SL(2, C)) = 0,
m(SL2, C)) = Z.

The proof consists of constructing a cross section
of the principal fiber bundle B. We proceed induc-
tively, extending a cross section from one M, to the
next. Let us suppose, therefore, that we are given a
cross section of B over J = M, ,;, and that we wish
to extend this cross sectionto K = M, (incase i = 1,
set J = ¢). Denote by K/ (j=0,1,2,3,4) the j-
skeleton of K (i.e., the union of all simplices of K of
dimension less than or equal to j).

It follows? from the vanishing of the first two
homotopy groups of SL(2, C) that our given cross
section over J can be extended uniquely (up to homo-
topy) to a cross section C over J U K2, and further
that C can be extended (though not, in general,
uniquely) to a cross section over J U K3, Since
m(SL(2, C)) # 0, however, a given cross section over
J U K3cannot, in general, be extended over J U K* =
K. One would like to use the freedom available in
selecting an extension of C over J U K3 to find one
such extension C’ having the property that C’ can be
further extended over J U K% However, such a C’
does not in general exist. In fact, the cross section C
determines® an element « of the cohomology group
HY(K,J; Z) (a ‘“characteristic class”). The vanishing

28 Subcomplexes M, which satisfy these conditions may be
constructed in the following way. Let 0, 0., -+ denote the 4-
simplices of M. Define

M, = ¢,
M=) 6, i=12-"-,
kel';

where

T'; = {positive integers £ such that there exists a compact

set C with 9C€ (M;_, U §,) and with o, < C}.
20 Ref, 12, p. 149.
3% Ref. 12, p. 174.
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of « is a necessary and sufficient condition for the
existence of a C’ which can be further extended over
JUK*=K.

Our three conditions on the M, have as a conse-
quence, however, that H*K, J; Z) vanishes identi-
cally.®* We conclude that « = 0, and therefore that a
cross section over K exists.

We have shown that any cross section of B over J
can be extended to a cross section over K. Setting
K = M,andJ = ¢, we obtain a cross section over M, .
Setting K = M, and J = M,, we extend this cross
section from M, to M, © M, . Continuing in this way,
we obtain finally a cross section of B over all of M.
The projection of our cross section from B to B
yields the required global system of tetrads.

The converse—if M has a global system of tetrads,
then it has a spinor structure—is an immediate
consequence of the definition of spinor structure.

This theorem depends critically on the vanishing of
homotopy groups of the spinor group SL(2, C). The
first homotopy group vanishes essentially because a
spinor structure is defined by the property that its
fiber is the universal covering space of the fiber of the
bundle of frames. (Taking the universal covering
space automatically annihilates the first homotopy
group.) The second homotopy group vanishes for all
the spin groups (in fact, for all Lie groups). The third
homotopy group fails to vanish, but at this point we
are sufficiently close to the dimension of the manifold
that the obstruction to extending a cross section can
be made to vanish. Thus the dimension of the manifold
enters in an essential way. In fact, the theorem is true
in four dimensions, uninteresting in lower dimensions
(in this case, every orientable manifold is paralleliz-
able®?), and false in higher dimensions.

We remark on one application of our theorem, an
applieation to the problem of classifying space-times
according to their global structure. The homotopy
classes3® of metrics of Lorentz signature on a given

31 That is, each 4-simplex £ of K — J can be represented as the
coboundary of some 3-chain C lying entirely in X — J. To see this,
let ¥ be a curve from X to the boundary of K — J, so chosen that
Y N (K2WJ)=¢. Then define C to be the (properly counted)
sum of the 3-simplices which intersect .

32 E, Stiefel, Comm. Math. Helv., 8, 3 (1936).

33 Theideaof lookingathomotopy classes of metrics was considered
by D. Finkelstein and C. W. Misner [Ann. Phys. (N.¥.) 6,230(1959)].
Their approach differs from the one contemplated here, however,
in the following way. Finkelstein and Misner consider space-times
which are topologically R%. Consequently, it is necessary to impose a
boundary condition (asymptotic flatness) to prevent the “twists”
in the metric from being lost to infinity. We impose no boundary
conditions, but as a result we must require that the manifold have
non-Euclidean topology (an ‘““O-geon” in the Finkelstein-Misner
terminology) if there is to be even the possibility of more than one
homotopy class of Lorentz metrics. In addition, our homotopy
classes do not have a group structure, as do those of Finkelstein—
Misner.
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manifold M are in one-to-one correspondence with
homotopy classes of nowhere-vanishing vector fields
on M. Let us agree that a space-time, to be of
physical interest, must admit a spinor structure. Then
we may, according to the theorem, take M to be
parallelizable, and so its tangent bundle is the cross
product M x R% Therefore the homotopy classes of
Lorentz metrics on M are in one-to-one correspond-
ence with the collection A of homotopy classes of
maps A:M — S3. It might be interesting to see if,
given M, the homotopy classes A may be characterized
in some fairly simple way. Such a characterization
would be a start toward a classification of the “homo-
topy classes of space-times™: Which global properties
of space-times are invariants of the homotopy class?
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APPENDIX

The following theorem makes it possible to simplify
the statement of many other theorems. In dealing
with a manifold M which carries a metric of Lorentz
signature, it is not necessary to specify that, in
addition, M have a countable basis (or, equivalently,
that M be paracompact).

Theorem: Let M be a (connected, Hausdorff) 4-
manifold with a C* metric of signature (4, —, —, —).
Then the topology of M has a countable basis.3

Proof: Fix once and for all a countable basis
0,(@{=1,2,--)for the open sets of R*and, for each
i, apointq, € 0;.

Let P be a point of M. The exponential map3®
“exp” is a continuous function from a subset of T,
the tangent space at P, into M. Let ¢ denote the union
of all open subsets of Tp on which “exp” is defined
and is an open map.® We first show that “exp” is an

3 The theorem actually proved here is somewhat stronger:
Every nm-manifold with a C! connection has a countable basis.
Surprisingly enough, it is not true that every manifold with a con-
formal Lorentz metric (i.e., a Lorentz metric given at each point only
up to an arbitrary nonzero factor) has a countable basis. A counter-
example is the 2-manifold defined as the Cartesian product of two
“long lines” [J. G. Hocking and G. S. Young, Topology (Addison-
Wesley Publishing Company, Inc., Reading, Mass., 1961), p. 55].
The null directions (which define the conformal metric) are specified
as lying along the coordinate axes at each point.

3 See, for example, N. J. Hicks, Notes on Differential Geometry
(D. Van Nostrand, Inc., Princeton, N.J., 1965), p. 131.

26 A mapping is said to be open if the image of each open set is
again an open set.
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open map on fp. Let V be an arbitrary open subset
of tp, and let ¥, be a covering of ¢, by open sets on
each of which “exp” is an open map. For each «,
VNV, is open in V,, and therefore exp (V¥ N V,)
is open in M. It follows that

exp (V)= Uexp (V N V)

is open in M. Since V is arbitrary, “exp” is an open
map on #p. Define Sp = exp (fp) © M.

Now let v be a tetrad at P. The tetrad v determines a
natural diffcomorphism ¢,:Tp — R%, where, for each
vector §€Tp, @,(&) is defined as the 4-tuple of
components of & relative to ». We define the composi-
tion 6 = exp ° ¢}, a continuous map from a subset of
RYinto M,

Whenever the integer i is such that ¢, € 07(Sp),
we define

P, =0@g)eM,
U, =00, N O0(Sp) = M.

At each of the points P, we define a tetrad v, by parallel
transport of the tetrad v along the geodesic® from
PtoP,.

We now show that the U; are a basis for the open
sets of Sp. Since the O, cover R4, the U, cover Sp.
Since 0 is an open map on 6-1(Sp), each U, is an open
subset of M. Let U be any open subset of Sp. Then
6-1(U) is open in R%. Since the O, are a basis for R?,

37 In case there are several geodesics from P to P;, let us select,

for definiteness, that one which has been used (in the exponential
map) to define P;.
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we may select a collection I' of integers such that
.L% O; = 0~(U). Therefore, |J U, = U. Since U is
i€ il

arbitrary, the U, are a basis for Sp.

To summarize, given any pair (P, v), where v is a
tetrad at the point P, we have defined an open neigh-
borhood Sp of P in M, a countable basis U, for S,
a countable dense set P; in Sp, and a tetrad v, at each
P;. We now repeat our construction for each pair
(P;, v,). That is, we define an open neighborhood § P,
of P;, a basis U, for Sp,, a dense set P,; in Sp , and a
tetrad v,; at each P,; (i fixed, j = 1, 2, - - -). Applying
the same construction to the pairs (P,;, v,;), and so on,
we obtain finally a countable collection U, = {U,,
Uy, Uy, -} of open sets of M and a countable
collection P, = {P,, P;;, P, - - -} of points of M.

Since the U, form a basis for each of the SPﬂ’ they
also form a basis for § = |J Sp, . We must finally show
that S = M. «

Let Q be any point in the closure of S. There is some
neighborhood U of @ such that no geodesic segment
in U has a pair of conjugate points in U. Since Q is in
the closure of S, U N S # ¢. Therefore, since the P,
are dense in S, there must be some Py, e U. But no
geodesic segment has a pair of conjugate points in U,
and so SPB > U. We have shown that Qe U <

S P, < §, i.e., that S contains each point of its closure.

But §'is also open in M, because it is the union of the
open sets S P, Since M is connected, it follows that

S = M. This completes the proof.
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open map on fp. Let V be an arbitrary open subset
of tp, and let ¥, be a covering of ¢, by open sets on
each of which “exp” is an open map. For each «,
VNV, is open in V,, and therefore exp (V¥ N V,)
is open in M. It follows that

exp (V)= Uexp (V N V)

is open in M. Since V is arbitrary, “exp” is an open
map on #p. Define Sp = exp (fp) © M.

Now let v be a tetrad at P. The tetrad v determines a
natural diffcomorphism ¢,:Tp — R%, where, for each
vector §€Tp, @,(&) is defined as the 4-tuple of
components of & relative to ». We define the composi-
tion 6 = exp ° ¢}, a continuous map from a subset of
RYinto M,

Whenever the integer i is such that ¢, € 07(Sp),
we define

P, =0@g)eM,
U, =00, N O0(Sp) = M.

At each of the points P, we define a tetrad v, by parallel
transport of the tetrad v along the geodesic® from
PtoP,.

We now show that the U; are a basis for the open
sets of Sp. Since the O, cover R4, the U, cover Sp.
Since 0 is an open map on 6-1(Sp), each U, is an open
subset of M. Let U be any open subset of Sp. Then
6-1(U) is open in R%. Since the O, are a basis for R?,

37 In case there are several geodesics from P to P;, let us select,

for definiteness, that one which has been used (in the exponential
map) to define P;.
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which is a generalization of and combination of
previously derived theorems, one by Ehlers! and one
by the present author,® Bonner,® Papapetrou,!
Synge,® and Misra and Radhakrishna.® Section 4 gives
examples of applications of these theorems to special
metrics, and Sec. 5 discusses interpretations and
uses.

We choose sign and other conventions as in
Landau and Lifshitz.” The assumed form of the metric
is as follows:

—ds® = e[*V(dx* + af, dx*)? + a®¢7*Uy,, dx* dxP),
(1)

@

a is an arbitrarily chosen constant scale factor; k is
some particular one of 0, 1, 2, 3; Greek letters take
all values of 0, 1, 2, 3, except k; and all metric
coefficients are independent of x*. Latin letters
(except k) take on all values 0, 1, 2, 3. This metric
thus admits a Killing vector & = 6}, but defines a
congruence orthogonal to the hypersurfaces x* =
const if £, = 0.

We now define »*# as the inverse of the 3-dimen-
sional metric y,;,

where
e = +1 =sgn (g1);

3
and D3 and P, as the Christoffel symbols and Ricci
tensor, respectively, obtained from the y,;. We also

define
haﬂ =fz;,ﬂ —‘ﬁ?,au (4)

where the comma denotes ordinary differentiation,
and we define the differential parameters of first and
second order,?

Yy = 0f,

Ay(F) = y*F ,F 4, (5)
A(F, G) = y*F ,G,g, (6)
AZ(F) = yaﬁF;aB = yaB(anﬂ - Zﬂ F,y)’ (7)

* Part of this work was performed during the tenure of NSF
Grant No. GP-4902; another part was performed while the author
was a consultant at Jet Propulsion Laboratory, Pasadena, California.

t Current (temporary) address: Jet Propulsion Laboratory,
4800 Oak Grove Drive, Pasadena, California 91103.

1J. Ehlers, ‘“Konstruktionen and Charakterisierungen von
Lésungen der Einsteinschen Gravitationsfeldgleichungen” (disserta-
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where F and G are any functions of the coordinates.
The semicolon always represents covariant differentia-
tion with respect to the y,;.

It is now a straightforward matter to calculate the
components of the 4-dimensional Ricci tensor for
metric (1). One obtains

Ry = a=*[—e'VA,(U) + 31Uy R, hy5),
R = af Ryy + 307Uy (—hyy s + 35, By
+ X5 hes + 405, U ), (9)
R.p = af,Ryy + afyRy, — a*ff3Ris + Pog
~ 2U U 5 + 7,585(U) — 3e'Vy"hy hgs. (10)
We note from Eq. (4) that
by s = Pygy + Fog . (11)

We thus may replace —#,, 5 in Eq. (9) by A, , (b5,
drops out because h,; is antisymmetric and % is
symmetric). Eq. (9) may then be written
Riy = af Ry + %0_194U76y(h5a,y + 4hs,U ). (99)
We choose units in the Einstein equations so that
G = c*. They thus may be written (for the vacuum or
electromagnetic cases)

Ry = 87T, (12)

(®)

where T, is the energy—momentum tensor, since

T = 0. T;; is defined by

T;= (477)‘1(F”Fj’ - %Fszlmgij)- (13)
Maxwell’s equations are, for no sources,

(—g) H(—gPF¥], =0, (14)

Fii.l + Fli,:i + Fjl.i =0 (15)

We assume that the F;, also, are independent of

k2

x*. The four Egs. (14) then yield

[(—gtF*, =0, (16)
(—F*], =o. (17)
Equations (15} may be written
Fapp+ Frpg.=0, (18)
e¥'F,,, =0, (19)

where %7 is the alternating 3-index symbol (e = +1
if «, §, and y are in natural order). Equations (17)
and (18) may be satisfied by choosing potentials 4
and B:

= (g teria,
Fip = B,.

(20)
2D

Raising and lowering indices with the metric [Eq. (1)]
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now gives, after some algebra,

F* = a=%"B , + a(—g)te?1fya (22)

Faﬂ = a(B,ﬂfa - B,afﬂ) + a4(_g)_#e—dere'}}ayyﬁdA,e-
(23)

Substitution into Eqs. (16) and (19) yields the two
remaining Maxwell equations:

Ay(A) = 28U, A) + H(—p) 2eVePh 4B = 0, (24)
Ay(B)—2A(U, B) — }(—y) 2e2Ve P4 , = 0, (25)
where we have used Eq. (4) and

g = aye™U, (26)

We can now obtain the components of T;;. We get
Ty = e(87a”)"e*V[A\(4) + Ay(B)], 27
T = af, T+ e(4ma) (=) 2y p4,B,,  (28)

Ty = afaTkp + afﬁTka - azfufﬂTkk
+ e(8m) e *V{2(4,4,4 + B,B,;)
- Vap[Al(A) + A(B)]}- (29)
Equations (12) now become, with Eqs. (8)-(10) and
(27)-(29) and judicious algebraic combination,
AyU) — 21594U}’aﬂ?’whayhﬂ.s = _59_2U[A1(A) + Ay(B)],
(30)
Yoy + 8h3,U ) = de(—p) eV 4 B
(31)
Paﬁ - 2U aU,p + %e‘lvyw(yaﬂye”hyehdn - 2hayhﬁ6)
= 2ee*Y(A A4, + B,By). (32)
The equations we wish to solve are now Eqs. (4), (24),
(25), (30), (31), and (32).
The quantities 4,; form a 3-dimensional antisym-

metric tensor and can thus be expressed in terms of an
axial vector. We write

hap = fup = fpa = 2=t (33)
The integrability condition [Eq. (11)] becomes
Yaﬂza;p = Vaﬂ(za,p — Zy ZZp) = 0. (34)
Equations (24) and (25) become
Ay(A) — 2A,(U, A) + V9B z; =0, (35)
Ay(B) — 20 (U, B) — ¥Vy*4 .2, =0, (36)

and Egs. (30)-(32) become
Ay(U) + $e'Vy*z,2y = —ee*U[A\(4) + Ay(B)],
(37
(2,5 + 42,U 5 + 4 VB ,A,) =0, (38)
P, —2U U, — 3e*Vz,25 = 2ee™*U(A4,A4 3+ BB ).
(39)

B. KENT HARRISON

We now note that Eq. (38) may be satisfied identi-
cally by choosing a “twist” potential ¢ in the following
way:

z,=e""[$, +2e(BA, — AB,)].  (40)
Egs. (34), (35), (36), (38), (39) now become, respec-
tively,
Ax(¢) — 4A(U, ¢) + 2¢B[Ay(4) — 4A(U, A)]
— 2eA[Ay(B) ~ 4A,(U, B)] = 0, (41)
Ag(4) — 24U, 4)
+ €7 2U[A,(¢, B) + 2¢BA(A, B) — 2¢AA(B)] = 0,

(42)
Ay(B) — 2A(U, B)

— e*U[A($, A) + 2eBA(A) — 2eAAL(A, B)] = 0,

(43)
Ay(U) + ee *U[A(A) + Ay(B)]

+ 1e7'V[A($) + 4eBA(¢, A) — 4eAA($, B)
+ 4B%A,(4) — 84BA(4, B) + 44°A(B)] = 0,

(44)
Py =2U,U, + 2 V(4,4 + B,B,)

+ %e_4v[¢,a + 2€(BA,1 - AB,a)]
X [ g+ 2¢(BA ; — AB )], (45)

The symmetrical occurrence of A4 and B suggests the
introduction of *“‘polar potentials’ R and 0:

A= Rcos b,
B = Rsin§.

(46)
“47)
Equations (40)-(45) now become, after suitable com-
bination of Eq. (41), (42), and (43):
z, = € 'Y(¢, — 2eR,),
Ag($) — 4A,(U, ) + 4eR°AY(U, 6)
+ 2Re2U2R*A|(R, 6) — eAy(¢$, R)] = 0, (49)
Ay(R) — RA(F) — 2A,(U, R)
+ Re 2U[A (4, 0) — 2¢R*A(0)] = 0, (50)
RA(6) + 2A,(R, 6) — 2RAL(U, 6)
— e 2UTA (¢, R) — 2eRA(R, 6)] = 0, (51)
Ay(U) + ee®U[A(R) + R*Ay(0)]
+ 3e7*UIA($) — 4eR®A (4, 8) + 4R*A(6)] = 0,
(52)

(48)

P,y =2U,U, + 2 *Y(R R ; + R* 0 5)
+ 3e7U(¢,, — 2¢R%0 )(b, — 2eR%0 ). (53)
If now we have a solution of Eqs. (49)—(53) for the

ap and the four functions U, ¢, R, 6, then Eq. (48)
gives z, and Eq. (33) can then be solved for the f,.
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It will be noted that since Eq. (33) is an equation for
curl f, there will exist an arbitrary function of inte-
gration &, with f= V& 4 other terms. From the
form of the metric (1) we see immediately that £ can
be absorbed into x* by redefinition of x*, so that we
will usually drop &. In certain situations it may be
useful to use & to change the form of the remaining
terms in f, dx*

2. METHOD OF DERIVATION OF THEOREMS
FOR GENERATING NEW SOLUTIONS OF
THE EINSTEIN-MAXWELL EQUATIONS
FROM OLD

We assume first that a solution of Egs. (49)-(53)
is already known. The majority of known solutions of
the Einstein-Maxwell equations fall into the class of
metrics of form (1) and hence provide known solutions
of the equations.

After a known solution has been selected, we
identify the quantities y,5, U, f;, €, and a (usually
set = 1) by inspection. The electromagnetic po-
tentials 4 and B may be identified by integrating a
subset of the Egs. (20)-(23). z; may be found from
Eq. (33), and then ¢ may be found from Eq. (40).
Equations (46) and (47) give R and 6 if desired.

One sees that vacuum solutions yield 4 = B =0,
or R = 0; solutions admitting a hypersurface-orthog-
onal congruence have z; = 0; solutions with constant
&wi have U = const. Thus in many cases, one or more
of the function U, ¢, R, and 6 are constant. We
assume that at least one of these four functions is not
constant.

To obtain new solutions of the Einstein-Maxwell
equations, we assume the metric to have the form (1),
with new U, a, and f,—denoted by a bar—but with the
SAME Yypt

—ds® = e[e*0(dx* + af, dx*)* + @e Uy, dx* dx’].

(54)
We also assume new electromagnetic potentials 4
and B—or R and 6. The £, are related to a new twist
potential ¢ by Egs. (33) and (40) with bars. We now
assume that U, ¢, R, and 6 are functions of those
among U, ¢, R, and 6 which are not constant and of
no other quantities.

It is easily shown that, with this assumption, the
differential parameters of the barred quantities are
linear functions of the differential parameters of the
unbarred ones. For example, if U = U(U, ¢), then

AYD) = UyA(U) + 204 0,0V, ) + TgA($),
where subscripts denote differentiations. We now

write Egs. (49)-(52), barred, and use the assumed
functional dependence to express them in terms of the
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differential parameters of the unbarred functions;
substitute for the Ay’s from the original Eqs. (49)-
(52); then equate the coefficients of each of the A;’s in
each equation to zero. We do this last step because we
wish to avoid restricting the original solution
by imposing restrictions on U, ¢, R, and 6. In some
cases, the A’s of the original solution may satisfy
relations among themselves; if this happens, these
relations can be imposed on the Eqgs. (49)—(52) before
setting coefficients equal to zero, provided that the
relations involve only functions of the U, ¢, R, and 6.

When the coefficients are set equal to zero, we
obtain a set of differential equations for the U, etc.,
as functions of the U, etc. We obtain further equations
by treating Eq. (53) in a similar manner. Since the
Y4p ar€ the same in both metrics, the P,; are also, and
one may set the right-hand sides of the old and new
Egs. (53) equal. One then substitutes U = U(U - - +),
etc., into one side and equates coefficients of the
U,U,, etc., terms.

There are four barred functions, If the number of
nonconstant unbarred functions is n, one sees easily
that, in general, there are $n(n + 1) differential
equations for the four dependent variables as functions
of the »n independent variables. There always exists
one solution—the identity. Whether or not there
exist solutions which are not equivalent to the identity
is not at present known in general, although such do
exist in many situations. We expect some redundancy
in these partial differential equations, by the nature of
the general-relativity equations themselves.

If solutions are obtained which are not equivalent
to the identity, then these functions U, etc., provide
a new solution of the Einstein-Maxwell equations.
It is, of course, desirable to include in it all arbitrary
constants in order to provide greatest generality.

One can approach this treatment from a slightly
different direction. In this, one assumes that certain
of the unbarred functions are nonconstant—without
specifying the particular metric satisfying this con-
dition—and then finds the U, etc. Then, if a metric is
provided which satisfies the given condition on the
unbarred functions, one already has the form of the
U, etc., and can immediately write down the new
metric. This approach is clearly a powerful way of
generating theorems describing how to generate new
solutions from old. There are thus 15 possible theorems
(15 equals the total number of combinations of four
functions in all groupings) although not all may
produce new inequivalent solutions.

Another variation in approach is obtained by
assuming, for the original metric, that some of the
U, ¢, R, and 6§ are functions of other nonconstant
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ones. This clearly places a restriction on the original
metric; but if it is satisfied, then the number of
differential equations for the U, etc., is reduced. This
approach is probably equivalent to assuming that
there exist relations between the A,’s of the original
solution (possibility mentioned above). There are a
large number of possible theorems derivable in this
manner.

3. EXAMPLES OF THEOREMS

A simple beginning example is provided by con-
sidering a vacuum space with g¥* = e. In this case
we have U = 0, R = 0. Rewrite ¢ as y. Examination
of Eqgs. (49)-(53) soon shows that

Ai(y) =0, (56)
Py=3v.p,- 57

We find a new metric by writing U, $, R, and 0 as
functions of y. For simplicity we now drop the bars.
Since A,(F) and Ay(F) (where Fis any of U, ¢, R, and
) are linear functions of A;(y) and A,(y), we see
immediately by Eqs. (55) and (56) that the A,(F) and
A,(F) are all zero, and that Eqs. (49)-(52) are satisfied
identically. When we equate the new Eq. (53) to the old,
and divide by y p 4, we get

} = 20" 4 2¢e72U(R"* + R*0"®)

+ 3e7U(¢" — 2eR%0')%, (58)
where a prime denotes d/dy. The identity transforma-
tion is the case U =0, R =0, and ¢ = ».

Solving for ¢’ gives
¢ = 2R’ & e*U[1 — 4U"* — 2ee2U(R"? + R¥)]E,
(59)
Thus, using the forms of the metrics (1) and (54)

and Eqgs. (33) and (48), we can write the following
theorem:

Theorem 1: For every vacuum metric which is a
solution of the Einstein equations, and of the form
(with 8/dx* = 0)

—ds* = €[(dx* + f, dx*)? + p,5 dx" dx*], (60)

we define p by the equations
fa,ﬂ '—fﬂ,u = Eaﬁvyww&(_’}’)% (61)
(we assume 4 nonconstant). Then there exists a

generalized solution, including electromagnetic fields,
of the form

—ds* = e[V (dx* + af, dx")?* + ae Uy, dx* dxF],
(62)
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and with electromagnetic potentials R, 6 such that
U, R, 0 are arbitrary functions of y, and with

fos = Tra = sy v~ HG(y)
= G(W)fap — fr.o

(63a)

(63b)
where

G(y) = +e2U[| — 4U"% — 2¢e2U(R'2 4 R¥)PE.
(64)

The expression R'* + R26'> may be replaced by
A% + B

For our second theorem, we work with the “rec-
tangular” potentials 4 and B. We first assume that ¢,
A, and B are functions of U; this constitutes a
restriction on the original metric chosen. (These
restrictions are satisfied automatically for a vacuum
metric admitting trajectories orthogonal to hyper-
surfaces x* = const.)

We first find the form of the equations under this
restriction. Equation (40) gives

z, = e *U[¢' + 2¢(BA’ — AB)U,,

which we write for simplicity as

z, = H{U)U,, (65)

and we have
A = A(U), (66a)
B = B(U). (66b)

It is simplest to work with Eqs. (34)-(39); they be-
come
HAL(U) + H'A(U) =0, (67)

A'AfU) + (A" — 24" + HB'V)A(U) = 0, (68)
B'Ay(U) + (B" — 2B’ — HA'e*U)A(U) = 0, (69)
Ay(U) + [3e*VH? + ee2Y(4'2 4+ B'HJA(U) = 0,
(70)
P = [2 + 3H%'V + 2e¢*U(A® + BHIU U,
(71

where a prime denotes d/dU. We use Eq. (70) to
eliminate A,(U) and assume A,(U) 5« 0; Egs. (67)-
(69) become

H' = GH, (72)
A" — (G + DA + HB'e*VU = 0, (73)
B" — (G + 2)B' — HA'¢®Y =0, (74)
where
G = 1e*VH? + e ?U(4% + B®). (75)
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If we put
H = Le™", (76)
A’ = QeY cos 7, (77)
B’ = QeYsinr, (78)
we find
o — 1) =0, (79)
L = LG+ 2), (80)
Q' =0(G+ 1), (81)
G =132+ Q2 (82)
Equation (71) becomes
Pp= 2+ 3L*+ 205U, U,. (83)
Solution of Eqs. (79)-(82) gives
0% = le?U(1 — 2e?V — pe'V), (84)
2= 4uetV(1 — 2e*Y — petVy, (85)
= f LdU + v (vacuousifi=0), (86)

where 4, u, and » are arbitrary constants, If we con-
sider separately the cases with A = 0 and 1 # 0, and
those with u = 0 and u # 0, and if we perform the
integrations indicated in Egs. (77), (78), and (86),
we find a general form of the remaining equations as
follows [including Eq. (33)]:

fa.ﬁ — fﬁ,zx s

= 206,y u(1 — 227 — ue' VY P (=p)PU,;, (87)
P, =2(1 — 2"V — pue'Vy'U U, (88)
AYU) = —(3e*¥ + 2ue'U)(1 — 2627 — e VY A(U),
1 (89)

A = (£u)?e®Y cos a
4 0[E(1 — 262U — pe' )P sina + A,, (90)

B = (&u)%2U sin «
— 8[(1 — 262U — uet)E cos o + By, (91)

where a, 4,, B, are constants, o = +1, § = +1,
and & = eA(4%2 4+ 4u)~ L. If both 4 and 4 = 0, 4 and
B are to be taken as constants. Constants 4, and B,
are trivial, since they do not appear in the electro-
magnetic fields; the constant o signifies a duality
rotation. It will be noted that Eqs. (84) and (85)
require
edu >0 (92)
and
du + 22> QuetV + 1)* > 0. (93)

These conditions insure that the quantities under the
square roots above will be positive or zero,
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We now assume a second solution of the same form
as the first and denote all quantities by bars, as before.
We now assume U = J(U). Equation (88), old and
new, yields

P,y =21 — 2*¥ — pe*Yy'U U,
=201 — 2¢*7 — @e!0y10,0,,,
which gives, since U = U(U),

(dUJdU2E = (1 — 77 — ae*T)(1 — eV — ueVy .
(94)
Also
AI(U) = U’zAl(U)
and
Az([/) = UNAI(U) + U/Az(U),
giving

_(ze2l7 + 2/16’40)(1 _ Ze2l7 —/29417)_1(7/2A1(U)
= 0"A((U) — U'(Ae*" + 2ue'")
x (1 — 2e*Y — ue*)™"A(U). (95)
We divide by A,;(U) and obtain a second-order
differential equation for U(U). Equation (94) is a

first-integral of Eq. (95), so we consider only Eq. (94).
To integrate Eq. (94), we write

X =" -1, (96a)
X =20 — 17, (96b)
Pr=ut a2 (972)
B2 =+ 12 (97b)

Equation (94) then becomes
dX/dX)? = (X2 — (X2 — 77",

The solutions of Eq. (98) fall into a number of cases,
depending on the values of # and 5. We note, by
Eq. (93), that if f=0, 2ue?V + 4 =0, yielding
u=Ai=0.

If « =0, we have a metric with a congruence
orthogonal to the hypersurfaces x* = const; such
metrics will be denoted by the letter O. If 4 = 0, then
£ = 0, and 4 and B reduce to constants, so that we
have a vacuum space; we denote these spaces by V.
If 20, we have electromagnetic fields present—
denoted by E. Thus we may classify solutions as in
Table 1.

98

TasLE 1. Classification of solutions of the metric.

Type oV OE v E
A =0 # 0 =0 # 0
u =0 = #0 #= 0
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TasLE II. Solutions of Equation (98), listing the conditions which apply, and the classifications of the old and new solutions.

Case Conditions X(X) Old solution New solution
1 B=F=0 X=kx ov ov
2 B=p=0 X =kx ov ov
3 B#0,F=0 X=kf X+ VX — B OE, V,E ov
4 =030 X = BQkX) (X% + k% oV OE, V,E
5 BB %0, X2> B2 X = B~ Xcosh k + V X* — B2sinh k) OE, V,E OE,V,E
6 BB # 0, X* < B X =B (Xcosk + Vf: — X*sink) OE, V,E OE, V,E
We now (Table II) list the various kinds of solutions  following quantities: e =1, a=1, U=0, 4=
of Eq. (98), listing the conditions which apply andthe B =0, fy=/f, =0, fa= —20, ypo=1, psu =1,
classifications of the old and new solutions. In all y,3 = —20%, Y9 = y¢o = Y03 =0, g = ¥y = —1. Equa-

cases, k is the constant of integration.

Case 1 is trivial; Case 2 very nearly so. Case 4, with
7. =0, is the case treated by Ehlers'; Case 4, with
g = 0, is the one treated by the author and others.?—¢

As noted before, OV metrics satisfy restrictions (65)
and (66) automatically and thus can be used via
Cases (2) and (4) above to generate new metrics.
Metrics which are OE, V, or E need to be checked via
Eqgs. (65), (66) to see if they can be used to generate
new metrics.

Thus Theorem 2 can be stated as follows: If we have
a metric of form (1), satisfying Eqs. (65) and (66), then
we can write down new metrics of the same form by
using one or more of the cases of Table II. As a
practical procedure, we identify €, U, f,, Vup> 4, B
from the form (1) and the known electromagnetic
fields [Egs. (20)-(23)]. We then find z, from Eq. (33)
and check Egs. (65) and (66). If they are satisfied, we
identify w, 8, u, and 4 from Egs. (87), (90), and (91).
Equations (96a) and (97a) give X and f; then Table
I can guide us to a selection of cases and functions
X. We then reverse the procedure, using Eqgs. (96b),
(87), (90), and (91) to get U, f,, 4, and B. Equations
(65) and (66) are now automatically satisfied. k, 7,
j are to be considered as arbitrary constants of
integration.

4. APPLICATIONS OF THEOREMS

Three examples of the uses of these theorems are
presented here. They are not discussed in detail since
that is beyond the scope of this paper.

Example 1: We generalize the Ozsvath-Schiicking
metric® by using Theorem 1. It is given by
—ds? = (dx1)? — dv dx* dx® + 2 dx? dx?
+ 202(dx®)? + (dv)?, (99)

where v = x4, We choose x* = x' and then identify the

9 I. Ozsvath and E. Schiicking, Recent Developments in General
Relativity (Pergamon Press, New York, 1962), p. 339,

tion (33) gives z, =z, =0, z = —2, so that Eq.
(40) (with ¢ — ) gives
p = —2x% (100)

Integration of Eq. (63), dropping of arbitrary functions
of integration, yields

fo=r=0, f3= (101)

We use Eq. (100) to express everything in terms of
x%. By Eq. (62) we get, finally, that

—20G(y).

—ds? = e*VU[dx! — 2avF(x®) dx°]
+ a% U2 dx% dx® — 20%(dx®)? + (dv)*] (102)
is a solution of the Einstein-Maxwell equations,

where a is an arbitrary constant, U, 4, and B are
arbitrary functions of x3,

FO®) = V11 — U — 3 29(4% + BYIE, (103)

and the subscript 3 indicates d/dx®. A and B occur as
electromagnetic potentials and yield the following
electromagnetic fields:

F?=qa"%"YA;, F;3=B;,

F12 = a—zB,a, F03 = ae_2UA,3- (104)

To obtain the locally observable electromagnetic
fields E and H, we write the metric in terms of
differential 1 forms:

—ds? = (0)? + (0)? + (0®)? — (0")?, (105)
where

o® = ae" Y[ /2 vdx® — (J2v) " dx®], (106a)

o' = eV(dx' — 2avF dx®), (106b)

2= ae V(2 v) " dx?, (106¢)

0® = ae” Y dv, (106d)

and write the electromagnetic field 2-form
¢ = }F;; dx' A dx) = (Ey0' + E,0* + Ey0) A o
+ Hyo? A ® + Hyw® A ' + Hzo' A @ (107)
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We obtain, by using Eqs. (104), (106), and (107),

Ey= —H, = (vV2va) 4, (108a)
E, = H, = (v/2va)'B,, (108b)
E,=H,=0. (108¢c)

This is clearly a plane wave, since E-H =0 and
E2 — H? = 0 everywhere. Its direction of propagation
is in the x2 direction. This result is satisfying, since
the original Oszvath-Schiicking metric (and also,
apparently, this new one) represents a gravitational
plane wave traveling in the x# direction.

The above comments are somewhat faulty, since
they are based on a tetrad [components of Egs. (106)]
which is singular at » = x* = 0. One can define a
nonsingular tetrad for the above metric, in the manner
of Oszvath-Schiicking,® but its form is quite com-
plicated and it will not be given here. One does find
that nonsingularity is preserved only if (Fe?)? > i,
which yields

1> 2U% + e2U(A% + BY). (109)

This expression bears some resemblance to terms in the
energy-momentum tensor and tempts one to surmise
that if the energy density gets too large, a singularity
develops and gravitational collapse takes place, but
this point remains to be investigated elsewhere, along
with more detailed studies of the metric (102).

Example 2: We begin with a flat metric in cylindrical
coordinates

—ds* = —dT? + dr® + r2d0? + dz2  (110)

and use Theorem 2, Case 4. We choose x* = 0 (= x?)
and note that e=1, a=1, f,=0, U=Inr,
—Yoo = Y11 = Yas = 1%, Y01 = Yoz = Y13 =0, y=
—rt, Thus A=pu =0, f=0. If we put § = 2kP?,
7 = dcki?, we find

e = PBr¥(kq + 2ckr® 4 1), (111)
A=fs=0, fo=4kewW'l—ctz, (112)

and
C = I"Wke(1 — ¢ r2(k’r* + 2ckr® + 1), (113)

D = £QDWck™ (1 — k) (kr* + 2ckr® + 1)1,

(114)

where
A= Ccosa+ Dsin«, (115a)
B =Csina — Dcosa (115b)

(« represents a duality rotation).
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The locally observed electromagnetic fields are both
in the z direction and are given by

E={cosa+ ysin«, (116a)
H= —~{sina + ycosa, (116b)
with
{ = (ary ' dC/dr, (117)
y = (ar)tdD|dr. (118)

Inspection shows that this is a “twisted” Melvin
magnetic universe. The twist is given by f,, which
plays the role of an angular velocity in a rotating
coordinate system. Since f, is proportional to z, we
see that this angular velocity increases as z increases
and is of opposite signs on the two sides of z = 0.
One envisions a universe twisting upon itself (or
untwisting!) as time goes on.

The case ¢ = 41 yields the usual Melvin universe,!
with no twist. The case ¢ = 0 gives maximum twist,
but no electromagnetic field. Thus the twist and the
electromagnetic field are complementary in some
sense.

It is easily shown that a twisted Melvin universe,
singular at r = 0 and reducing to the ordinary singular
Melvin universe!® for ¢ = 41 as above, can be
obtained from the Weyl-Levi-Civita metric for a line
mass.

Example 3: We use Theorem 2, Part 4 again, to
generate a generalization of the Schwarzschild solu-
tion. We choose x* = x* =T, witha=1, e = —1,
fa = 0’ U=1iln (1 - 2M/R)’ YRR = —1’ Yoo =
—R¥(1 — 2M|R), y44 = —R*(1 — 2M/R)sin®0, y,5 =
0 (x # p). With g = 2kl? and A = 4cki? as before, we
get

e 20 = P[(1 — 2M/R)™ + k%1 — 2M/R) + 2ck],

(119)
fi=fi=0, fy=4kPP(1 — *Mcosb, (120)
C =1 —ck(l — B[l — 2M/R)1
+ k(1 — 2M|R) + 2ck1t, (121)
D = (kI [—ckF{—k3(1 — 2M|R)
+ (1 — 2M/R)™ - [(1 — 2M[R)™
+ k%1 — 2M|R) + 2ck}, (122)

where C and D are defined as before, in Eqs. (115).
If we put

R=at"+ b,
T = hy,

(123a)
(123b)

where a, b, and h are constants, we can show after

10 M. A. Melvin, Phys. Letters 8, 65 (1964).
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some calculation that this is equivalent to Brill
space!! (electrified NUT space). There are just enough
arbitrary constants in this generated solution to
reproduce the constants of Brill space. In particular,
we note that ¢ = —1 yields the Reissner—Nordstrom
solution and ¢ = 0 yields NUT space.!? Again we see
the complementarity between twist and electro-
magnetic field.

Equation (123a) is both interesting and puzzling.
It shows that in general the origin is shifted by this
solution generation. b is usually # 0 (b =0 only
when k = —c) and is proportional to M.

5. DISCUSSION AND INTERPRETATION OR
RESULTS

An obvious question is: What is the physical and/or
mathematical significance of the theorems provable
by this method? There is no good answer to this
question. One sees in Theorem 2 that the change from
old to new metrics amounts to a conformal trans-
formation on the space of the x*; but the x* term
experiences the inverse of that conformal transforma-
tion and may acquire nondiagonal components besides.
The relationships of Petrov types, and such physical
quantities as stress and shear of the old and new
solutions, are also yet to be investigated. At present
the method seems primarily to be a way of generalizing
known solutions of the equations, while retaining
some of the symmetry. It is hoped that this approach
may be useful in throwing light on some fundamental
properties of the Einstein—Maxwell system of equa-
tions. An ideal hope for the approach lies in the
possibility of finding ways of combining solutions in
arbitrary amounts to get new solutions, analogous to
superposition in linear equations.

The method depends heavily on the existence of one
Killing vector so that one can define a function U.
(It should be noted that this Killing vector must be
timelike or spacelike; no method exists at present for
treating the null Killing-vector case.) One now
wonders how closely such theorems as discussed in this
paper are tied to the symmetries of the metric. Are
there other theorems for metrics with higher sym-
metries ?

One approach, in the case in which there exist two
Killing vectors, is to apply the above theorems twice—
once with respect to one variable and once with respect
to another variable. Clearly, the metric must be of a
rather special form to do this,-and the first application
of a theorem must not destroy the symmetry necessary
for the second. We expect that repeated applications of

11 D, R. Brill, Phys. Rev. 133, B845 (1964).
12 £, Newman, L. Tamburino, and T. Unti, J. Math. Phys. 4,

915 (1963).
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the same theorem with respect to the same coordinate
will merely produce another application of the same
family—i.e., the generating transformations of the
same type should form a group. This may be checked
for the types of transformations in Theorem 2.

Another approach involves setting up a metric of
higher symmetry and attempting to prove theorems in
ways similar to before. So far, there is only one
result available, given here:

Theorem 3: If the following metric is a vacuum
solution:

—ds® = e[ne* P (dx)? + & F(dxXF) + wyp dxd dxB],
(124)

and capital Latin letters take 0, 1, 2, 3, except k and
I, with e = £1, n = 1, 08/0x* = 9/dx' = 0, then

—ds? = e[dne* P (dxT)? + de*FTHA(dx'F)?
+ a?exp Bula — pPw 4 p dxLdxP] (125)

is also a solution, where 6 = £1 (used only if » =
—1), a and p are constants, and x™* and x'! are linear
combinations of x* and x%.

The proof is somewhat involved and will not be
given here.

The method is not currently applicable to perfect
fluids. Attempts to apply it to fluids have led to the
equation of state P = c2p, which occurs only if the
matter has sound speed equal to the speed of light.
This occurrence suggests that perhaps these theorems
are derivable only for the presence of fields with
fundamental velocity ¢. Indeed, one can derive similar
theorems for a neutrino energy-momentum tensor.
Of course, it is to be hoped—at least for solution-
generation purposes!—that fluids will eventually be
incorporated into the scheme. A small investigation
has been made of the derivability of theorems in the
Brans-Dicke theory!3; it appears to be possible,
although the mathematics is more involved.

It is anticipated that this method and similar
methods will be very useful in general relativity—not
only for generating new solutions of the equations, but
also for examining more fundamental concepts relating
the structure of the equations.
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The radiative-transfer equations are solved for an electron-scattering stellar atmosphere as formulated
by Chandrasekhar. The solution employs a transformation of the integro-differential form of the transfer
equations into singular integral equations for the angular intensities of the radiation field. The Milne
problem is solved to illustrate the method. In addition, the relationship is found between the above
method of solution and Case’s normal-mode expansion method. This leads to an alternate procedure for
finding the normal-mode expansion coefficients. As an example of the method, the constant distributed

source problem is solved for a half-space medium.

1. INTRODUCTION

During the past few years, several methods have
been used to obtain exact results for linear transport
problems in slab geometry, in which the theory of
singular integral equations® plays a central role.
Recently, Siewert and Fraley? have extended one of
these methods, viz., Case’s® singular normal-mode
expansion method, to obtain solutions to the equations
of radiative transfer for an electron-scattering atmos-
phere as formulated by Chandrasekhar.® In the normal-
mode expansion method, the independent variables
of the transfer equations are separated and the general
solution is expressed as an expansion over the spectrum
of the separation parameter. Application of boundary
conditions leads to singular integral equatioris whose
solutions are the expansion coefficients. By using
orthogonality relations, the actual solution of these
singular integral equations can be bypassed. In this
paper we extend a method developed by Bowden,
McCrosson, and Rhodes® for the one-velocity neutron
transport equation with anisotropic scattering to the
radiative-transfer equation. Our method of solution
employs a transformation of the integro-differential
equations of radiative transfer into singular integral
equations for the angular intensity, in which the
spatial variable enters only as a parameter. These
equations can then be solved by standard methods.
To illustrate this procedure, we solve Milne’s problem.
In addition, the relationship between our method and
the normal-mode formulation follows readily from
the orthogonality of the normal-mode eigenfunctions.

* Supported in part by U.S. Atomic Energy Cominission.

T Present address: Department of Physics, University of Florida.

L'N. I. Muskhelishvili, Singular Integral Equations (P. Noordhoff
Ltd., Groningen, The Netherlands, 1953).

2 C.E. Siewert and S. K. Fraley, Ann. Phys. (N.Y.) 43, 338 (1967).

3 K. M. Case, Ann. Phys. (N.Y.) 9, 1 (1960).
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This leads to an alternate method for determining
the normal-mode expansion coefficients. As an
example of this procedure, we solve the problem for a
semi-infinite medium, containing a constant dis-
tributed source.

2. SINGULAR INTEGRAL EQUATIONS

A formulation of the transfer equation for scatter-
ing of radiation by free electrons in plane-parallel
atmospheres is given by Chandrasekhar?:

(#ai + 1)%, W = f RO, W¥(x, 7) dv = T(x, ),
X -1
2.1

where the intensity vector W(x, u) has two components
wi(x, u) and ,(x, ), corresponding to two states of
polarization having electric vectors vibrating in a
plane perpendicular to and along the plane of strati-
fication of the medium, respectively. In the above
equations the spatial variable x is the optical distance
taken normal to the plane of stratification, in units of
the Thompson scattering coefficient, u is the direction
cosine measured from the inward normal, and the
phase matrix R(», 4) for azimuthally symmetric,
plane-parallel geometry is given by the 2 x 2 matrix

2 2 2.2 2

8 v 1
In this section we present our method of solving the
integro-differential equation (2.1) by transforming it
into a singular integral equation for the angular
intensities in which the spatial variable enters only as a
parameter. As an example of the method, we solve the
classical Milne problem for a semi-infinite half-space
with no incident radiation. The exact expression for
the law of darkening, i.e., the emergent intensity at
the vacuum interface, is found. We begin by noting the
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following identity:
0
(/A 24 1) W (x, )
ox
0
- ﬂ(v Z4 1)‘1'(x, 9 + (0~ W¥(x, »)
= uT(x, ») + (v — W¥F(x, »).
We next define the vector Wy(x, u) as

(2.3)

1
W, 1) = } f GO, D, )

— uH, ¥x, ] -2, (24)
v —

where
11— 0

G, ) = 3 [72 e 1o ﬂz], 2.5)

and
1 0
H,p) = | _ plv—p) (2 =3’ — p .
1 —p 3u(l — u®)
(2.6)

Using Eqs. (2.3), we find

d
(u 2. 1)lro<x, )
—1 f_llc<v, DT, %) + (7 — p¥(x, v)

— wH(, )T (x, )] —‘i—; X

If we define the moments

1
() = f vl ) v, i=1,2, (28
-1
we can write

3[2(1 — @Hp%(x) — (2 = 3p*)p{P(x)

Tex p) =2 + ey (x) |-
pP(x) + p(x)

(2.9)

Using Egs. (2.5), (2.6), (2.8), and (2.9), we find that
the right-hand side of Eq. (2.7) reduces to T(x, u). A
comparison of this result with the equations of transfer
Eq. (2.1) implies that W(x, u) is a particular solution
to Eq. (2.1). To obtain the general solution to Eq.
(2.1), we must add to W,(x, ) a solution to the
homogeneous equation

(,u 2, 1)‘-1’1(x, W =0, (2.10)
dx
viz.,

Wi(x, u) = —3F(u)e ", (2.11)
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where F(u) is a column vector with elements f;(u)
and fy(#) which are arbitrary functions of x and
whose forms are to be determined by appropriate
boundary conditions. The general solution is then
written as

. W(x, p) = W(x, @w + W(x, #), (2.12)
ie.,

W(x, ) = 3 LG(”’ WIE(x, ») — uH(, WEC, 0]

X — 3F(u)e~*. (2.13)

vy
Interpreting each part of the above integrals as
Cauchy principal-valued integrals, we note that the
second term on the right-hand side of Eq. (2.13) can
be integrated explicitly, and we obtain the singular
integral equations

1
BG¥Cx, ) = P GO, %05, 9 72
= —F(u)e™™*, (2.14)
where we define
(@)
Ap) = [ }, (2.15)
Tl aw
with
A(w) = —1 + 3(1 — p?(1 — ptanh™ ), (2.16)
and
Ap(p) = 2 + 4,(u). (2.17)

We are now concerned with the solution of the
singular integral equations (2.14). If the function
F(u) is known, these singular integral equations can
be solved by standard methods.! However, before
presenting this method for solving for W(x, u), we
illustrate how F(u) is obtained by considering Milne’s
problem for a semi-infinite half-space medium. We
measure x positive into the medium with x = 0 at the
vacuum boundary. The boundary conditions for the
problem are that there be no radijation incident on
the boundary and that the solution be of exponential
order at infinity, i.e.,

¥,0,u) =0, u>0, (2.18)
and

lim e, (x, ) — 0. (2.19)

T
We shall also assume a constant net flux of radiation
flowing through the atmosphere normal to the plane
of stratification, this constant net flux being provided
by the radiation coming from the “deep interior.”
Applying the boundary condition (2.19), we find

F(u) =0, <0 (2.20)
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When boundary condition (2.18) is applied, we
obtain an expression for F(u):

! d
F(p) = f vG(v, W) (0, —») ——

o v+ u
where we have used the evenness of G(v, u) in both »
and u. We now analytically continue F to the complex
plane of z and write

. w>0, (21)

F(z) = f:vc(v, N0, - ‘i” -,

Rez > 0.

(2.22)

We likewise extend W to the complex plane and write
the functional equation

(5. 2) = [ G ax, 9 22
_ [—F(2)e™™*, Rez >0,
- { o Res 20 @2
where
Q,(z) 0
Q) = , 2.4
© [ 0 Qz(zj @29
with
Q,(z) = —1 + 3(1 — 2)[1 — z tanh* (12)], (2.25)
and
Qy(2) = Q2) + 2. (2.26)

It is apparent from Eq. (2.21) that, if ¥ (0, —u),
the emergent intensity, were known, then we could
solve for F(u) [and hence ¥, (x, w)], i.e., the intensity
at any point in the system is given by its behavior at
the boundary. A singular integral equation for
¥, (0, —u) can be obtained from Eq. (2.14) by
setting x = 0 and restricting u < 0. After using the
boundary condition (2.18) and the evenness of
A(u) in u, we find the singular integral equation for
‘!’m(o’ —‘u')

1 v dy
A(M)\Pm(oi _:u') —P 0 G(v’ ‘u)‘ym(o’ —’l’) v =0,
—u

w>0. (227

The last equation can be solved by standard

methods (as described by Muskhelishvili!) by con-

sidering the behavior of a certain sectionally analytic

function on the complex plane of z cut along (0, 1) on
the real axis

v dy

D(z) = ZL j GO, ¥,,(0, —v) 24 (2.28)
i Jo vy — 2z

Applying the Plemelj formulas! to D(z), we obtain

D*(u) + D () = ;l—iP L G, W) ,0, —v) 242

v —u
(2.29)
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and
DH(u) — D~(u) = p(1 — p)¥,(0, —p), (2.30)

where D(u) and D~(u) are the limits of D(z) as z
approaches the cut (0, 1) from the upper and lower
half-planes, respectively. Using the last two equations,
we can write Eq. (2.27) as

Q()D(w) — QT (WD~ (u) =0,  (231)
where
o [ W
with
Qf(u) = 4(p) & 3mip(l — w2 (233)
and
Q) = Q) + 2 (2.34)

as the limits of €,(z) and Q,(z) as z approaches the
cut (—1,1) from the upper and lower half-planes,
respectively. Our singular integral equation (2.27)
has been reduced to a homogeneous Hilbert problem:
to find the nonvanishing sectionally analytic vector
cut along (0, 1) with boundary values given by Eq.
(2.31). The solution of this problem can be written

D(z) = K(2)X(2), (2.35)

where X(z) is a column vector with components
X,(2) and X,(z) given by?

X,(2) = —— exp {7—1 L In (g—i-’;—;)ﬁ‘—;} (2.36)
d
B X,(z) = exp E L In (g%),]i—%} 2.37)

and the matrix K(z) is given by

K(z)=i[“ 0 ]

- (2.38)
2mil0 b+ cz

where a, b, and ¢ are constants to be determined
as follows. Since the net flux in the half-space is
constant, we choose

1
2_L Lm0, =) + 9,000, =) du = M, (2.39)

where M is constant. This last equation can be used in
obtaining the constants a, b, and ¢. Two additional
equations for the constants are obtained by equating
the right-hand sides of Eqs. (2.28) and (2.35) for
Dy(+1):

1
(b £ OXy(£1) =3 L pp £ 1)9,n(0, —p) du.
(2.40)
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From Egs. (2.30) and (2.35) we note that
= KWX*(p) — X~(@w)], >0, (241

which, when substituted into Eqs. (2.39) and (2.40),
yields a set of simultaneous equations for the constants
a, b, and ¢, which, in turn, yield

a=3MA[4, (2.42a)
b= 3M/4, (2.42b)
and
c = —3M[4Q, (2.42¢)
where we define
0 = X,(— DX, (+1) — Xy(+DX(=1)  (243)
and
4 2 KEDXD + XDXD

T X(=DX(HD) ~ Xo(+DX(= 1)
Some of the integrals involved in the above determina-
tion were evaluated by noting the following identities
which can be shown quickly by use of Cauchy’s
integral formula:
LXH(u) — X5
X,(2) = X,(0) + _Lf Xiw = Xi) 4,
2mi Jo W=z
i=1,2 (245)
where X;(o0) = 0 and X,(0) = 1. Now, by compar-
ing Eqs. (2.22) and (2.28), we get

r = 2] ke ]
4 [(4— 2)Xy(—2)
which determines F(u) by letting z tend to u € (0, 1).
For the law of darkening from Eq. (2.41) we also
obtain
3M[ —5/0X,(—

8 L(u+ A Xo(—p)
which is in agreement with the result found by Siewert
and Fraley? and by Chandrasekhar.® In this last
determination we have used the identities?

X, ()X, (—2) = 5 (2))2

(2.46)

:|, 2.47)

(2.48)

and
X,(2)X,(—2) = Qy(2)/2. (2.49)

We now obtain the solution to Eq. (2.14), assuming
that F(u) is known, by considering the sectionally
analytic function cut along the line (—1, 1):

1
Bx, 2) = 2 [ 60000t 0 72
27i J

vy—2z

(2.50)

where x appears only as a parameter. We apply the
Plemelj formula to the above equations and use the
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resulting boundary values to write Eq. (2.14) as

Qi
=== Ei(x, p) — E(x, 1)
Qi ()
1 2 ) —x/u .
— {3,“( P 20, >0, 5 5
0, @ <0,

which are inhomogeneous Hilbert problems with
cuts along (—1, 1). The solutions Xy(z), i =1, 2,
to the homogeneous Hilbert problems with boundary
values along the line (—1, 1)

Xoi(w) _ ()

- = (2.52)
Xoi(w) Q; ()
are?
1 1
Yo = T g [RT® —"’ﬂ—}
1 -2 7 J U=z
= X1(2)X+(—2) (2.53)
and
1M1 d
Xoe) = exp [ [ s 0 -2
mJ-1 ,u -2z
= Xy(2)Xo(—2). (2.54)
With Eq. (2.52) we rewrite Eq. (2.52) as
3u(l — 1) f(u)e ™"
B Einu) [RGB sy,
X ) - Xo) = 2€; (WX
0\ ol 4 0, 4 <0.
(2.55)
We now consider the function
Ei(xs Z)
Ky (x, z) = —2—
Oz(x Z) Xol-(l)
€ f "3u = WE dp ) se
2mido 27X w—z

which is analytic in the finite complex plane of z,
except perhaps for a cut along (—1,1). Using the
Plemelj formulas, we find Kj;(x, u) — K5;(x, u) = 0,
u € (—1, 1). By examining the z dependence at infinity
of E(x, z) from Eq. (2.50), and X,,(z) from Egs. (2.52)
and (2.53), we find

Kolx, 2) =§}T—i[a,-(x) Foz), i=12 (57

where o,(x) and w,(x) are coefficients dependent on x
to be determined below. We now solve for E;(x, z)
from Egs. (2.56) and (2.57) to obtain

Eix,2) = %j—? [a,-(x) + w(0)z
_ ('3~ v)) fi(»)e " dv 12
o 207 (MXHO( — 2) } o
(2.58)
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The condition of constant flux throughout the medium
requires

—M—of e 1) + Pmsles ] s (259

where the constant M is the same as that used in
Eq. (2.39). We apply the Plemelj formulas to Eq.
(2.50) to obtain

Bpmd(x, ) = 2[E] (x, ) — E;(x, w]/3(1 — p*),
i =1,2. (2.60)
With the limits E*(x, u) determined from Eq. (2.58)
we substitute the last equation into our normalization

condition (2.59) to obtain one equation for the
coefficient

Sw(x) + wy(x) = ny(x), (2.61)
where
—_ 3 L0 i) o
ny(x) M +J; {Yz(v) Yl(v);e dv, (2.62)
with
Yi(») = Qf(n)Q(»)

= [A,MF + Bav(l — D2 (2.63)
We next examine the z dependence at infinity of
E,(x, z) in Egs. (2.50) and (2.58) to find
1
() = [ 2l ) + Yo, D, (269

which, from Eq. (2.59), yields

wy(x) = —3M/A. (2.65)

The coefficient w;(x) is then completely determined
by Eq. (2.61). Now, noting that, from Eq. (2.50),
Dy(x, 1) = — Dy(x, 1), from Eq. (2.59) we obtain

50,(x) — 0y(x) = ny(x), (2.66)
where
ny(x) f (v + 1){1{23 J;;((”v))} ey (2.67)

and Eqgs. (2.61) and (2.65) have been used. Sub-
stituting ,..(x, —p), > 0, from Eq. (2.60) into
the original integro-differential equation (2.1) for
Poe(X, 1), we find the following differential equation
for ay(x):

doy(x)/dx = 3IM/4, (2.68)
which has the solution
0y(x) = 3IMx[4 + 0,(0). (2.69)

The integration constant ¢,(0) can be found by
evaluating v,,,(0, —u) from Eq. (2.60) and comparing
it with Eq. (2.47). We find

M {

03(0) = A——iﬁﬁw X500)] du,

P,(n, p) =
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With o,(x) so determined, Eq. (2.66) completely
determines oy(x). This completes the evaluation of the
coeflicients ¢,(x) and w,(x).

From the functional equation (2.23) and E(x, z)
given by Eq. (2.58) we can write

Wmi(x’ Z)
_ {{277iEi(x, z) — f(2)e " }/Q(z), Rez >0,
2miE(x, 2)/Q(z), Rez < 0.

The angular intensities v,;(x, u), i=1, 2, are
obtained from the last equation by letting z tend to
uwe(—1,1).

3. COMPARISON WITH THE NORMAL.-
MODE EXPANSION METHOD

Although the method of Sec. Il can be regarded as a
completely independent method of solution, it is
intimately related to the normal-mode expansion
method as presented by Siewert and Fraley? and
Smith and Siewert.® Following Case’s method,?
Siewert and Fraley separated the variables of Eq.
(2.1) with a solution of the form

F(x, u) =B, we ",
where ®(, u) is a solution to the equation

(3.1)

(= %010 = [ R0 b, (3

and the spectrum of the separation parameter 7 is as
follows:

Discrete solutions: For n¢(—1,1) Siewert and
Fraley found that % must be a zero of the function
Q,(n) as defined by Eq. (2.25). However, ), has a
double root at infinity, and they write the discrete

solution as
1
®.=|]
* 1

and, because of the degeneracy due to the double
root at infinity, a second linear-independent discrete
eigenvector

(3.3)

1
¥ ()= =) | (34
which is a solution to Eq. (2.1).

Continuous Solutions: For € (—1, 1) Siewert and
Fraley write the continuous eigensolutions of Eq.
3.2):

(1 — w2
P 4 0mdtr — )

n—H )
0

$0.J. Smith and C. E. Siewert, J. Math. Phys. 8, 2467 (1967).

(3.5a)
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and
=3n(n + w2

P — — 2
0 )= | p 30 — )2 Jslmdty — 1) |
n—#
with 4,(#) defined by Eqs. (2.16) and (2.17); d(n — p)
is the Dirac delta function, and the symbol P denotes
that the Cauchy principal value is to be taken in any
integration involving the following term. Smith and
Siewert® have shown that the eigensolutions &®,,
®,(n, p), ®y(n, u), and ¥_(0, u) are complete on the
range u € (—1,1) such that an arbitrary two-com-
ponent vector I'(u) defined on —1 < u <1 can be
expanded as

() = A,®, + A ¥ (0,1 + f_ )y ) d

(3.5b)

+ f PR, ) dn. (36)

A consequence of this completeness relationship is
that the general solution of Eq. (2.1) can be

‘P(xy fu’) = A+¢+ + A—T—(x3 [,t)

1
+ f ), e dy

1
+ [ por@n e, 67

where 4, , A_, a(n), and B(7) are arbitrary expansion
coefficients to be evaluated by boundary conditions.
In addition, Siewert and Fraley have shown that
&, B,(n, u), and P,(7, u)are complete on the range
u € (0, 1), in the sense that an arbitrary two-compo-
nent vector ©(u) defined on the range 0 < u < 1 can
be expanded as

O) = A,®, + f ()1, ) diy
+ f B @y, 1) dn. (3.9)

They use the completeness property (3.8) to solve the
Milne problem.

Full-range orthogonality and normalization inte-
grals are given by Smith and Siewert.® They showed
that

1
f_lﬂ‘i’(ﬂ', WO, wdu =0, n=7, G9)

where the tilde superscript indicates the transpose of
the vector. They defined the full-range scalar product

1
<l Ij> =f_1”&i("7', /u’)ia(n’ lu) d;u’ l’j = +5 1’ 2,
(3.10)
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and find

iH=0, i,j=+,1,2, i##j, (3.11)
and
G| = Qe — ), i=1,2 (3.12)

where Q(7) are defined by Egs. (2.33) and (2.34). By

replacing ®,(7, #) in Eq. (3.10) with W_(0, &), an

additional orthogonality relation is
(i|=)=0, i=—,1,2. (3.13)

We can determine the relationship between our
singular integral-equation method and the normal-
mode expansion technique by evaluating the integrals

J lv&ﬂ(,u, W(x,v)dv, i=1,2. (3.14)
-1

If first we substitute the explicit forms of @, from Egs.
(3.5), after rearranging in matrix form we obtain

f lvél(y, »¥(x, v) dv

f lvciz(y, »E(x, v) dv

= u{A(u)‘I'(x,u) —» f_lc(v,m‘r(x, ») - _‘f”} (3.15)

v
where G(», u) and A(y) are defined by Eqgs. (2.5) and
(2.15). The integrals (3.14) can also be evaluated by
using the general expression for ¥(x, ») given by the
normal-mode expansion (3.7). The integration involv-
ing the two discrete terms in W(x, ) vanishes due to
orthogonality relations (3.11) and (3.13) found by
Smith and Siewert.® After changing the order of
integration of the two continuum terms, we perform
the » integration using Eqgs. (3.12) and obtain

f_llvél(ﬂ, W) dv| | @ (@)

pe ",

[ e nar| | B0000500
(3.16)

Equating the right-hand sides of Eqs. (3.15) and
(3.16) and comparing the result with Eq. (2.14), we
obtain the relationship between our method and the
normal-mode expansion method:

B‘:Ez;] __ [a(ﬂ)QI'(u)Qf(#)]

RV
() ()5 () 47
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Equation (3.17) indicates that solving for F(u) in
the singular integral equation provides an alternate
means for obtaining the normal-mode expansion
coefficients. To illustrate, we consider the Milne
problem for a half-space with a constant, distributed
source S with components s, and s,. The boundary
conditions, similar to those of Eqs. (2.18) and (2.19),
are

WO,uw=0 un>0, (3.18)
and
lim e ¥ y(x, u) — 0,

x>

(3.19)

where the angular intensity vector ¥ ((x, u) represents
two perpendicularly polarized intensities in the med-
ium with sources.

The integro-differential equation for the problem
with sources [cf. Eq. (2.1)] is

(uf; + 12500 = [ RO el o + 8

(3.20)
and has a solution

TS(X’ :u) = ‘l’oo(x’ Au) + AS+¢+ + AS——‘P—(xr ;u/)
1
+I s, pye " dn
1
+ [ psar@in e, 321)
where W (x, u) is the particular solution to the

constant source problem. We find the following
particular solution to Eq. (3.20):

—i(s: + s)(x® — 2xp) — 551;“2
—3(s;, + s)(x* — 2xu)
— 3051+ sp)u” — 25 + i,
(3.22)

We now proceed as in Eq. (3.16) and substitute
W(x, u) into the integrals (3.14) and obtain

W (x,p) = [

[t dr| | 5@
.,—1 — [ue—m/u
[ ¥semas| | B0z
[ 281 } (3.23)
ds, — 3u’(s; + 50)
from which we write [cf. Eq. (2.14)]
A5t = B GO ¥, 24
= —Fy@e ™ + N, (.29
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where
25,
NG = [452 — 3p(s, + 52)} (329
and
Fulu) = — | 2@ ()] 3.26
00 = = [ o) O

We now determine Fg(u) in a procedure similar
to that used in Sec. II. We proceed to solve Eq. (3.24)
subject to the boundary conditions (3.18) and (3.19).
In order that our solution be of exponential order as x
approaches infinity [Eq. (3.19)], we must have

Fo(u) =0, p<O0. (3.27)

From the condition of no incident radiation on the
interface from the vacuum [Eq. (3.18)], we obtain

Fs(u) = f GO 0. ~») j’u +N@w, >0,
(3.28)

where we have used the fact that N(x) is an even
function of u. When we extend Fg to the complex
plane of z, we obtain

Fg(z) f G(», 2)¥ (0, —-v)

vdv

+ N(z),

Rez > 0. (3.29)

Using Eq. (3.18) and restricting the direction cosine
to values less than zero, we obtain a singular integral
equation for Wg(0, —u):

A0, —)— j GO, 1) E 0, —) ’d”ﬂ—Nm),
w>0. (3.30)

We define a sectionally analytic function E(z), cut
along the line (0, 1), as

3.31)

E(z) = ——f G(v, 2)¥ (0, —v) vdvz.

Applying the Plemelj formulas,* we obtain, in com-

ponent form,

Qf (W
EF
() — o)

Niw)

E; (u) = 3u(l — o)’

—pH)—==, i=12,

(3.32)

which is an inhomogeneous vector Hilbert problem,
i.e., we wish to find the sectionally analytic vector
E(z) whose boundary values satisfy Eqgs. (3.32). Using
standard techniques,? we can write the solution as

13u(l — w*)N(w) dp
R
(Z)[ "(Z)+27T ﬁ 2XHuwy Qi (w) u—z}
(3.33)

E(z) =
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where R;; are the diagonal elements of the matrix

R(z)=—1—["1 0 }

- (3.34)
27il 0 dy+ dsz

with the d; constants determined below and X;(z)
are defined by Eqs. (3.36) and (3.37).

The integrals in Eqs. (3.33) can be evaluated by
noting the following identities, which can be proved by
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We finally get the components of E(z):
2s,

E2) = —— [dy + 25,0 — D)]Xs(2) — 22
2mi 2

(3.39a3)
and
1
Ey(z) = — [dy + dyz + 4s,
2mi

— 3(s, + 52)(22 + zv, + ”(2) + 0)]1X,(2)

use of Cauchy’s integral formula - 2—1- [4s, — 3(s; + 52)2%). (3.39b)
i
1 a2
1 fu -z = 3 vil i) dv (3.35) From Egs. (3.29) and (3.31) we find
X,(2) 2Jo Xi(mQr(»)v — z Fy(z) = 2miE(—2z) + N(2), (3.40)
and which, from Eqs. (3.25) and (3.37), can be written as
: f(@) = [di + 25,(1y + 2)IX1(z)  (3.412)
22[1 - :I + zv, + v + v, and
X(z) = —
. Ss2(2) = [dy — dsz + 4s,
1 2
_3 vJEl — f) v? dvy . (3.36) — 3(s; + s2)(Z° — vez + vf + 0)]Xo(—2).
2Jo X3(»Q5(»)v — z (3.41b)
Where . Using Egs. (3.26) and (3.41), we obtain the normal-
u, = L f [XT(w) — Xi(wlg" du  (3.37) mode expansion coefficients for the constant source
27i Jo problem
and dy + 2s(uy + W)X (—
Lo i) = — Q{(I)g—ﬁ =0 3.a)
o = 5 [ 1XEG) — Xat i G38) H0;
27i Jo an
dy — dgut + 45, — 3(s; + $2)(U? — veu + i + v)]Xo(—p)
Be() = — [dy st 2 (51 s 2 (H_ ol 0 DIXo(—u . (3.43)
Qf () Qz ()
We have found the expansion coefficients to within (3.31) and using Eqgs. (3.39), we obtain
the three constants d;, dy, and d3. The procedure for 3u(l — u)¥0, —u)
finding the constants parallels that for the source-free R " _
= RW[X* (1) — X~ (0)] — N(w), (3.46)

problem of Sec. II. As before, we normalize the exit
current at the vacuum interface:

3 =2 ulysi©. =) + vsu®, —l ds, (304)

where use has been made of boundary condition
(3.18). This last equation can be used in obtaining
the constants 4,. Two additional equations for the
constants are obtained by equating the right-hand
sides of Eqgs. (3.31) and (3.39) for E,(+1):

XA£D[ds £+ d; + 4s,
— 3(sy + s2)(1 & vy £ 0] + )] — 52 + 35

= L 1v[v + 11y:(0, —») dv. (3.45)

We note that, by applying Plemelj’s formulas to Eq.

which, when substituted into Egs. (3.44) and (3.45),
yields a set of simultaneous equations for the con-
stants d;. These equations then yield

dy = {—r + [1 = Xo(+D][r2X5(—1)

+ rsXo(+1D1YQ, (3.472)
dy = {rW + §lrsXi(+1) — roX(—1)]
+ W(r; — r3)}/Q, (3.47b)
and
dy= [2r; + ry + 15)/2, (3.47¢)
where Q is defined by Eq. (2.43),
W = X,(+DX;(—1) + Xo(—=DXy(+1), (3.47d)

rp=3J — 3s,u, Ty + 25T, — 45,
+ 3(sy + 5[y — T'g + v,y + (Ug + v)ly],
(3.48a)
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ry = 25(1 — u)X(+1) + 2509 — 4Xo(+1)s2 + 52
~ 38 + 3(s; + s Xo(+ D + vy + vg + o),

(3.48b)
and

ra = 2s;(1 — u)Xy(—1)

4+ 2551y — 4X(—1)s5 — So + 35,

+ 3(s1 + s)Xo(—1)(1 — v + v§ + vy, (3.48¢)
with

Iy = [Xu(=1) — X(+D)]/2, (3.49a)

[y =2 — Xo(+1) — Xx(— 112, (3.49D)

Iy = [Xy(—=1) — Xi(+D]/2, (3.4%¢)

Iy= —-Xi(+1), (3.494)

Iy, = —X(—1), (3.4%)
and

Te= 14 v, — Xp(—1). (3.490)

With these d; we have completely determined the
expansion coefficients «g(#) and Bg(u). The discrete
expansion coefficients Ag and Ag. are determined
from the integrals (3.14) with @, and ¥ _(0, —p) given
by Egs. (3.3) and (3.4) replacing ®,(x, ). Substituting
for the normal-mode expansion Wg(x, ¢) from Eq.
(3.21), we find, using the orthogonality relations, that

1
[t du = —ads s (350)
—1

If instead we substitute for @, , we obtain our nor-
malization condition [cf. Eq. (3.44)]:

t (ot
3L o= -1 ey
244 |1
From Egs. (3.50) and (3.51) we see that
Ag_ = 3J/8. (3.52)

In the same fashion as in Eq. (3.50), we find, when we
substitute the expansion (3.21), that

[ 120,025 as

_ 4 28, __ 186
= —3Ags + sy 1552 -

(3.53)
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If in Eq. (3.53) we apply the boundary condition
(3.18) and use the explicit form of W_(0, u), we obtain

f 1 MZE:!TS(O, ~u) du

- f a0, =10 + PO, —0] d. (.59

We now use the form of Wg(0, —pu) from Eq. (3.46)
in (3.54) and we combine it with Eq. (3.53) to obtain

Agy = 3dy(T5 + 1) + 3dol'y + 1dy(Ty — Tg)
+ &g — Lou, (0 + I'yy — 5Ty — Ty)
+ 25,05 — (s, + s)
x [[y — vy 4+ (02 + 0Ty + (T, — Tl

(3.55)
4. SUMMARY

In summary, we have presented a method for
obtaining exact solutions for the perpendicularly
polarized intensities in an electron-scattering stellar
atmosphere. The solutions are obtained by trans-
forming the integro-differential form of the radiative
transfer equations for the angular intensities. As an
example of this procedure, we have solved the Milne
problem and the law of darkening. The connection
between our singular integral equation and the
normal-mode expansion method was obtained by use
of orthogonality relations. We found that this led to
an alternate procedure for obtaining the normal mode
expansion coefficients. We have illustrated that
procedure by solving the constant distributed source
problem for a semi-infinite medium for which we
found the discrete and continuum coefficients. It
appears for the problems considered that neither
method presents an appreciable advantage over the
other. However, it does seem that in the analogous
multigroup neutron transport equation, where the
system has absorption and the cross sections are not
the same for each group, this method may present a
distinct advantage. This will be the subject of a
future paper.
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Sufficiently nonlinear classical fields admit modes called kinks, whose number is strictly conserved in
virtue of boundary conditions and continuity of the field as a function of space and time. In a quantum
theory of such fields, with canonical commutation (not anticommutation) relations, kinks and their
conservation still persist, and even if the intrinsic angular momentum is an integer, a rotating kink can
have half-odd angular momentum, if double-valued state functionals are admitted. We formulate a
natural concept of exchange appropriate for kinks. The principal result is that for fields with integer-valued
intrinsic angular momentum, the observed relation between spin and (exchange) statistics follows from
continuity alone, parastatistics being excluded. It is likely that in the theories with even (odd) exchange
statistics, suitable creation operators will commute (anticommute). We show that, while the rotational
spectrum of a kink will in general possess both integer and haif-odd spin states, in fields with integer-
valued intrinsic angular momentum only one of these two possibilities will ever be observed for each kind
of kink, and that there is a nonzero “particle number” (strictly conserved, additive, scalar quantum
number) attached to half-odd-spin kinks of each kind. It then follows that a boson and a fermion kink will
always differ in at least one particle number, as well as in spin, and that, in particular, every fermion
kink will have some nonzero particle number. These results are consistent with the hypothesis that the
spinor fields usually employed to describe half-odd-spin quanta are not fundamental, but are useful
“point-limit” approximations to operators creating or annihilating excitations in a nonlinear field of
particular kinds of kinks in particular internal states.
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INTRODUCTION

Quanta of integer spin are described by fields
obeying canonical commutation relations, ramifica-
tions of the basic relation

pq —qp = hii,
while since the work of Jordan and Wigner,! quanta of
half-odd spin have been described by fields obeying
anticommutation relations like

pg +qp = hi.

For brevity, let us call these canonical and anti-
canonical quantizations, respectively. We have been
exploring?? a single kind of field quantization which
appears to embrace both the canonical and anti-
canonical, and to reduce to them in appropriate
circumstances. In this kind of quantization, for which
we employ the term multivalued quantization, all the
fundamental fields are supposed to obey commutation
relations, as in canonical quantization, but the state-
functionals on which they act are permitted to be
multivalued. More succinctly, a multivalued quantiza-
tion of a classical system S is a canonical quantization
of the “covering system” §, and the definition of the
covering system § is formulated in close analogy to
that of the (universal) covering space in topology.

* Supported by the National Science Foundation (Grant No.
GP 6137).

t Young Men’s Philanthropic League Professor of Physics.

 Supported by the U.S. Atomic Energy Commission. Present
address: Dept. of Physics, University of Saskatchewan.

1 P. Jordan and E. P. Wigner, Z. Physik 47, 631 (1928).

2 T, H. R. Skyrme, Nucl. Phys. 31, 556 (1962).
3 D, Finkelstein, J. Math. Phys. 7, 1218 (1966).

It is well known that half-odd spin is related to a
“quantum-mechanical double valuedness” under rota-
tion. Here we show that Fermi-Dirac statistics can be
related to a “quantum-mechanical double valuedness”
under a different process which we call field exchange.

The most significant results are the following two:

1. In the framework of the usual two quantizations,
it is well known that the spin and statistics of quanta
are independent per se and further considerations
(analyticity, Lorentz invariance, etc.) are necessary to
account for the observed correlation. In multivalued
quantized field theories, continuity arguments suffice
to show that among theories with integer-valued
intrinsic spin, the cases that admit half-odd spin states
at all are the same as the cases that admit odd sta-
tistics. The correlation found in nature appears to
follow purely from continuity considerations. More-
over, since there are only two “kinds” of spin, integer
and half-odd integer, it follows that in this framework
there are only two kinds of statistics and ‘“‘para-
statistics’ is impossible.

2. In multivalued quantization, there is always a
conserved additive integer attached to structures
possessing half-odd spin. This coupling between the
values of rotational and nonrotational quantum
numbers corresponds well with the empirical fact that
there exists a conserved ‘‘particle number” (strictly
conserved, additive, scalar quantum number) that is
nonzero for every fermion, e.g., Nz + N, + N,,
where Np is the baryon number, N, the electron
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number, and N, the muon number (N, + N, is a
“lepton number’”). In brief, there are no truly neutral
fermions. No boson and fermion can have exactly the
same set of values for their conserved ‘particle
numbers.”

We may summarize our methods as follows:

Nonlinearity is crucial for our development. Loosely
speaking, when a field is nonlinear enough, there are
shapes it can assume which cannot be wiped out by
any continuous process whatever. We have called
these classically indestructible objects *kinks’ and
proven their possibifity and conservation in quantum
theory as well, by primitive considerations of con-
tinuity which ultimately reduce to homotopy calcula-
tions, recourse to detailed dynamical calculations
being unnecessary.?® Equally primitive is the distinc-
tion between multivalued quantized systems which
can possess state functions double-valued under 2=
rotation, and those which cannot: briefly, theories
with half-odd spin vs integer spin theories. For
example, the rigid rotator with 3 degrees of freedom is
a theory with half-odd spin, but the dipole rotator with
2 degrees of freedomis not. This distinction also reduces
to a homotopy calculation. Again, suitably nonlinear
field theories are found to belong to the half-odd-spin
type.® Indeed, that part of the total angular momentum
of a field which is generally called the orbital angular
momentum is itself found to possess half-odd-integer
eigenvalues, an attribute usually supposed to be
reserved for the other part of the angular momen-
tum, the intrinsic. It is for this reason that we
have refined the usual terminology, slightly reserving
the words half-odd spin merely for the phenomenon
of a sign change under 2 rotation, and calling the two
parts of the total angular momentum J of a field
intrinsic and extrinsic: J = J* + Je.

It is possible to study the exchange of two field
structures by the same methods that were used to
study the 2+ rotation of one structure. We ask whether
a field theory admits states which are odd under
exchange just as under 2w rotation, setting up an
oddfeven classification of field theories that parallels
the previous half-odd-spinfinteger-spin classification.
We show that the existence of kinks is necessary (but
not sufficient) for a multivalued quantized field with
integer-valued intrinsic angular momentum to be of
the half-odd-spin type or of the odd (Fermi-Dirac)-
statistics type.

e i 1=

FiG. 1. The first rubber-band lemma. This relates a rotation and an
exchange. See text.
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Fi6. 2. The second rubber-band lemma. This relates two exchanges.
See text.

Sometimes we call our work ‘““rubber-band physics.”
In the first place, the simplest model of a kink is a 27
twist in a rubber band. In the second place, the
topological calculations leading to the spin-statistics
result are not completely transparent, and a heurism
that we found indispensable is the following rubber-
band lemma:

If a rubber band is wrapped twice about a rod, it
exhibits at least two deformities: a self-crossing and a
27 twist,

We suggest the reader perform the experiment. If
one uses a finger or two for the rod, with a little work
he can get the self-crossing on the palm side, and the
2m twist concentrated in one of the two parallel
strands on the back side (see Fig. 1). The crossing
serves as a graph of an exchange process in which the
contents of two regions of space are interchanged by a
continuous deformation. (The angle around the rod
is the deformation parameter.) The twist is a graph
of a kind of 2n rotation of one of the two regions.
The triviality of the rubber band convinced us that
these two processes are homotopic, and a complete
formalization and proof of this result makes up much
of this paper.

The general relation proven is not between the
total J and exchange, but between J¢ and exchange.
Just in the case of integer j*, this coincides with the
observed spin-statistics relation,

The nonexistence of parastatistics in multivalued
quantized theories became clear from a second rubber-
band lemma:

A rubber band can be wrapped three times around a
rod with no twists and two crossings.

As graphs of exchanges among three regions 1, 2, 3
(see Fig. 2), this demonstrates that the exchange 1-2
and the exchange 2-3 are homotopic. Since para-
statistics is characterized by the existence of non-
equivalent exchanges, we inferred that parastatistics
would be excluded. The rigorous proof given of this
fact is not based on the second rubber-band lémma,
however, for a simpler proof was found. But we found
the second rubber-band lemma heuristically useful in
another connection (see Fig. 11).

The paper is organized as follows, In Sec. I, the
theory of kinks is presented. Since this is not the first
exposition, the presentation is compressed and formal
In Sec. 11, a similar presentation is given of the idea of
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multivalued quantization of field theories in general,
and field theories with kinks in particular. In Sec. 111,
the spinconcept is defined and the topological criterion
for half-odd spin is formulated. Section IV deals with
exchange, and the main feature is that there is a close
step-for-step correspondence between the spin treat-
ment of Sec. III and the exchange treatment of Sec. IV.
Then the connection between spin, exchange, and
kinks is formulated and proven in Sec. V and in the
Appendices, to which some useful but noxious lemmas
are relegated.

The results described here still permit us to entertain
the hypothesis that the stable elementary particles are
kinks in a nonlinear field, in the sense that their
“particle numbers” are the numbers of kinks present
in the quantum. According to this hypothesis, the
linear or almost linear spinor fields usually employed
to describe half-odd-spin quanta are not fundamental,
but are wuseful “point-limit’” approximations to
operators creating or annjhilating excitations in a
nonlinear field of particular internal states. It is
regrettable that the dynamical calculations required
to try this hypothesis more severely are so difficult
and so likely to diverge, but we are not abandoning the
question yet. We suspect in particular that the present
methods can be used to construct, from the underlying
commutative-field creation, operators that anticom-
mute or commute appropriately, linking our exchange
statistics to the usual field-theoretic concept of
statistics. When quantum mechanics was discovered,
the obstinate dualism of matter and field, particle and
wave, at last dissolved into the unity of the quantum,
only to be reincarnated subsequently in the distinction
between Bose-Einstein and Fermi-Dirac quanta with
their two different quantization recipes. The present
work suggests that it is finally possible to unify these
two into one nonlinear field, possessing two kinds of
statistics,as a direct consequence of the topology of
the rotation group in three dimensions.

I. CLASSICAL FIELDS

1. A classical field ¢(x) on a flat (Minkowskian)
space-time {x} is a continuous mapping of {x} into
some topological space ®@. We shall assume @ to be a
connected? manifold, so that the value ¢ can be
locally represented by n real numbers ¢,, and any
two points @,, @, in @ can be joined by a path in @,
i.e., a continuous mapping f: I — @ of the unit interval
into @ with £(0) = ¢,, f(1) = ¢1.

2. Let X = {x} = {x|7=const} be ordinary 3-
dimensional space and let ®X be the set of all contin-

4By “connected” we shall mean what is usually known as

“arcwise connected” or ‘‘path connected”; except for this, we
follow the standard terminology of topology.
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uous mappings ¢: X — @, and ®¥(¢,) the subset of
OX with (x) — @, as |[x| > <0, @, an arbitrary fixed
point of @. The field @(x)|_const = (X, 1)|

is supposed to belong to ®¥(g,) at any time its
continuous evolution being determined by classical
field equations and appropriate initial conditions.

3. We suppose that @(x, t) has a single-valued law
of transformation under the Poincaré group. This
characteristic will be retained when we quantize the
field, making our approach basically different from
the usual ones, in which spin-} particles are represented
by double-valued fields.

4. Two fields ¢,(x), @o(x) in D¥(¢,) are said to be
homotopic to each other, ¢,(x) ~ @,(x), if there is a
continuous mapping @(X,u): X ® I - ® such that
A(x, u) is in ®X(g,) for any given u in 7, and

p(x, 0) = ¢y(x),
P, 1) = ¢(x);
@(x, u) is called a homotopy between ¢, (x) and ¢,(x);

“~~" is an equivalence relation, and its equivalence
classes are called the homotopy classes of O¥(g,).

5. Let us denote ®X(gy) by Q, and a general
element @(x) in Q by g. We shall make of Q a topo-
logical space by introducing in it the compact-open
topology (Ref. 5, p. 73), which coincides with the
metric topology on Q, d(g, ¢') = maxd[p(x) —

&€
¢'(x)], when X is compact and @ metr}lgc (Ref. 5,
p. 102). Q may or may not be connected, and its
connected components @, are just the homotopy
classes defined in Sec. I, part 4; a homotopy is a path
g(u) within some @, , and so is, by Sec. I, part 4, a
time evolution ¢(x) = @(x, t), showing that dynam-
ical variables that depend only on the homotopy class
of ¢(x) are constants of motion. If there is more than
one component O, we say that the field admits kinks.

6. Kinks form a group, in the following sense. The
components @, are the elements of the group. We
shall denote by m3(®, @) the set of -all the Q,.
Starting from any ¢,(x) in Q, and @,(x) in 0, we may
construct, through homotopies if necessary, repre-
sentatives @,(x) in @, and @,(x) in Q, such that

Pi(x) = @o, x3 20,
PAX) = @0, X3 <0;
we define
0;=0:+0, (1)
as the homotopy class of
Pa(x) = g1(x), x3 <0
= ¢y(x), x3>0. 2

5S.T. Hu, Homotopy Theory (Academic Press Inc., New York,
1959).
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Under the operation (1) m5(®, g,) is an Abelian group
(Ref. 5, p. 109), the third homotopy of the pair
(@, @ € ). It can be shown (Ref. 5, p. 126) that for
any g, ¢, in © (connected), m(P, o) ~ m3(D, @)
Accordingly, when concerned with only the group
structure of m4(®, @,), we shall denote this group by
75(D@). @o(X) = g, for all x belongs to the ideritity of
73(®, ¢p), and if @(x) is in Q,, then @(—x) is in
Q;! (or —Q,, in the additive notation).

7. Since m3(®) is Abelian, if it is finitely generated
(Ref. 5, X, Corollary 8.3) its elements can be labeled
by a set of numbers

(e, " oM, Mgas " M) =1, 3)
such that m,---,n, range over the integers and
M, ", 1, Tange over the integers modulo

r, (i=k+1,---,0D,

r; being a factor of r, ;. The / components of n are
conserved (Sec. 1.5) and additive, in the following
sense: if a field ¢ (x) in Q,(1) is juxtaposed to @u(x)
in Q,(2) [see (2)], the resulting field ¢3(x) belongs to
the class Q) , with
n® = n® 4 n® - a4 a®)= a4 @ (@)
then, (i =1, - - -, [) can then be considered as particle
numbers or ‘“‘charges.”” The possibility of having
“modulo™ conservations (the n;’s for i > k) has
arisen also in different context,® but is not supported
by experimental evidence so far. From now on we
shall discuss only ®’s for which / = k in (3), but in
general our results are valid. We shall say that ¢(x)
is one “kink of type i’ if p(x) is in Q,, where
Ni=(0’0,...’1,...,0)’ (5)
1 being in the ith place; then ¢(—x) is in Q_y, and
will be called an antikink of type i. Any field ¢(x) in
Q. with z given by (3) can be considered as composed
of a certain number of kinks or antikinks of the
various types N, .

8. In the literature the nth homotopy group of @
is variously defined as the set of homotopy classes of
mappings (S”, pe) — (P, ¢,) of an n sphere S™ into @,
with py(eS™) — @,, of mappings (I, 0I") — (®, ¢,)
of an n cube I" into ®, with its boundary 0" going into
@y, etc. All those definitions are equivalent among
themselves (this is proven by showing that after
proper identifications the domains of the mappings
are homeomorphic) and to ours for n = 3: we can,
for instance, deform X into a 3-ball: x — x/1 + |x|,
which is homeomorphic to a 3-sphere upon identifica-
tion of its boundary |x| = 1 into one point p,. Notice
that this is allowed by the boundary conditions
introduced in Sec. 1.2.

% See, for instance, M. Gell-Man, Phys. Letters 8, 214 (1964).
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TasLE I. Homotopy groups for the underlying manifolds of clas-
sical Lie groups.

SO, SO, S0y SO SOn; SUy SUnss Spa>
P AR A Zy Zn Zy O 0 0
m 00 0 0 0 0 0 0
m Z Z42zZ Z Z Z z z z
w0 Zy ZatZe Zy 0 Z, 0 Z
w  Zy Zav Z, Zy Z 0 z, z Z,

9. Any Abelian group 4 that may be dictated by
phenomenological considerations can be realized as
the third homotopy group of some space ®@. Moreover,
it can be shown (Ref. 5, p. 169) that given a sequence
of groups

Ty Tyt T,
such that all except possibly the first are Abelian and
7y is a group of automorphisms of all the others, there
exists a connected space @ such that

7,(®) ~ w, forall n

In particular, there are C = 2% nonhomeomorphic
spaces with the same ;!

10. Some homotopy groups of spheres are tabulated
in Ref. 3, Table 1 , and many more are given by
Toda.” Table I shows the first five homotopy groups
for the underlying manifolds of classical Lie groups; it
has been compiled from several sources.”

The relation 7,(® @¥) =7, (D)@ =, (¥) is a
useful tool for the construction of ad hoc spaces
(Sec. 1.9).

II. QUANTIZATION

1. When a classical field theory is quantized, the
statement “‘the measurement of the field at time ¢
will give the values ¢(x,?)” is replaced by “the
probability amplitude for getting the result ¢(x)
when measuring the field at time z is ¥ {@(x)](¢),”
Y being a complex-valued time-dependent functional
of @(x), continuous in ¢ and ¢. Notice that in this
picture (Schrédinger) and representation [diagonal in
@(x)], the argument of the functional is a c-number
field, an element of the function-set X of Sec. 1.2.

2. We shall assume that, at any time,

Pl =0 if ex)¢P¥(p) =0, (6)

so we can use Q = ®Y(¢,) instead of ®X as our
configuration space; this implies restrictions on the
dynamics of the system, but we shall not elaborate

? H. Toda, Composition Methods in Homotopy Groups of Spheres
(Princeton University Press, Princeton, N.J., 1962); A. Borel, in
Seminaine H. Cartan (2) (Ecole Normale Superieure, Paris, 1956).
L. Pontrjagin, Topological Groups (Princeton University Press,
Princeton, N.J., 1946); V. G. Boltyanskii, Transl. Am. Math. Soc. 7,
135 (1957).
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this point in the present work. Since for ¢ in Q we can
write V'[p)(r) = ¥(q, t), a continuous complex-valued
function on Q@ ® R (R = real number space spanned
by £), another way of putting (6) is

f (g, O dg = 1,
Q

provided that the concept of integral on Q can be
defined; even if not, we shall use expressions of the
type in (7) as symbols for expressions of the type in
(6). We call ¥ the state function(al). '

@

3. If we accept the Feynman scheme for quantiza-
tion, which uses integrals over continuous histories
@(x,1) (in our case paths in Q), it can be shown
(Ref. 3, Sec. I11.2) that

f ¥(g,0)?dg =1 implies f (g, D dg = 1;
Qn Qn
®)

then, if the “charges” defined in (Sec. 1.7) are inter-
preted as nonlocal observables in the quantum
theory, (8) tells us that they are conserved in time.
In the following, whenever we talk about a homotopic
conservation law it shall be understood in the quantum
sense given by (8). In short, (6) and (8) allow us to
extend the results of Sec. I to a quantum theory of
@ in which @(x) can still be treated as having a c-
number field of eigenvalues. We assume for simplicity
that the particle numbers #;, obey a superselection
rule,® i.e., that the support of any realizable physical
state ¥'(g) is one of the Q,,.

4. In what follows we shall be concerned with two
kinds of discrete operations that leave physical
systems unchanged but may multiply the state vectors
by —1: a 2= rotation and the exchange of two
identical subsystems. The 27 rotation can be realized
continuously by a succession of infinitesimal trans-
formations in an obvious way, and we shall give in
Sec. IV an analogous realization for an operation
related to the exchange.

Let g — F,q represent a flow in Q, i.e., a one-param-
eter family of 1-1 mappings F, satisfying the
conditions

Foq = q’ (9)
so that F,g (0 < s < 1)is a path atg. Any such flow in
Q induces a continuous one-parameter family of
linear transformations of the state function ¥'(q):

¥(g)—¥(g,5) =¥(Fq) =¥(g) 0<s<1L
(10)

1n

If
Fg=gq,
8 G. C. Wick, Phys. Rev. 88, 101 (1952).
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the flow is called closed. Its paths are then closed
paths or loops. (11) is the mathematical expression
of the “leaving the system unchanged” used above.
Since until now we have considered ¥ to be single-
valued, (9) and (11) imply

Y(Fq) =Y(Fg). (12)

Now we wish to consider that the state function ¥'(g)
might be multiple-valued; this point is elaborated
upon in Sec. IL5, and (12) no longer holds.

5. Our first problem is to find whether the domain
0, of the state function ¥'(q) admits multiple-valued
continuous functions. Intuitively speaking, these have
more than one value at each g in Q, (the value set
changing continuously with ¢), such that any two
values ¥y and ¥, at ¢ can be connected by a contin-
uous succession of values ¥'[g(s)] by traveling some
closed path g(s)[g(0) = q(1) = g]. It is evident that
no simply connected @, admits such functions.®
Moreover, since the value of a multivalued function
depends on the point ¢ and the way ¢ is reached from
some standard point, such a function on @, can be
defined as a (single-valued) function on CQ,, the
universal covering space of Q.

We define CQ,, as follows:

We choose a base point ¢, in O, and consider the
paths ¢(s) in @, (0 < s <1) such that ¢(0) =g, ;
two paths g(s) and ¢'(s) are equivalent if g(1) =
¢'(1) = g (say) and there exists a homotopy relative
to {0, 1} between ¢(s) and ¢'(s), i.e., a continuous
mapping q(s, u): ?—Q, 0<Ls<1, 0<u<])
such that
q(s, 0) = q(s), q(s, 1) = 4'(s),
q(0,u) =q,,,9(1,u) =q.

The equivalence classes of paths ¢(s) are the points
of CQ,, if we introduce the following topology:
given ¢(s) and an arcwise-connected open set U

that contains ¢(1), the union over U of the equivalence
classes of the ¢’(s) such that

7)) =92s) O<s<Y),
g <U F<s<D,

is a set belonging to CQ,,; the collection of all such
sets is taken to be a basis for the topology of CQ,.

We now define a multivalued function on a space Q
to be a single-valued function on the covering space
CQ. In what follows, such functions will further be
required to be continuous unless otherwise mentioned.

9 We remark that we are talking about state functions, i.e.,
complex-valued functions on Q. The statement is of course not
true for the spinor wave function of ordinary quantum mechanics;
indeed, its domain is simply connected, but its components do not
satisfy the transformation law (10) when subject to rotations.
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Q,, admits multivalued functions if and only if CQ,,
is not homeomorphic to @, , which is equivalent to

7T1(Qn) 75 0

6. For any connected space Y, we shall write
7,7, - - for different points of C'Y associated with the
end points y € Y and j(s) for a representative path of
the class §. We also say that j, 7, - - - ““cover” y, and
denote by Cy the set of all the covering points of y;
it is easy to see that the number of elements of Cy is
constant over Y. In the following a multivalued
function ¥ on @, shall be written as a function on
CcOQ,:

¥ =¥(g). (13)

7. A group that acts on @ cannot in general be
defined to act on CQ continuously. For example, the
action of the rotation group on spinors is not uniquely
definable. However, the action of a flow on Q
uniquely defines its action on CQ. If F,q is a flow on
0, then F.§ can be defined in a natural way for each
s = 5§, as the equivalence class of a path that consists
of a path representing § followed by the path F.q,
0 < s < 9. Accordingly a flow on Q acts also on @,
and therefore on state-functions ¥'(¢) in such a way
that the value of ¥ is invariant:

FI¥(§] =V(F§) =¥ (9, (14)

or

Y(q) =Y(q)
where §, = F4.
8. Computation of =,(Q,). For Q,, the component
of Q = ®X(g,) that contains the field @o(x) = ¢,,
we have (Ref, 3, Sec. V.2)

m1(Qo) ~ (D), (15)
which formally solves the problem for Q,, or at least
reduces it to a standard one. Once 7,(®) is known, the
problem is completely solved because it can be shown?0
that for any two connected components

Q;, O, of 0 = DX(gy), m(Q;) ~ m1(Qh),
$0
m(Q,) & m(®) for all n. (16)

Our main interest in this result is that if m,(®) £ 0,
all @, admit multivalued functions; otherwise, none
does.

9. Assuming that (13) is properly multivalued,
V() =V(q), (17)
in order to have a theory of the type described in
Sec. 11.4 we still have to show that the multivaluedness
of W(g) is realized by two special flows ¢,, namely, the
2z rotation of a field ¢(x) (Sec. I1I) and the “exchange”
of two fields identical to ¢(x), a concept to be defined

10 G, W. Whitehead, Ann, Math. 47, 460, statement 2.6 (1946).
We are indebted to Professor S. T. Hu for this reference.
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in Sec. IV. These are in principle two independent
problems, and it is one of the main purposes of this
paper to prove that their solutions are interdependent,
and that, in a sense specified in Sec. V, an affirmative
(negative) answer for any one of them implies an
affirmative (negative) answer to the other. In this
sense, the “spin’’ of a system determines its ““statistics™
and vice versa. As we shall see (Sec. V), our proofs
require only continuity of the fields ¢(x) and of the
state functionals (13) with ¢ = [p(x)].

III. SPIN

1. The angular momentum of a field theory is
defined as the generator of infinitesimal rotations

0x = 40 x x,
where 60 gives the axis and angle of rotation. The

change in the field resulting from this rotation may be
written as

op o9
ax 1 50
where the first term gives the “‘extrinsic’” change due
to the spatial variation of the ¢ field, and the second
term is due to the “intrinsic” law of transformation
6:9— ¢ = ¢'(g, 0)
of the ¢ field under a rotation parametrized by a
vector 8. The corresponding decomposition of the
generator of this rotation is written
J=J 4 I

The field theory exhibits half-odd-integer angular
momentum if and only if the operator of a 2« rotation,

W = e2”iJZ,
possesses eigenvalues —1 as well as +1.

For brevity, half-odd-integer angular momentum
will be referred to as half-odd spin. If a component
0, of Q supports an eigenfunction V' of W = —1,
we say Q, (and the theory) admits half-odd spin.

2. In familiar field theories, J° has integer eigen-
values and does not contribute to W,

We® =exp 2miJ;) = 1.
Therefore half-odd angular momentum is usually

attributed entirely to the transformation law of the
field

.00 = 6°p + 8y,

6=0

do =

W =~ exp 2QwiJi).
In quantum-field theory, the generators J may be
defined in terms of the transformation of the state
functional of the field, rather than the field itself. If
multivalued state functionals are admitted, then we
have shown there exist quantum-field theories for
which J¢ contributes to W: While the field itself does
not change sign under a 27 rotation, the quantum
state of the field does. Heuristically, such a spin can
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be thought to come from the actual rotation of very
asymmetric field structures having some of the
properties of a quasirigid rotator. In this kind of
theory the familiar decomposition of the angular
momentum of the electron,

J=L+S8,
is a feature of a phenomenological model and does
not correspond to the decomposition

J=J+ J
S itself may result from “orbital’” angular momentum
J* of the kink representing the electron.

3. We now specify the flow g — (W*),q of (10) for a
continuous 27 extrinsic rotation of a field @(x).
Let W*(s) be an extrinsic rotation through an angle
2ms around some axis through x = 0, acting in the
usual way on the argument x and leaving invariant
the value g,

We(s)p = ¢ (for all s and any axis).
We then define the flow in Q,

q—>Wq = Ws) - [p(X)] = pp(x, 5)
= [(W)(s)-x] (<5<,
and (1) becomes, for rotations,
Y(g) — We(s) - ¥(g) = Y[(W)(s)  q]
= ¥[(W)-4ql. (20)

The effect of a 27 rotation on a single-valued
function ¥'(§) is defined by Sec. I1.7.

4. Since the W*(s) (for all s and any axis) constitute
the elements of SOy, the rotation group in 3 dimen-
sions, W can be represented as a loop in the SO,
manifold. SO, has a well-known graphical representa-
tion as a 3-dimensional ball of radius = with opposite
points of the surface identified. A maximum cross
section of this construction, including a representative
path We(s) of W*, is shown in Fig. 3.

Any deformation of a path described by the W*(s)
induces a deformation in the corresponding path
described by the ¢’s in Q, via (19); in particular, if a
loop in SO, is homotopic relative to its end point!!
to the trivial loop, so is its induced loop q(s) (but the
reciprocal is not always true). A well-known example
of such a loop is (W*)?, a 4w rotation, i.e.,

(Woe = 1. @n

The fact that we are dealing with a 3-dimensional
theory is crucial for this. The result does not hold for
the rotations in 2 dimensions, a 1-dimensional sub-
group of SO, with the topology of S1.

(13)

(19)

11 By ‘‘relative to its end point” we mean that the two loops can
be connected by a continuous family of /oops with a common end
point. Unless otherwise stated, whenever two loops (on X, Q, etc.)
are said to be homotopic, it will mean homotopic relative to their
end point.
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F1G. 3. Path of a 27 rotation
in $O(3, R). This path is not
homotopic to the identity.

S. Notice that W = 41 holds only for W as
operator on state functions, whereas for the fields
(or rather for their coverings), Eq. (21) only means
that

W§=§ <=Wj =j. (22)

For Q, to admit half-odd spin there must be a

neighborhood in CQ whose points § obey

W-§q#4q;

this is a consequence of the following.

(23)

6. Lemma: Eq. (23) holds or fails to hold, simulta-
neously for all§ € CQ,,.

The proof of this lemma is given in Appendix A.
The lemma implies that in order to see whether a given
Q,, admits half-odd spin, it is enough to check if (23)
holds for any one § € CQ,,.

7. In what follows we give a few results helpful in
finding whether or not a given Q, admits half-odd
extrinsic spin J°.

A necessary condition for Q, to admit half-odd J¢
is that 7;(Q,,) contain at least one element of order 2.
This is an immediate consequence of (21) and (23).

A necessary condition for Q, to admit half-odd J*
is that no ¢(x) in Q,, be axisymmetric, since for such a
field, W-§=4. In particular, Q, does not admit
half-odd J¢, because @(x) = ¢, is axisymmetric.

In other words, kinks [w3(®) 7 0] are necessary
for half-odd extrinsic spin (Ref. 3, Sec. V.13). More
strongly: kinks must be present in a state with half-odd
extrinsic spin.

IV. FIELD EXCHANGE

1. In order to define an exchange operation on a
field @(x), we have to identify the objects to be
exchanged. Since we have neither a procedure for
locating particles in a general field ¢(x) in Q nor the
creation operators of the usual quantum-field theories,
we shall at first restrict ourselves to ‘““union’ fields
defined as follows. By the support sup ¢ of a field
@(x), we mean the set of points x at which ¢(x) # ¢,.
@1(x) and @,(x) are fields of disjoint supports sup ¢,,
sup ¢, , then their “union,”

Q=@ Y P, (24)
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a, (ok Q, (012,01

=@ (1) 4

F1G. 4. Path in X of the exchange carried out on two kinks at

a, and a, .
is defined by
p(x) = ¢i(x), xe€sup ¢,
= @5(X), X ESUp @y, (25)
otherwise,
= @ -

Now let ¢,(x) be a kink of type n with sup ¢, <
{Ix| < €}. We take

(p(x) = (pn(x - al) v (pn(x - a2)9 (26)
with

la, — a,] > 2e. 27

The a, are finite, and (25) and (27) guarantee that (26)
is well defined, i.e., that the supports of the kinks
(of type n) ¢,(x — a,) do not overlap.

We can now specify the g(s) of Sec. 11.4 for an
exchange of the structures at a, and a,. Let n be unit
vector perpendicular to a; — a,, and (see Fig. 4)

a,(s) = ¥(a, + a,) — (—1)" exp s7n x §(a, — ay);

(28)
here n x is the linear operator on vectors v defined by
(n x)v =n x v. Then
qn(s) = (pn[x - al(s)] % (pn(x - a2(s))s 0 S § S 1

(29)
has the desired property of being a loop starting and
ending at ¢(x), with the structure originally at a,
now at a,, and vice versa (Fig. 4).

2. We now define a closed flow (cf. Sec. I1.4) X™
in the function space Q. Physically speaking, X
makes a clearing at infinity, creates there two kink-
antikink pairs of type m, exchanges the two kinks,
annihilates the kinks with their antikinks, and
restores the clearing to its original form.

Symbolically, we compose X™ out of the following
five flows Y, in the order

X" =YY, Y3Y, 1, (30)
where Y; is a shrinkage of the field to a support of

radius e, Y, is a creation of two kink-antikink pairs
outside the support, Y, is the exchange of the two
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created kinks (see Fig. 5), ¥, is the annihilation of the
two pairs, the inverse of Y,, and Y; is an expansion
of the field, the inverse of Y;. Let

Pn(®) = @u(—=X, p,2), b=(5,0,0),
€=(c0,0), b>0.
b and € are vectors along the x axis of length b and e,

and let n now be a unit vector along the z axis. Let
r = |x|, then the Y, are defined as follows:

Yliw(x,8)=¢(———x ) r<3e
1——ir s
5,€ 0<s< sy,
= P> "Zﬁf
s
Y2:(P(xas)
e 23]
8y — 51
y>b
=¢_m[x_(b_ﬂe)}
S — 8
e<y<b
P P 51 <5< sy,
rfen e 229)
52‘—51
—b<y< —e¢
=
Sg — 8
y< —b
=¢(x,5), —e<Ly<Le
Ya:g(x, )
=<pm[x—exp(27-rs_sznx)
S5 — Sy
X(b+e)}
Szﬁssssa
Uq)m[x+exp(2ws_s2nx)
S5 — 3
><(b+e)], r>b
=(p(xs52)9 "Sb
and
Y5Y4:¢p(x,s)=qo(x,s211—s)} 55<s<L 1.

Notice that ¢(x, s) is continuous at s = s; because
(X, 53) = @(x, 55); also, during Y;¢(x, s) is precisely
the loop ¢,,(s) of Eq. (29) performed upon the two
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F1G. 5. Exchange operator. The field @(x) is shrunk into a finite
sphere to leave ‘“‘working space.” Two kink-antikink pairs of the
same kind are created in the working space. The two kinks are
exchanged. The new pairs are allowed to annihilate, and the field
@{x) expands to refill the now empty working space.

kinks ¢,, created in the step Y,, witha, =b + € =
—31 »

3. If the state @(x) already contains kinks of type m,
as say a union field (Sec. IV.1), the exchange of two
of these kinks is homotopic to X™¢(x). This is proven
in Sec. V.3.

4. A double exchange of two m kinks, i.e., (X™)?,
is trivial:

(XmR =1. 3D

Proof: Any deformation of a trajectory described
by the a’s induces a deformation (homotopy) in the
corresponding path described by g via (29); in partic-
ular, if a set of trajectories of the a’s is homotopic
relative to its end points to the trivial trajectory
[a,(s) = a, for all 5], so is its induced loop g(s).

In Fig. 6(a) we show, slightly displaced in order to
distinguish them from one another, the trajectories
a;(s) corresponding to the loop g,,(s) given by (28)
and (29) with s replaced by 2s in the exponent, i.e., a
representative loop of (X™)2.

Figure 6(b) is an intermediate stage of a deformation
of the trajectories of Fig. 6(a) into the trivial trajec-
tories of Fig. 6(c). If at every stage of the deformation
a,(s) and a,(s) move on their respective circum-
ferences with uniform speed, the distance between them
is always [a; — a,|. Since the supports of ¢,[x — a;(s)]
and @,[x — 8,(s)] do not overlap initially, they do not
overlap during the process. Figure 6 constitutes a proof
of (31). In symbols, let

n@)=[1—-—n+t@—-a)Jil] (32
(the denominator is the magnitude of the numerator).
Then
a,(s, 1) = §(a, + a5) — (1)
X exp [2msn()x] $(a; — ay) (33)
satisfies
a,(5,0) = a,(25),a,(5, 1) = a,. QED. (34

Again, our proof of (31) is valid only in 3-dimen-
sional theories! In Appendix B we show that,in general,
(X™? # 1 in two dimensions. This, together with the
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other similarities between X and W, suggests the
possibility of a relationship between W and X the
existence and nature of such a relation is the subject
matter of Sec. V.

5. It is simple to prove that the homotopic triviality
of the flow X™¢(x) depends only on m and not on
$(x).

6. When

Xrg#g (35)
is obtained for X™ acting as defined in Secs. I1.7 and
IV.2, we say that the theory, and in particular Q,,
(the component of Q that contains the kink being
exchanged), admit negative field exchange, or “odd
statistics” for short. The reason for the term “negative”
or “odd” is that (31) and (35) imply that Q admits
state functions ¥ (§) with the property

Xm(g) = —¥(9). (36)

Notice that X™ = 41 holds only as an eigenvalue
equation for X™ as an operator on state functions,
whereas for fields (or rather for their coverings),
Eq. (31) means only that

X"§ =§ <> X" =7 (37

7. As in Sec. IlI, we can test whether Q,, admits
odd statistics by checking if

X"g#q (38)
is obtained for any one §& @, as shown by the
following.

Lemma: Equation (38) holds or does not hold
simultaneously for all § € Q.
Proof: Exact analog of the proof of Lemma 3.

In other words, this lemma says the parity of a
structure under field exchange depends only on the
component of Q,, to which it belongs, and not on the
surrounding structures.

8. A single kink of type m will admit both odd and
even exchange states if it admits odd exchange states.

The conserved baryon and lepton numbers do not
behave this way: for example, a single baryon can be a
fermion but not a boson, in that there is a fermion
but no boson with

Ng=1,N,=N,=0. 39
Why? Or does the kink model lead us to expect an

® \ l /] e & ’/ Sx, & % ’

(a) (b) ©

F1G. 6. (a) Pathin X of an iterated exchange and (b} its deformation
to (c) the identity.
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excited state of the nucleon with the quantum numbers
(39) but with integer spin and Bose statistics ?

Our answer consists in two topological laws that
combine to prevent kinks from ever exhibiting
both of the statistics they may admit in principle: the
invariance of statistics with respect to (a) the partition
of the system into subsystems and (b) the passage of
time.

In a universe of kinks of type m, the measurement
of the exchange operator for any pair may give the
value +1 or —1 in principle. However, if the result
is —1, then an immediate measurement of the exchange
operator for any other pair of kinks of type m will
give the same result —1 by (a), and any subsequent
measurement of this exchange will continue to give the
result —1 by (b). Thus the statistics will appear to be a
universal and permanent attribute of the type of
kink. Let us now state more carefully and prove the
topological laws mentioned here:

(a) Consider an eigenstate V' such that ¢, is a

union field,
Popt = U g (0¥,

with ¢, , - -, @y kinks of the same type m. Then the
N(N — 1)/2 exchanges ¢, <> ¢, , as continuous proces-
ses, are all homotopic to each other, and to the
effect of the exchange operator X™ (defined in Sec.
IV.2). This is a consequence of Sec. IV.3.

(b) The exchange operator X™ is a constant of the
motion. Indeed, the state functional W([¢](¢) is
continuous in (g, t) (Sec. I.1), so when ¢ undergoes a
continuous closed deformation ¢ —> ¢(s) (in our case
an exchange of two type m kinks) we get a function
Wp(s)](¢) of s and ¢, continuous in (s, ), with the
restriction [for ¢ — X™(s)¢] that

PIpOI) = £¥[p(DI0), alle.  (40)
But W[¢(1)](¢) is continuous in #, ergo the sign is +
for all # or — for all #.

9. Parastatistics. As our terminology suggests, we
intend to interpret the operator X™ as the “performer”
of the exchange of certain real particles. Accepting
provisionally this meaning of X™, the relation

@™ =1 3D
implies that parastatistics are forbidden within the
present theory.

Ordinary quantum field theory does not exclude the
possibility of parastatistics, and some recent work has
been done on the subject. However, paraparticles
seem to be absent from nature,'? and it is suggestive
that they do not even arise as a possibility in theories
of the kind defined here.

12 H. S. Green, Phys. Rev. 90, 270 (1953); A. M. L. Messiah and
O. W. Greenberg, Phys. Rev. 136, B248 (1964).
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V. CONNECTIONS BETWEEN
“SPIN,” “STATISTICS,” AND
NUMBER OF KINKS

1. Theorem: Q,, admits half-odd extrinsic spin if
and only if it admits odd statistics.

The proof involves some rather specialized topolog-
ical calculations and comprises Sec. V.2 and Appendix
C. The reader willing to accept the theorem can pass
on to Sec. V.3.

2. Proof: (a) Let O - ¢(x) stand for the trivial loop
in Q starting and ending at ¢(x); our theorem then
reads [see (19) and Sec. IV.2]

X(s) - [p()] = gx(x,5) (say) ~ O - ¢(x),
if and only if

wes) - [p(®] = guw(x,5) (say) ~ 0 - ¢ (x),
px)€Q,. (42

(b) We may express (42) more explicitly. Let X
stand for the Euclidean space spanned by x, and I
for the unit interval. Then (42) means that there
exists a continuous function @(X, s, t) defined on
X ® I ® I, such that

(41)

P, 5, 1) = @y,

P(x,5,0) = px(x, s),
P(x,5,1) = 0. ¢(x),
@(x,0,1) = @(x, 1, 1) = @(x).

We can assume without loss of generality that the
two structures exchanged by X™(s) are identical to
¢.(x) and, for any s, lie completely within the 3-
dimensional unit cube or 3-cube

I3={x,y,z|0gx,y,zgl},

and that ¢(x) contains no other structures, since by
Secs. IV.3 and IV.5 they are irrelevant for the
statistics criterion; then (41) is equivalent to the
existence of a function p(x,s,#) on P® I® I = I°,
such that (0€2 stands for the boundary of the region
Q):

(43)

(44)

¢(a[3, 5,t) = Po>
(p(x9 s, 0) = (pX(xa S)a
P(x,5,1) =0+ ¢(x),
P(x,0,1) = @(x, 1, 1) = p(x).
Notice that (45) completely specifies a continuous
function on the boundary 0I5 of P=DP®IQ I,
the unit 5-cube spanned by x, s, #; we shall denote that
function by ¢,[015].
(c) We can also apply the above considerations to

the rotation loop (42), and state that (42) means that
there exists a function ¢,(x, s, ¢) on I® with boundary

(45)
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‘ s FiG. 7. Boundary of the
b 4-cube, or tesseract, 0 <
% (x, y, 5, 1) < 1, where x, y
are space coordinates, sis a
loop parameter associated
with the path of an ex-
change or a 27 rotation, and
tis a deformation parameter
associated with the homo-
topy of one loop into an-
other.

values
qu(aIs, s, t) = Qo>
(X, 5, 0) = gip(X, 5),
‘P1(x, § 1) =0- (pl(x)a
¢1(X, 0,7) = (pl(x’ 1, t) = (pl(x)'
We shall denote the function on 0I° defined by (46)
as ¢, [01°)].

The existence of a continuous function ¢(x, s, t) =
¢ defined on I° and with prescribed boundary values
@[0I°], is by no means trivial, and is in fact an example
of a “fundamental problem in topology, the extension
problem’ (Ref. 5, Sec. I.1). ¢ is called an extension of
@[01°] over I5 and (Ref. 5, Sec. 1.4) there are spaces ©
such that not every ¢[0/°] admits an extension over 7°.

(d) The following result is the basis for our proof3:

The homotopy-extension theorem: Let K be a finite
simplicial complex, and L a closed subcomplex. Let
fo:K— Y and g,:L— Y be such that g, =fi|r.
Then f, admits a homotopy f,: K— Y such that
flo=g.0<u<),

Since I° is a finite simplicial complex and 0/° a
closed subcomplex, the theorem applies for K = I°
and L = 0I° (note that ¥ = @ is not restricted at all).
Suppose that we can find a homotopy g,[0%], i.e., a
family of functions on 017, such that go[0I°] = ¢o[0I°]
and g,[0I°] = ¢,[0°]; then, by the extension theorem,
if @o[0I°] can be extended over I®, there exists a
homotopy f,[I5] such that f,[I*]|szs = g.[0I°] so, in
particular, there exists a function f;(I%) such that

JALPEEACE! @
This would prove the “only if”” of the theorem in
Sec. V.1, the “if”” being proved by exchanging the
subindices 0 and 1 in the above process.

(e) It will be convenient to represent @ol0I°]
graphically, but this is, of course, not possible since

(46)

13 p_ J. Hilton, An Introduction to Homotopy Theory (Cambridge
University Press, Cambridge, 1964).
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oI5 is a 4-dimensional manifold. However, for our
proof we shall only need 2 dimensions of X, or I3,
s0 we can represent each z = const (say) cross section
of I® and 9I° independently: I~"|Z=const is a 4-cube, 14,
and 009,_ .y is its boundary 94, a 3-dimensional
manifold homomorphic to S3, the 3 sphere. Thus, we
cannot imbed 27* in X (so we cannot give a visualiza-
tion of it) but we can “open” it along some “‘edges”
(here squares) and “flatten” it, in much the same way
as the surface (boundary) of a 3-cube can be brought
into a flat 2-dimensional figure; at this point our oI*
can be imbedded in X, so we can give a perspective
visualization of it: Fig. 7. Some of the pairs of “‘edges”
(squares) to be identified with each other are labeled
with a common letter; each of the *““faces” (3-cubes) is
spanned by three of the variables (x, y, s, f), each
going from 0 to 1 in such a way as to match, when we
make the indicated identifications between the squares
they span.

(f) In Fig. 8 we show only the four “faces” in which
(Po[als]lz=const = ‘Po[alﬂ # Po>» two Spanned by (x»}’, S)
and two by (x, y, f), and the “face” (0, y, s, £), which
has common “edges” with the former four. The
support (Sec. IV.1) of @;(X)|,—const is taken to be (see
Sec. V.2b) the square |x] < €/v/2, |y| < €/+/2- In the
(x, y, 5, 0) 3-cube of Fig. 8 we show the exchange of
two ¢, structures, for a given z and for n of (28) parallel
to the —z axis, the exchange of two ¢, structures, not
exactly as prescribed by (29) but in a way clearly
homotopic to it; the “pipes” of Fig. 8 are generated
by the supports of @y[x — a;(5)]|,_const and

(pl[x — az(s)]lzzconst .

Analogously the (x, y, s, 1) 3 cube shows the trivial

(xylt)

L
Iy
1 3
|
|

/'| 1
A

|

|

[l
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t i
i
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—a—{xysl)
l {oyst)

{xyso) —»= d-——dm |- —

~ =M+ -
/, /,l
s | ’ L
’ R%:z
’ 2 |

{ xyot)

Fic. 8. Boundary values on the 4-cube of Fig. 7 whose extendibility
into the interior of the 4-cube expresses the triviality of an exchange.
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loop 0. (¢,(x — a,) U ¢,(x — a,)). The two remaining
3-cubes with ¢ # ¢, represent the last line of (45).
The “curved pipes” only indicate how to identify the
structures contained in identical squares; they can
also be thought of as generated by the supports of the
structures contained in one of the squares in which
they end, if that square is “flopped over” to make it
coincide with the identical one.

From now on we may speak of I*, oI*, f[I4],
g[0o14] instead of I3, oI5, f[I°], g[0I°], in the under-
standing that we always refer to the z = const cross
sections of the latter.

(g) We now construct a homotopy g, [01%] with the
required properties (Sec. V.2.d). In all of 9I*, except
the five 3-cubes shown in Fig. 8, g,[0*] = ¢, for all u,
and go[0I°] = ¢,[01°] is given in Fig. 8.

In going from Fig. 8 to Fig. 9 we just “pull”
g.[01*] towards the (Oyst) cube, in which g, is defined
in such a way as to match the boundary conditions
generated when the supports of g, in the surrounding
cubes are cut by the common boundaries.

Next the “inner handle” of Fig. 9 undergoes a
rigid = rotation around the « axis, in the sense shown
there, with the values of the g, rigidly carried along;
the rest of g, in the (xy0¢), (xylz), and (xys1) cubes is
unchanged. The homotopy is more complicated (not
rigid) in the (xys0) cube, where g, is defined in a way
that matches the boundary values for all «; then, since
the shaded regions undergo a = rotation each, the two
*“pipes’’ in the (xys0) cube are subject to a 7 twist each.
By translating the content of the (Oyst) cube into the
(xys0) cube, straightening the resulting (xys0) “pipe,”
and distributing uniformly along the s axis the two
7-twists concentrated at its lower and upper ends, we

t

X

FI1G. 9. Intermediate step in the deformation of the boundary values
of Fig. 8 into those of Fig. 10,
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-t =

FiG. 10. Boundary values on the 4-cube of Fig. 7 whose extend-
ability into the interior of the 4-cube expresses the triviality of a 27
rotation.
finally obtain, in Fig. 10, a graphical representation
of ¢, [0I%] = (46), and thus, according to Sec. 1.d, we
have proven the theorem. The detailed analytical
construction of g,(0I°) is given in Appendix C.

3. Consistency of the definition of X™. We shall
now prove Sec. IV.3, i.e., that if ¢ is the union
(Sec. IV.1) of more than one pair of identical fields
@n(x) € 0,,, the exchange of the two kinks in one pair
is homotopic relative to its end point!* to the exchange
of the two kinks in any of the other pairs. The analytic
proof is rather tedious, and similar to the one given in
proving the theorem in Sec. V.1 (Appendix C); we
shall omit it, and give only the corresponding graphic
constructions (see Sec. V.2 for meaning of figures).

(a) We will first prove our statement for a particular
case, i.e., when the two pairs have one kink in common.
In Fig. 11 we show a field containing 3 identical
kinks 4, B, C.In (x, y, 5, 0) we exchange 4, B,and in
(x, y, s, 1) we exchange B, C; in (x, y, 0, ¢) and
(x,y,1,t) weleave 4, B, Cfixed. The g,[01°] of Fig. 11
can be extended into 7°. This can be seen by treating
the “inner handle” as in Sec. V.2 (Figs. 8-10): it is
clear that we will obtain the g[0I5] of Fig. 12; again,
treating the inner handle of Fig. 12 as in Sec. V.2 weare
finally left with the g[dI°] of Fig. 13; since it can
obviously be extended into I°, our g,[0I°] can too, so
the exchange of 4, B is homotopic to the exchange
of B, C.

In case we had performed the B, C exchange in the
opposite direction, we would have ended up with
a (W*) loop in the (xysl) cube, instead of the trivial
loop of Fig. 13. This would not invalidate our result,
since (W*)2 ~ 1 (Sec. I11.4).



1774

Xy/

Fic. 11. Boundary values for the homotopy of one exchange
(AB) into another (BC). A, B, C are identical kinks. This is a
formalization of the second rubber-band lemma.

(b) In Fig. 14 we show only one space dimension
(x) and two pairs of kinks, AB and CD, with

¢p(x + b) = ¢ (x + a)
and
¢p(x + d) = @p(x + ¢),

and all of them belonging to Q,,; to distinguish them
we assume the support of ¢ ,4(x) is very small and the
support of gq(x) is small, but bigger than the support
of ¢4(x). Our purpose will be accomplished by
showing that the boundary conditions on the “cube”

| A I S
| P |
| 4 1
y ] ¥ z 1
| !
1 | x
| }
N A AT
s 0 ,
e 4 d
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s | /. !
X & j
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R i

FiG. 12. Intermediate step in the deformation of Fig. 11 into Fig.
13. Note the resemblance to the first rubber-band lemma.
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X y

Fi1G. 13. Boundary values of the identity deformation on the iden-
tity loop. These values are obviously extendable into the interior.

of Fig. 14 can be extended into its interior (the ¢
scale has been taken larger than the s, x scales to
facilitate the drawing) by some function ¢[dI5].

In going from ¢t = 0 to ¢ = ¢, we gradually transform
the identity loop on C, D into the loop consisting in
deforming C, D, into C’, D’ [with ¢, (x + d) =
Por(x + ©) = gp(x + b) = @4(x + a)]for0 < s < sy,
C’, D’ remaining fixed for s, < s < s,, and C’, D’
becoming C, D for s, < s < 1; also, the exchange of
A, Bis concentrated in the region s; < 5 < 5,.

Int, <t < ¢, we take @[I?] identical to its value at
t=1,for0<s<sjands, <s< l.Fors; <s<s,
we have a situation to which we can apply the result
just obtained: the loop at ¢, in which 4, B are
exchanged and C’, D’ remain fixed, is homotopic to a
loop in which B, C’ are exchanged and 4, D' remain
fixed, which in turn is homotopic to a loop in which
C’, D’ are exchanged, whereas 4, B remain fixed, at
t=t,.
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FiG. 14. Proof that two exchanges are equivalent (uniformity of
statistics). Here A, B, are identical kinks of type m, and C, D are
identical kinks of type m, but 4 and C need not be identical. At
t = 0, the exchange AB is represented. At ¢t = 1, the exchange CD
is represented. The intermediate steps demonstrate their equivalence.
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For t, < t < 1, @[I°] consists simply in distributing
uniformly along s the exchange performed at ¢ = t,,
and at the same time “unmaking” the transformation
made on C, D in the step 0 < ¢t < ¢;. This completes
the construction of an homotopy ¢[0I°] between the
exchange of 4, B (at t = 0) and the exchange of
C,D,atr=1. "Q.E.D.

4. In Sec. V.3a we have obtained the boundary
function of Fig. 12 as an intermediate step and then
proved that it can always be extended into the interior
of I°. This means that for a two-kink field, exchanging
the kinks is homotopic!! to leaving one of them fixed
and rotating the other one through 2.

Without using the homotopy extension theorem
the existence of an homotopy between the above men-
tioned loops is not quite evident, so it is interesting
to know that we can actually construct the homotopy;

its detailed exposition would be too lengthy (since.

the interest of the problem is rather academic) so we
only give, in Fig. 15, a rough sketch of the method.

5. A 2n-kink state does not admit half-odd spin:
ifinn=(m, -, mn)all the n, are even, by Sec. I11.6
we can check the statement using as a test field a
union field

(P(X) = (Pm(x) v (Pm(x - a)a
m = {n;

taking a and n along the x axis, after a trivial homotopy
the above process can be symbolized by Fig. 16(a), a
simplified diagram of the type used in Figs. 11-15.
The homotopy (a) — (b) is obvious, and in (b) — (c)
we use the result analyzed in Sec. V.4. Since (c) is
simply (X™)?, (c)— (d) is proven by (X™)? =
Eq. (31).

In conventional quantum-field theories, the corre-
sponding statement would follow from the laws of
composition of angular momentum: an even number
of half-odd-spin particles can only have integer spin.

s s

@ (b) © @

Fig. 15. Deformation of an exchange into a rotation. (a) The
exchange of two kinks, originally at ¢ and b, each represented by a
dot; this is what we would see looking straight into the front face
of the (xysl) cube of Fig. 8 if the support of the kinks were very small.
(b) We create at a (after the *‘a kink™ has left that place) a kink ¢
and its antikink ¢’ (see Sec. 1.7); ¢’ moves (dotted line) towards b
and then returns to a to annihilate ¢. In b — ¢ s, and s, the values
of s at which creation and annihilation take place approach 0 and 1
respectively. (c) Part of the path of ¢’ overlaps the path of the *“‘a
kink™ and part of the path of the *‘b kink™; in the corresponding
regions the field is equal to g,: (d) The rest of the homotopy (and the
most involved part of it) consists of deforming the loop bdef of d into
the rotation of a kink sitting at b, but at this point we would need
more elaborate figures.
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[ I

(a) (b) © (CY

Fic. 16. Schematic of a deformation. The starting point (not
shown) i§ a rigid rotation of two identical kinks about the line of
centers. Then the axis of rotation of each kink is twined perpen-
dicular to the line of centers, giving the deformation (a), where each
kink is represented by a segment, whose endpoints traverse the
intertwining helices shown. The intermediate step (b) is obtained in
an obvious way from (a). In going from (b) to (c), the extendability
of Fig. 12 into the 4-cube is applied to the upper and lower halves of
(b) independently. Since (c) represents X2, the deformation to the
identity (d) has already been shown.
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APPENDIX A: PROOF OF LEMMA 3

Let g, ¢, €€ Q,,, q(s) be a path between g = ¢(0)
and ¢, = q(1), W*(s) a 2ms extrinsic rotation operator
around some axis, and g¢;(s) = W(s)-¢ a homo-
topically trivial loop (so W - §; = §,). Then ¢(s, ) =
We(s)-q,

qis, ty = Ws) - q, 0<s<1, t=0
g, 0<s<t }
s — 1t
we ‘g, t<s<1
(1_2t) q 0<t<},
ql(4t — 1)3s], 0<s<}
We(3s—1)-q(4t—1), 1 <s<3 1<t<s,
ql(4t — 1)(3 - 3s)], 3<s<1
q(3s), 0<s<} )
We3s — 1) q(1)
=W3s—1)q, t=1%,
= q,(s), 1<s<3
q(3 — 3s), §<s<1 )
q(3s), 0<s<3%
ql(s’ t):ql(s, %) = ql(s), % s t —<— %,
G =q=91), 3 <s<L %
a3 — 3s), $<s<1
q{(4 — 41)3s], 0<s<L%
q4 — 4n), 1<s<% i<t
ql(4 — 43 —35)], 3<s<L1
‘1(0)=¢1, OSSSI, t=1,
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is a homotopy between W*(s) - ¢ and the trivial loop,
forallge @,,.
APPENDIX B

By composition law we mean a unique and contin-
uous prescription to define a union field ¢ = Ug,
when the supports of the ¢; overlap.!* Then

Theorem: If Q does not admit a composition law,
{(X™)?2 = 1 is not true in 2 dimensions.

Proof: Take a, = (—a, 0), a, = (a, 0) and rotate
them around the origin of the (xy) plane. The tra-
jectories a, , a, corresponding to (X™)? [Fig. 6(a)] are

a,,(s) = —acos 2ws, a,,(s) = acos 2ms,

ay,(s) = —asin2ws, a,,(s) = asin2ns, (Bl)

and admit the following homotopy in the xy plane
[Fig. 17(a)]:

a,{s, ) = —(1 — Ha cos 2=rs — ta,
ags, 1) = (1 4 f)a cos 27s — ta, (B2)
a,,(s, t) = —(1 — Da sin 27s,

a,(s, 1) = asin 27s.
At t = 0 (B2) gives (BI) and, at t = 1, [Fig. 17(b)]

as,(s, 1) = —a(l — 2 cos 2ws),

ay,(s, 1) = asin 27s;

alz(s’ 1) = —a,
a,(s,1) =0,

at no (s,¢) do a;(s, t) and a,(s, ¢) coincide. For the
trajectories at ¢ = 1 to be deformed into the trivial
trajectory, a; has to be left still and a,(s, 1) shrunk into
2,(0, 1). This is clearly impossible to do in the x, y
plane without at some stage having a, and a, overlap
[see Fig. 17(a)].

Should (B1) be deformable into the trivial loop (in
the x, y plane and without overlapping), the inverse
of the homotopy (B2) followed by such a deformation
would be a deformation of the trajectory of Fig.

fis) =1 —a) — (1 = 2a)s,

fs) =a + (1 — 2a)s,

D. FINKELSTEIN AND J. RUBINSTEIN

app0< t <1 (b): t=1

F1G. 17. A deformation of the (X™)? loop in the plane, showing that
in two dimensions, in general, (X™)2 3£ 1.

17(b) into the trivial one; since this is not possible,
the theorem is proved.

As a by-product, by means of motions out of the
(x, y) plane, Fig. 17 provides an easy alternative
proof of the relation (X™)? = 1.

APPENDIX C: ANALYTIC PROOF OF
THE THEOREM IN SEC. 1

The following conventions are used in the proof:

(1) (x,y) stands for x = (x,y,z); z remains
unaffected in all transformations.

(2) x,y,s,t, u(butnot z) range all between O and 1,
if not otherwise indicated.

(3) s <s; stands for 0 < s < s, and 5 > s, for
s, < s < 1; analogously for the other variables.

(4) Figures 8-10 represent part of cross sections
z = const of 0I5, i.e.,, dI*, by showing five of its
eight sectors: (x, y, 5, 0), (x, y, 5, 1), etc. For fixed
u, p(x, y, s, t, u) is a function on 0/%; it is defined as
equal to g, at those points of 0I° at which its formal
expression given below is meaningless, and is equal to
@, on all the sectors not mentioned explicitly.

5) ¢1(x) = @, for |x| > €; a <} — 2e is a fixed
positive number, and

b=1—a 0<uyy<u, < - <u <1

are eight real fixed numbers.

(6) @(x,yp,s,t, u)is the g,[01°] of the text, Sec. V.2.
Let

ga(s) =4 — (1 —2a)s, s< 4,
=a+ (1 —2a)s — %), s> 4,
go(s) =% + (1 — 2a)s, s<,
=(1-a—0=-20)6—1%), s2t

Then (Fig. 8)

@(x, ¥,5,0,0) = @(x — fi(s), ¥y — g:(5)) Y @u(x — (), ¥y — 8a(5)),
(%, ¥, 51,0 = ¢(x,5,0,4,0) = ¢(x, 5,1, 1,00 = go(x —a,y — ) U go(x — b,y — §).

Let
fils, w) = £i(s),  gu(s, w) = (1 — p)gi(s) + pa,

gs(s, ) = (1 — p)} + pfils)
Sols, u) = fo(s), gas, u) = (1 — p)ga(s) + pb, guls, u) = (1 — p)} + pfa(s)

p=ufu;, 0<u<u.

14 For instance, when @ is the manifold of a group, and g, its identity element, a natural prescription is @1(X) U @o(x) = @1(X) « @a(x),

with **” indicating the product in ® at each x.
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Then
g(x, ¥, 5, 0, u) = gu(x — fils, u), y — ga(s, w)) U gulx — fols, u), y — g(s, w))
e(x, y, 8, L, u)y = @i(x — a, y — ga(s, w)) U @i(x — b, y — gy(s, w)) 0<u<u,
(%, 3,0, t, ) = oix — b,y —a) VU gi(x —a,y — b)
g,y Ltbwy=gi(x —a,y —a) Y gy(x — b,y — a)
Let
Jils, u) = (1 — &) fi(s) + gf1(s), f)=b— i—ﬁ—___—z s, s<ita—e
fols, w) = (1 — &) fols) + gf s, =i+e—-(—@G+a—9)
s>3+a—e
fols, u) = (1 — gla + gf(s), fi(s)=a+s, s<i—a+te
, . , t—a—e _u—4
ga(s, u) = (1 — @) fi(s) + ggs(s), =4+e+ , 8=
(h+a—96 -2 s = 1y
s>+ —a+te
gx(s) = b, f5(s)=a+s, s<t—a+te
=b—G-(—at+PD%,  =jte j-ate< s<ita—e
2(a — ¢)
= a, =3—G6—(Gta—¢), s>i+ta—c
u; < u<u,.
Then
@(x, 3,5, 0, u) = gi(x — fils, ), y — @) U @y(x — fols, u), y — b)
(X%, 3,8, 1, u) = u(x — fyls, u), y — gs(s, w)) U gu(x — b, y "fz(s))]
thy Lu L u,y,
¢(x, , 0, t,u) = ¢(x, y, 0, 1, uy)
@06y, 1, 4, u) = @(x, y, 1, 1, uy)
@(x, y,8,0,u) = @(x + 7, y,5,0, uy)
o(x, y,8, 1, u)=@x+r, 50, u,) (
o(x, ¥, 0, t,u) = p(x +r, 3,0, u,) r=E:—_:% u, < u < ug.
o(x, y, Lt,u)y=o(x +r, v, 1, u,) : 2
¢0, y, 5, t, u) = (r, y, 5, 0, uy)
Let
w=y+is standfor(y,s)in ¢(x, y,s,t,u); a=1%+ 34 and
0(0) =a + i(} + a) — ie = f; — ie, wy(u) = yy(u) + isy(u) = « + ew(ﬂl —a) — i€
00) = (A =)+ ik —a)+ic=fo+ic, wyu) = y,(u) + isg(u) = a + (B, — o) + e
14—
fow=i-a-t=t25 gu=a- “—ﬁ) 5 5 < si(w)
=€ — (s — 5,(u), = y,(u), s > s5,(u)
fols,u) =€ + (ls — 5,(u)), 2a(s, u) = y,(u), s < sy{u) b ol U
L _ 4
=+ S - ), = ) = PO LD > ) et
M(s, u) = sfs,(u), s < sy(u), Ao(s, u) = 1, s < sy(u)
=1, $ 2> 53(u), = 11—“s2(su) , s > sy(u)
Q= (x = fi(s, W) + iy — g(s, w) = (X, + iY)(x, y, 5, u), i=1,
ug < u < uy.
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Then
(P(X, Y, S, 0’ ll) = ()Dl(eivh(hu)gl(x’ Y, S, u)) v (pl(e_iw.z(31u)g2(x’ y’ s, u))
@(x, 3,5 Lu)= p(x, 0 + e (0w — ), L,uy), x <2
=(p(x,y,s, 19“3): XZZE uasusu4’
(P(X, y,0,t,u) = @(x, ¥, 0,¢, us)
@(x, y, 1, t, u) = @(x, y, 1, 1, ug)
@0, y, 5, t, u) = @0, @ + e (& — ), ¢, uy) /
(p(x’ Y, 5, 0,u) = q’(xa ¥, 5,0, uy)
(%, 3,8, 1, u) = @(x + w, y, 5,1, uy), x < 2
=(p(x’yssa 15“4), XZZE u—u
- w=2—-2t y,<u<u
<p(x, Vs Oa t’ u) - (p(x’ y: 0’ t’ u4) Uz — 4 5
4
<P(x, y, 1’ t: u) = (p(x’ y’ 1, t’ u4)
@0, y,s,t,u) = 90, y, 5, 1, uy), 1<1—w
=@t+w—1ys5Lu) t>1—w)
‘P(x, y’ S, 05 u) = ?’(x, y’ S, 0’ u5)
‘P(X, y’ S, 1’ u)= ‘P(x:y’ s, 1’ u5) U —u
‘P(x, y! 0, t’ u) = (p(x’ y: 0’ t’ us) 4”' = (1 - 26)14_—_5 u5 S u S us-
—u
P, y, 1, ) = g(x, p, 1, 1, u5) P
(P(Os y’ S, t’ u) = ¢(O9 y, S, t +,u9 u5)
(%, 9,5 0,u) =0, y,5,v—x,ug), x<»
= ?’(x*v:y,S,O,ue), x>
?’(x,y,s’l,"):<P(x—”,y,5,1:us) p =2 u Ug “sS“Su7.
(}7()6, s O, t u)= (P(x—"’a Vs Oa t ue) Uz — Ug
ox, y, L t,u) = @(x — v, y,1, 1, ug)
90, y, 5, t, u) = @0, y, 5, t + v, ug) /
Let
fs)=s, 0<s<t—a+e
=t—a+te }—a+e<s<t+a—c¢
=@3-—at+e—(Gc—GF+a—o), t+a—-e<sl,
o) = —— 2, 0<s<i—a—se
t—a—e
=1-2a, t—a—e<s<t—a+e
—1-20-1" _(G-a-9), t-ate<s<ita—e
2(a — ¢)
=0, t4+a—e<s<i+a+te
=122 (_Gta+o, b+ate<s<L
tb—a—e
Then
‘P(x, Vs S, Os u) = ‘P(X - Pf(s)9 y + pg(s), S, U, u7)
(P(X, Y, S, 1:“) = (p(x, y+ PfZ(S), s, 1, u7) p= U — Uy . Uy <u<u,,
@(x, v, 0, 1, u) = ¢(x, 5,0, u;) Ug — Uqg

e, y, L t,u) = px, y + p(1 — 2a), 1, t, u;)
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@(x, y, 5,0, u) = @(x, y, 05, 0, ug),
= @(x, y, o(s — 1) + 1, 0, ug),
@(x, y, 5, 1, u) = @(x, y, 5, 1, ug)
P(x, y,0, t, u) = @(x, y, 0, 1, ug)
o(x, y, 1, t,u) = @(x, y, 1, t, ug)
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s<1i
s> 3

o=1-—2"Y20—¢), u<u<l.

Let (a + 2¢,a,0) = ¢ and W(s) be a rotation operator around the z axis (Sec. III). Collecting the above

expressions we get (Fig. 10)

(P(x’y! 5, 03 ]) = (PI(W(S) * (X - C)),
‘P(x,}’; s, 1’ 1) = (pl(x - c)’
p(x,,0,t, 1) = ¢(x — ¢),

‘P(x’y, 15 t’ 1) = (Pl(x - c)’
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The principle of compensation of dangerous diagrams (PCDD), used by Bogoliubov to determine the
coefficients in the canonical transformation to quasiparticles in boson systems, is obtained by maximizing
the overlap between the true ground-state vector and the quasiparticle vacuum state. The zero-momentum
state is treated exactly, which implies that the sum of all diagrams leading from the vacuum to a one-
quasiparticle state must be zero, in addition to the diagrams leading from the vacuum to the two quasi-
particle state. Other criteria, such as the diagonalization of the quasiparticle reaction operator up to terms
cubic in the operators, and the absence of one and two quasiparticle contributions to the true ground-
state wavefunction, are also shown to lead to the PCDD. A generalization of the Hartree procedure of
minimizing the ground-state energy is obtained by replacing the bare quasiparticle interaction with the
quasiparticle reaction operator, and is shown to be equivalent to the PCDD. Finally, a perturbation
expansion of the PCDD is obtained, and the reducibility of diagrams is discussed.

1. INTRODUCTION

The canonical transformation to quasiparticles was
first introduced by Bogoliubov in the theory of
boson systems to obtain a model of superfluidity.!
To choose the coefficients in the transformation,
Bogoliubov diagonalized the quadratic part of the
Hamiltonian. However, he later postulated the prin-
ciple of compensation of dangerous diagrams (PCDD)
as the best method to use for determining the coeffi-
cients in the transformation.? The PCDD states that
the sum of all the diagrams leading from the vacuum
to the two-quasiparticle state should be equated to

* Present address: Department of Physics, North Texas State
University, Denton, Texas, 76203.

1 N. N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947).

2 N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, 4 New
Method in the Theory of Superconductivity (Academy of Sciences of
the USSR Press, Moscow, 1958), Chap. 1 (English transl.: Con-
sultants Bureau, New York, 1959); Fortshr. Physik 6, 605 (1958).

zero. By so doing, divergent contributions to the
perturbation expansion of the ground-state energy
can be eliminated. The PCDD was taken over directly
to fermion systems where it was used in the theory of
superconductivity.??

The quasiparticles introduced by Bogoliubov will
be called bogolons to avoid confusion with dressed
particles which are also called quasiparticles. In the
theory of superconductivity the bogolons are fermions,
while in the theory of superfluidity they are bosons.
In other words, the bogolons have the same statistics
as the particles in the system. The canonical trans-
formation expresses the particle operators linearly in
terms of the bogolon operators. This transformation
can then be made on the Hamiltonian, which is

3 N. N. Bogoliubov, Zh. Eksp. Teor. Fiz. 34, 58 (1958) [Sov.
Phys.—JETP 7, 41 (1958)]; Nuovo Cimento 7, 794 (1958); Usp. Fiz.
Nauk 67, 549 (1959) [Sov. Phys.—Usp. 2, 236 (1959)].
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@(x, y, 5,0, u) = @(x, y, 05, 0, ug),
= @(x, y, o(s — 1) + 1, 0, ug),
@(x, y, 5, 1, u) = @(x, y, 5, 1, ug)
P(x, y,0, t, u) = @(x, y, 0, 1, ug)
o(x, y, 1, t,u) = @(x, y, 1, t, ug)
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s<1i
s> 3
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as the particles in the system. The canonical trans-
formation expresses the particle operators linearly in
terms of the bogolon operators. This transformation
can then be made on the Hamiltonian, which is

3 N. N. Bogoliubov, Zh. Eksp. Teor. Fiz. 34, 58 (1958) [Sov.
Phys.—JETP 7, 41 (1958)]; Nuovo Cimento 7, 794 (1958); Usp. Fiz.
Nauk 67, 549 (1959) [Sov. Phys.—Usp. 2, 236 (1959)].
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normal-ordered in the bogolon operators to obtain the
bogolon Hamiltonian.

The diagonalization of the bogolon Hamiltonian,
neglecting terms cubic and quartic in the operators, is
the same as compensating the lowest-order dangerous
diagrams, i.e., the first term in the PCDD. This pro-
cedure is equivalent to the Hartree procedure of
minimizing the ground-state energy using the bogolon
vacuum state as the trial wavefunction.* Thus the
compensation of the lowest-order dangerous diagrams
(CLODD) is based firmly on a variational method.
However, the second-order contribution to the
PCDD has recently been shown to be important in
the theory of the charged boson gas by Woo and Ma.5
Thus the question arises as to whether the CLODD or
the full PCDD should be used. After all, the elimina-
tion of a class of divergent diagrams from the per-
turbation expansion of the ground-state energy does
not necessarily guarantee the convergence of the
expansion,

The same question arose in the theory of fermion
systems since it was shown that in nuclear matter the
second-order corrections to the PCDD gave different
results than the CLODD.® The PCDD in fermion
systems was justified by obtaining it from several
variation principles and other criteria.”~* In this
paper the PCDD for boson systems is also justified by
using these criteria. The extension is not trivial, since
in addition to the dangerous diagrams describing the
creation of a pair of bogolons from the vacuum, new
dangerous diagrams describing the creation of a single
bogolon of zero momentum from the vacuum arise
because the zero-momentum state is treated exactly.
These additional dangerous diagrams must also be
compensated by setting the sum of all diagrams leading
from the vacuum to the one-bogolon state equal to
zero.

In the theory of fermion systems, two slightly
different forms of the PCDD were obtained, called
I"# and I1.? Both of these forms satisfied the principle
stated in terms of diagrams, but were obtained by
different criteria and the diagrams were defined
differently. The same situation arises in boson systems
also, since the same general criteria can be applied.
This paper will deal with the PCDD(I) and a sequel
will deal with the PCDD(II).*

The most physically intuitive of the criteria used in

4 A. Coniglio and M. Marinaro, Nuovo Cimento 48, 249 (1967).

5 C. W. Woo and S. K. Ma, Phys. Rev. 159, 176 (1967).

6 E. M. Henley and L. Wilets, Phys. Rev. 133, B1118 (1964);
Phys. Rev. Letters 11, 326 (1963).

7 D. H. Kobe, Phys. Rev. 140, A825 (1965).

8 D. H. Kobe, Ann. Phys. (N.Y.) 40, 395 (1966).

%8 1y, H. Kobe, J. Math. Phys. 8, 1200 (1967).

% D, H. Kobe, J. Math. Phys. 9, 1795 (1968) (following article).
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TasLE 1. Criteria for the principle of compensation of
dangerous diagrams (I).

Section Criterion

5 No divergent diagrams in the perturbation ex-
pansion of the ground-state energy.

6 Distance between the true ground state |0) and the
bogolon vacuum state [y,) is a minimum,

I[10> — lwe) || = minimum.
6 Maximum overlap between the true ground state
|0) and the bogolon vacuum state [y,),
{0 | yo) = maximum.
7 Transition density matrix equal to the bogolon one
(0] alzak [wo) = (wq a]tak [vo),
and
0] aq [wo) = <ol ao |¥o).

8 No one- and two-bogolon contributions to the
true ground-state vector, (Oln bogolon) =0,
n=1,2.

9 Bose-Brillouin-Brueckner-Bogoliubov condition,

(o] t|n bogolon) =0, n =1,2.
10 Exact self-consistent-field theory (V —¢ in the

energy variation principle).

this paper is the criterion of maximum overlap
between the true ground-state vector and the bogolon
vacuum state.” This criterion is equivalent to minimiz-
ing the distance between the true ground-state vector
and the bogolon vacuum state in Hilbert space. The
PCDD(I) can also be obtained by eliminating the one
and two bogolon excitations from the expansion of
the true ground state in terms of bogolon states. The
diagonalization of the reaction operator (¢ matrix)
up to terms cubic in the bogolon operators leads to the
boson form of the Brillouin-Brueckner-Bogoliubov
condition” obtained for fermion systems and which is
also equivalent to the PCDD(I). The generalization
of the Hartree minimization of the ground-state
energy by replacing the potential with the reaction
operator, which is called the exact self-consistent-field
theory,® also leads to the same result. The PCDD(I)
can be formulated in terms of the transition density
matrix and other transition amplitudes as well. The
different criteria and the section of the paper where
they are discussed is given in Table I. '

The next section defines the canonical trangforma-
tion to bogolons and transforms the Hamiltonian
to obtain the bogolon Hamiltonian. Section 3 gives
the bogolon vacuum-state vector which is obtained in
the Appendix. The unperturbed ground-state energy
is minimized in Sec. 4 to obtain the compensation of
the lowest-order dangerous diagrams (CLODD).
After that, the next six sections are devoted to the



PRINCIPLE OF COMPENSATION OF DANGEROUS DIAGRAMS. I

various criteria for the PCDD(I) shown in Table I
Section 11 calculates the PCDD(I) to second order
and discusses the reducibility of diagrams. The
penultimate section is a comparison of the PCDD(I)
and the PCDD(II), which will be obtained later.”
Finally, a comparison of the CLODD and the PCDD
is made in the conclusion.

2, CANONICAL TRANSFORMATION

The Hamiltonian for a system of bosons inter-
acting with a two-body potential is'

H=3 (e — aia, + + 3 (12 » B alagasa,. 2.1
1 123

The kinetic energy is e, = k?/2m where m is the mass
of a particle and u is the chemical potential. The
matrix element of the two-body potential (12| v |34)
where (1) = (k,), (2) = (k,), etc., is assumed to be
symmetric in the interchange of 1 and 2, as well as 3
and 4. The creation and annihilation operators aj
and a,, respectively, satisfy the boson commutation
relations
lay, a:] = Oy,

22)

The Bogoliubov quasiparticles, or bogolons, have
the creation and annihilation operators y{ and ¥,
respectively. The canonical transformation which
takes into account the correlations between particles
of equal and opposite momentum as well as the
zero-momentum condensate is*1!

lag, @] = 0 = [a], af].

ay = @Oy + N + vkyika (2.3)

where the numbers ¢, 4, and v, are taken to be real.
The zero-momentum state is expected to be macro-
scopically occupied, so the ¢, has been added, which
is approximately the square root of the number of
particles in the zero-momentum state. In order for the
bogolons to be bosons also, it is necessary that their
creation and annihilation operators satisfy the com-
mutation relations in Eq. (2.2). Then the coefficients
in Eq. (2.3) must satisfy the following conditions:

2 __ .2 _
U, — v, =1,

U, = u_y, 2.4)
U = Uy

If the canonical transformation in Eq. (2.3) is made
on Eq. (2.1) and the Hamiltonian is normal-ordered
in the bogolon operators, the resulting bogolon
Hamiltonian can be written as

H=3H,,
ik

10 See, e.g., D. H. Kobe, Am. J. Phys. 34, 1150 (1966) for a dis-
cussion of second quantization.
1D, H. Kobe, Ann. Phys. (N.Y.) 47, 15 (1968).

(2.5)
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TasbLE II. The coefficients in the Bogolon Hamiltonian.

Hy = —ugs + X (er — w4+ £ (00| » {00) g§
+ @2 T (00| v | —11) w0, + 29} X {01 v [10) o5
+ 3 XA — 1] v | =22) uyvsu50,
+ X 12[ v ]21) v%2.
hoy = [—p + Z (1 — 1| #]00) uy0, + 2 X (01| » [10) v
+ 00| v |00) @8lpo(ue + vo).
(1, 1) = Uy + o) + A2u0;.
hao(1, —1) = 3[U2u,0, + Ay (i} + v,
where
A= 22 2 = 2[v]1 = D)y + 9509
and
Uy=e —pu+2 22] 2] v 2103 + Sa09?).
hao(123) = (@of3)[(12] ¥ | =30) w05 + (2<=>3)
+ (1<=3)] + (u<=0).
1:1(123) = @o{[(1 — 3| v | =20) vyuou3 + (1< 2)]
+ {12 v {30) 10505} + (0 <3>v).
hap(1234) = 32| v |34) uystguguy + [{1 — 3| v | —24) uyv,v5u,
+ Gl + (u<=>v).
h3:(1234) = $[(12] v | —34) uyusvqus + 2 <= 3) + (1 <= 3)]
+ (u<=-0).

2
hyo(1234) = I! [2] v | =3 — 4) uguyv50, + 2<=>3)
+ 2<= Y] + (u<v).

where j, k=0,1,2,3,4and j+ k=0,1, 2,3, 4
The term Hj, has j creation operators and k anni-
hilation operators, and is of the form

HJ'k= Z ) hik(l’z"'.9j+k)

1,2, -, d+k
Tt t
XY1Ye ViV " Ve (2.6)
The coefficients 4, which are given in Table II,12
depend on the kinetic energy, the potential energy,

and the coefficients in the canonical transformation.
Since the Hamiltonian is Hermitian,

H.’ik = HIIJ" (2-7)

which implies that the coefficients 4, satisfy
a1, 2, j+ ) =k + koo, 2,1, (28)

Thus if one of the &;, is zero, the corresponding 4,; is
also zero. The function A, (1,2,3,- -+ ,j,j+ 1, -,
J + k) is symmetric in the first j variables, and also in
the last k variables.

For the sake of later convenience Eq. (2.5) can be
written as

H=Hy+ 7V, (2.9)

12 For fermion systems the corresponding coefficients are given in
Appendix A of D. H. Kobe and W. B. Cheston, Ann. Phys. (N.Y.)
20, 279 (1962).
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where the unperturbed Hamiltonian H, is
H, = Hy + Hy (2.10)

and V is the sum of the other terms in Eq. (2.5). The
operator V' will be called the bogolon-interaction
Hamiltonian.

3. THE BOGOLON VACUUM STATE

In order to discuss the bogolon theory of boson
systems further, it is important to have an explicit
expression for the bogolon vacuum state |g,), ie.,
the state of no bogolons.'® The bogolon vacuum state
contains no bogolons, so

Yk lpo) =0 (3.1

for all momentum k. It should also be normalized to
unity. The bogolon vacuum state can be assumed to
be generated by applying operators of the form 4] and
ala', to the state of no particles, |[vac). As shown in
the Appendix, this state has the form?

lyo) = C exp { woll = so)ab + 1 3 skaiaik} Ivac)

(3.2)
where
3.3)

and the sum is over all states including the zero-
momentum state. The s, occurs because we are
treating the zero-momentum state exactly. The con-
stant C is a normalization factor which depends on the
variables s, and ¢, and is determined by the normali-
zation condition

Sk = Uifty

C% = (vac| exp {‘Po(l — So)do + 33 skaka—k:
X

X exp { ol — so)ah + a}%skalaik} vac). (3.4)

In the next section we will use Eq. (3.1) to calculate
the ground-state energy.

4. THE COMPENSATION OF THE LOWEST-
ORDER DANGEROUS DIAGRAMS

In Bogoliubov’s original theory,! the coefficients in
the canonical transformation were determined by
diagonalizing the quadratic part of the Hamiltonian.
Bogoliubov only later postulated the PCDD,? so that
his original procedure was equivalent to the com-

12 For the fermion case, the bogolon vacuum state is just the ground-
state vector used by J. Bardeen, L. N. Cooper, and J. R. Schrieffer,
Phys. Rev. 108, 1175 (1957),in their theory of superconductivity.

14 A state very similar to this one was used by E. P. Gross, Ann.
Phys. (N.Y.) 9, 292 (1960),except that he had s, = 0. The projection
of this vector on the N-particle subspace would be similar to the
ground-state vector used by M. Girardeau and R. Arnowitt, Phys.
Rev. 113, 755 (1959). The same state with s, == 0 was also used by
F. W. Cummings and J. R. Johnston, Phys. Rev. 151, 105 (1966).
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pensation of the lowest-order dangerous diagrams
(CLODD).

In the present theory the Hamiltonian in Eq. (2.5)
can also be diagonalized up to terms cubic in the
bogolon operators. The terms describing the creation
or annihilation of a single bogolon from the vacuum
can be set equal to zero,

H10 = 0 = HOI' (41)

The terms describing the creation or annihilation of a
pair of bogolons can also be set equal to zero,

Hyy =0 = Hy,. 4.2)

Bogoliubov satisfied Eq. (4.1) by choosing 7, = 0,
but in the present theory y, has been retained in order
to treat the zero-momentum state exactly. Thus the
coefficient of y, will have to be equated to zero,
which will be shown to be equivalent to minimizing
the unperturbed ground-state energy with respect to
®o-+1* The condition in Eq. (4.2) can be satisfied by
setting the coefficient of the operator y,y_, equal to
zero because of Egs. (2.6) and (2.7). This coefficient
contains terms resulting from normal-ordering the
interaction, which Bogoliubov neglected. It will be
shown later that Eq. (4.2) is equivalent to minimizing
the unperturbed ground-state energy with respect to
1y, and vy, subject to the constraints in Eq. (2.4).

If the expectation value of the Hamiltonian in Eq.
(2.9) is taken with respect to the bogolon vacuum state
in Eq. (3.2), the result is

Hyo = (ol (Hy + V) 7)) (4.3)

because of Eq. (3.1). The only term remaining in the
sum of Eq. (2.5) is the one involving no creation or
annihilation operators. The right side of Eq. (4.3)
involves s, and ¢, only through the state vectors |y,)
since the total Hamiltonian is independent of them,
while Hy, involves u, , v, and ¢, explicitly from the
normal ordering, as can be seen from Table II. The
extremization of Eq. (4.3) will be shown to be a
minimum in the case that bogolon interactions can be
neglected.

It is convenient to use the right side of Eq. (4.3)
when minimizing, since the full Hamiltonian H in
Eq. (2.1) is independent of the coefficients in the
canonical transformation of Eq. (2.3). The condition
that the unperturbed ground-state energy be a mini-
mum with respect to ¢, is

0 (ol H |90)[0@0 = 2 (3ol H [Oyy/0g) = 0, (4.4)
since the derivative is real.’> The differentiation of the

13 If it is complex, then the real part must be taken. In general, all
of the extremum conditions obtained will also be valid for complex
matrix elements of the potential if the real part of the expressions is
taken.
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{0)

{b)

FiG. 1. Compensation of the lowest-
order dangerous diagrams (CLODD).
(a) Single-bogolon-state-to-vacuum; (b)
two-bogolon-state-to-vacuum.

bogolon vacuum state |y,) in Eq. (3.2) with respect to
@ gives

10ya/d90) = (1 = so)(ao = ¢o) ly),  (45)
where Eq. (3.4) has been used. Thus Egs. (4.4) and
(4.5) show that the minimum in the unperturbed
ground-state energy is equivalent to

(ol V7 lyo) = 0 (4.6)
if Egs. (2.3), (2.9), and (3.1) are used. Equation (4.6)
states that the term describing the annihilation of a
single bogolon is not present in the bogolon inter-
action V. By using Eqgs. (2.5) and (2.9) it can be seen
that Eq. (4.6) is equivalent to

hy =0 4.7

since the other terms in V" will give zero. Equation
(4.7) is also equivalent to Eq. (4.1) by Eqs. (2.6) and
(2.7). The diagram describing the annihilation of a
single bogolon is shown in the next section to be
“dangerous.”” The compensation of this lowest-order
dangerous diagram (CLODD) in Eq. (4.7) is shown
graphically in Fig. 1(a).

The minimization of the unperturbed ground-state
energy with respect to s, gives the condition

0 (ol H o)/ 08 = 2 (ol H |0y0/0s,) =0, (4.8)

since it is also real.’ The differentiation of the state
vector in Eq. (3.2) with respect to s, for k # 0 gives

0yo/ds) = (aals — wo) lpe)  (49)
if Eq. (3.4) is used. For k = 0 the result is somewhat
different,
19vo/0s0) = (3aas — aope + 35 — dutovo) |y,

(4.10)

since s, occurs in the coefficient of a}) in Eq: (3.2). If

Eqgs. (4.9) and (4.10) are used in Eq. (4.8), and the

particle operators are transformed by Eq. (2.3),
the minimum condition for all k is

ol Vrarliclyey = 0, 4.11)

where V is the bogolon interaction defined in Eq.
2.9).
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Equation (4.11) is the analog of the Brillouin
condition’® in Hartree—-Fock theory for fermion
orbitals, which states that the matrix element of the
potential between the ground state and a singly-
excited configuration consisting of a particle and a
hole is zero. This condition was generalized to fermion
systems with pairing correlations by replacing the
singly-excited configuration with a pair of bogolons
and the potential with the bogolon interaction. The
expression obtained was the same form as Eq. (4.11),
and was called the Brillouin-Bogoliubov condition.®
Equations (4.11) and (4.6) apply to boson bogolons,
and will be called the Bose-Brillouin-Bogoliubov
condition (B® condition). In Eq. (4.6) the singly-
excited configuration is replaced with a single bogolon
of zero momentum, which is the lowest excited
state of the system. It would be degenerate with the
ground state if there were no energy gap, but in that
case, a source term could be added to provide a
finite energy gap. The limit as the source term goes to
zero could be made at the end of the calculation. In
Eq. (4.11) the singly-excited configuration is replaced
with a pair of bogolons of equal but opposite
momenta, which is the next class of excited states.

If Eqgs. (2.5) and (2.9) are used in Eq. (4.11), the
only term that will not vanish because of creation and
annihilation operators will be H,y,. Equation (4.11)
is then equivalent to

hoa(k, —K) = 0 (4.12)

for all k. This condition is completely equivalent to
Eq. (4.2) because of Egs. (2.6)-(2.8). Equation (4.12)
states that the lowest-order dangerous diagram leading
from the two bogolon state to the vacuum is equal to
zero, which is shown graphically in Fig. 1(b). Thus it
has been shown that the extremum condition on the
unperturbed ground-state implies the CLODD which
diagonalizes the Hamiltonian up to cubic terms in the
bogolon operators.?

In order to show that the extremum is indeed a
minimum, it is necessary to calculate the second
derivatives of the ground-state energy. The ground-
state energy Hy, has its extremum value at {s)} where
we are choosing s_, = ¢, for convenience. The mean
value theorem can be used at the extremum to obtain
an exact expansion about the extremum

Hy = Hy' + %g Guxxx; (4.13)

16 1. Brillouin, Actualities Sci. Ind., No. 71 (1933); No. 159
(1934). See also C. Mgller and M. S. Plesset, Phys. Rev. 46, 618
(1934).

17 For fermion systems, J. G. Valatin, [Nuovo Cimento 7, 843
(1958)] showed that minimizing the unperturbed ground-state energy
resulted in the diagonalization of the Hamiltonian up to terms quar-
tic in the bogolon operators.
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TasiLe [II.  The coefficients in the quadratic form for the

ground-state energy expansion.

Derivative
operator

on
Element (1/;0] H '%) Expression

G_y,_1 00y}
G 10 az/a‘l’naso
aG—l.k az/a‘]’JoaSk

2(stg — 05)*h1,(0, 0)
u§(ty — g)[2h;,(000) + 31 £,,(000)]
2ui(ug — vo)[2ks1(k, —k, 0)
+ 3! hgek, =k, 0)]

Goo 0°/0s} (u}/2)[4h1,(00) + 4/55(0000) + 4! £14,(0000)]

SGox  0%3sy0s,  u3uf(4hsy(0, 0, k, —k) + 41 h,4(00k, —k)]
PGy 0%0skdsy  2ufulldhyy(k, —k, 1, —1)
+ 41 gk, ~k, 1, —1)]
®Gyk  0%0sE 2ublhy(k, k) + hyy(—k, —k)
+ 4hy(k, —k, k, —k)
+ 41 hyy(k, —k, k, —K)]
2k £ 0, —1
bk #1.

where H\? is the value of the unperturbed ground-
state energy at the extremum, and the sum includes
—1 as well as all momenta. The expansion variables
x are the deviations from the extremum values

X = 5 — Sp (4.14)
and the coefficients in the expansion are
G = 0 (yol H |1)/ 05,05, (4.15)

evaluated at {s) + Ox;} where 0 < 0 < 1.

If the sum in Eq. (4.13) is positive, then the ground-
state energy is indeed a relative minimum. Thus it is
necessary to show that the matrix G whose elements

are given in Eq. (4.15) is a positive-definite matrix. -

The matrix elements defined in Eq. (4.15) are given in
Table III. In order to show that the matrix G is
positive-definite, it is necessary to show that all the
determinants of the principal submatrices are positive.
Since there are an infinite number of elements, this
condition is extremely difficult to verify.

If the bogolon interaction terms in Table III can
be neglected, the matrix G will be diagonal with
positive elements. Thus the sum in Eq. (4.13) will be
positive and the extremum will be a true minimum.
The bogolon interaction terms would be negligible if
the potential were sufficiently weak, or if the bogolon
vacuum state were sufficiently close to the true
ground state.

In order for the matrix element G_, _, to be positive,
it is necessary that

Ey = hy;(0, 0) > 0. (4.16)

The bogolon “kinetic”” energy at zero momentum
must be positive! Thus in order for the extremum
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to be a minimum, it is necessary to have a gap in the
bogolon-energy spectrum at zero momentum. Just
such a gap does occur in the bogolon spectrum,
however.*1118 If Eq. (4.16) is multiplied by (1 — v,)?
and Eqs. (4.7) and (4.12) are used,'® the condition
for a minimum is that the Fourier component of the
two-body potential #(r) corresponding to zero
momentum is positive,

vy = f drs(r) > 0. (4.17)
Therefore the integral of the interaction over all
space is positive, so that it is predominantly repulsive.
The condition in Eq. (4.17) is the same as for the
stability of phonon modes in the original Bogoliubov
theory.

The surprising feature is that an energy gap is
needed in the bogolon spectrum to have a minimum
in the energy with respect to variation of g,. If the
gap is eliminated, a minimum no longer exists. These
conclusions can also be reached by differentiating
the Hy, in Table II which is obtained by the normal
ordering of the Hamiltonian for bogolons.

5. PERTURBATION EXPANSION OF THE
GROUND-STATE ENERGY

The PCDD was postulated by Bogoliubov in order
to remove divergences in the perturbation expansion
of the ground-state energy.? He stated that the sum
of all the diagrams leading from the vacuum to the
two-bogolon state should be set equal to zero.2 In
order to understand better why these diagrams cause
difficulty, the ground-state energy will be examined.
In the process it will be discovered that there are
other dangerous diagrams which can cause divergences
in the ground-state energy perturbation expansion.
These are the diagrams that lead from the vacuum to
the one-bogolon state, which can also be set equal to
zero. Thus the original PCDD will be supplemented
with the statement that the sum of all the diagrams
leading from the vacuum to the one-bogolon state
also be set equal to zero.

The true ground state |0) is the eigenstate of the
full Hamiltonian H with the true ground-state energy
&, as eigenvalue

H0) = &, |0). (5.1)

If the inner product is taken with the bogolon

18 The gap was first obtained by M. Girardeau and R. Arnowitt
(Ref. 14) in a similar theory.

1# For the explicit expressions, see, e.g., Sec. III of Ref. 11.

20 This statement is of course equivalent to the conjugate statement
that the sum of all diagrams leading from the two-bogolon state to
the vacuum should be set equal to zero.
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€ = . +

[ >

(b) (c}

>

F1G. 2. Diagrammatic expansion of the ground-state energy.

(d) {e)

vacuum, we obtain

8o = (yo| H0) (5.2)
using intermediate normalization
(o] 0) = L. (5.3)

If Eq. (2.5) is substituted into Eq. (5.2) and Eq. (3.1)
is used, the result

8o = Hog + (pol Hyy 10) + (o] Hys [0)
+ (ol Hoz 10) + (ol Hya [0)  (5.4)

is obtained. A more explicit equation for the ground-
state energy can be obtained by substituting Eq. (2.6)
into Eq. (5.4). Then Eq. (5.4) can be expressed in the
graphical form shown in Fig. 2, by making the one-
to-one correspondences shown in Fig. 3. In order to
see why divergences develop, some of these per-
turbation diagrams will be examined.

The original expression of the PCDD enunciated by
Bogoliubov is that the sum of all the diagrams leading
from the vacuum to the two-bogolon state should be
set equal to zero. In order to justify this principle on
the basis of the expansion of the ground-state energy,
we will consider the diagram in Fig. 4. In Fig. 4 a
pair of bogolons is created and scatters n — 2 times

<¥ ly, vy ;10>

ho; (1,2,+4§)

FiG. 3. Correspondence between the diagrams of Fig. 2 and
mathematical quantities.

before they annihilate. The contribution to the
ground-state energy from Fig. 4 is*

> hoo(k, —K)h3; *(k, —K, k, —K)hy(k, —K)/(—2E)" "
k
(5.5)

21 The same argument was used in Ref. 2.
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K k k K k k
FiG. 4. An nth order contribution to the ground-state energy.
If we convert the sum to an integral and make the
special choice that v, =0 and wu, = 1, then E, =
hi(k, k) = O(k?) and the integral will diverge like
k-2"+5 at the lower limit. In order to avoid this
divergence, we can choose hy(k, —k) to be zero as in
the CLODD of Eq. (4.12).
However, Fig. 4 is just part of a larger class of
diagrams shown in Fig. 2(c). Fig. 2(c) gives the
contribution of the third term on the right in Eq. (5.4),

(Yol Hoz 10) = Zkhoz(ka =K}yl niy 100, (5.6)
which vanishes either if h,, is zero or the bogolon pair
amplitude is zero. We will choose the condition

(ol Ny« 10) =0, (5.7)

which is equivalent to setting the box in Fig. 2(c)
equal to zero. By so doing, we can also compensate

(0)

FiG. 5. Other classes of dangerous contri-
butions to the ground-state energy.

(b)

>

the diagrams shown in Fig. 5(a), (b), and (c), which
are subclasses of the diagrams in Fig. 2(b), (d), and
(e), respectively. Equation (5.7) is just the mathe-
matical statement of Bogoliubov’s original formula-
tion of the PCDD.

There are other diagrams in Fig. 2 that can cause
divergences in the ground-state energy. One of the
contributions from Fig. 2(b) is shown in Fig. 6.
There is a factor &, associated with the left vertex and
a factor kg, associated with the right. The energy of a
single bogolon with zero momentum is Ey = £,;(0, 0),
so the contribution of Fig. 6 to the ground-state
energy is

{c)

—h01h10/E0 . (5-8)

- - .

FiG. 6. A dangerous contribution to the ground-state energy.
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(o)

F1G. 7. Other classes of dan-
gerous contributions to the
ground-state energy.

(b}

2\

Equation (5.8) is clearly divergent if the energy of the
bogolon with zero momentum is zero. However,
E, = hy,(0, 0) depends on the choice of the coefficients
in the transformation. If the numerator of Eq. (5.8) is
taken equal to zero as in the CLODD of Eq. (4.7),
the term can be eliminated altogether.

However, Fig. 6 is just part of the larger class of
diagrams shown in Fig. 2(b). Fig. 2(b) gives the con-
tribution of the second term on the right in Eq. (5.4),

(ol Hp 10) = hoy <7/’0| 7010}, (5.9

which vanishes if either hy, is zero or the bogolon
amplitude is zero. We will choose the condition that
the amplitude

(c)

(%ol 0 10) = 0, (5.10)

which is equivalent to the vanishing of the box in
Fig. 2(b). By so doing, we can compensate the larger
class of dangerous diagrams shown in Fig. 7(a), (b),
and (c) which are a subclass of diagrams in Fig. 2(c),
(d), and (e), respectively.

Equation (5.10) is the mathematical expression for
the statement that the sum of all the diagrams leading
from the one bogolon state to the vacuum should be
set equal to zero. This statement supplements Bogoliu-
bov’s original statement of the PCDD. He was not
faced with this problem since he chose y, = 0.

Thus in Eqgs. (5.7) and (5.10) we have the PCDD for
boson systems which was obtained from the stipulation
that the ground-state energy should not have any
divergent diagrams. However, we are not at all
certain that there are not some other divergent
diagrams, or that the ground-state energy converges
at all. Thus there is need to put the PCDD on a
firmer foundation. In the next section we will show
that the PCDD corresponds to maximizing the overlap
between the true ground-state vector and the bogolon
vacuum state.

6. MAXIMUM OVERLAP

A criterion which can be used to determine the
coefficients in the canonical transformation of Eq.

DONALD H. KOBE

(2.3) is that the distance in Hilbert space between the
true ground-state vector |0) and the bogolon vacuum
state ) given in Eq. (3.2) is a minimum,’

I10) — |we) | = minimum.

(6.1)

This condition should be superior to the Hartree
method used in Sec. 4 to obtain the CLODD, since
it is well known that a good ground-state energy can
sometimes be obtained from a poor wavefunction.
However, a good wavefunction should not only give
a good ground-state energy, but good expectation
values to other operators as well.

On expanding Eq. (6.1) it is easily seen that the
condition is the same as having maximum overlap

-between the true ground-state vector and the bogolon

vacuum state

(0| 9) = maximum (6.2)

if the overlap is real and positive. The condition of
maximum overlap was used in a previous paper to
obtain the PCDD for fermion systems.” It was
originally introduced by Brenig?? to obtain orbitals in
the independent-particle model.

The bogolon vacuum state |y,) depends only on
@ and s, . The overlap is extremized with respect to
variation of these two parameters, and it is shown
later in this section that the extremum is indeed a
maximum if bogolon interactions can be neglected.
The condition that the overlap in Eq. (6.2) is an
extremum with respect to the variation of ¢, is

o(0 ' "Po»)/a¢’o = 0. (6.3)
Since the true ground state |0) does not depend on the
coefficients in the transformation of Eq. (2.3), only
the state |y,) can be varied. Equation (4.5) can thus
be used, along with Eq. (2.3), to transform the particle
operators to bogolon operators. If the property in
Eq. (3.1) that the state |yp,) is the bogolon vacuum is
used, Eq. (6.3) becomes
(Ol 75 Iy} = 0. (64)
Equation (6.4) is just the complex conjugate of Eq.
(5.10) and so is the part of the PCDD describing the
compensation of the one-bogolon-to-vacuum dia-
grams. Equation (6.4) is shown graphically in Fig.
8(a), which is the generalization of Fig. 1(a).
The condition that the overlap in Eq. (6.2) is an
extremum with respect to variation of s, is

00 | )08, =0 (6.5

for all k. If Eqs. (4.9) and (4.10) are used in Eq. (6.5),
along with Egs. (2.3) and (3.1), the equation becomes

Ol Yyl lpo) = 0. (6.6)

22 W. Brenig, Nucl, Phys. 4, 363 (1957).
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Fig. 8. The principle of compensa-
{a) tion of dangerous diagrams (PCDD) in
graphical form. (a) One-bogolon-state-
to-vacuum; (b) two-bogolon-state-to-
vacuum.

(b)

Equation (6.6) is just the complex conjugate of Eq.
(5.7) and is the part of the PCDD describing the
compensation of the two-bogolon-to-vacuum dia-
grams. Equation (6.6) is shown graphically in Fig.
8(b), which is the generalization of Fig. 1(b).

In order to show that the overlap is a maximum, it
is necessary to examine the second derivatives of the
overlap,

Fis} = O] v (6.7)

The overlap has its extremum at the values {s{} where
@y = s_; for convenience. The mean-value theorem
can be used to obtain an exact expansion about the
extremum

F=F% 413 Fuxx, (6.8)

Kkl

where F is the value of the overlap at the extremum
and the sum includes the term —1. The expansion
variables x, are the deviations in s, from their extre-
mum values s as given in Eq. (4.14). The coefficients
in the expansion are

Fkl = a2F/askasl ’ (6.9)

evaluated at {s§ + Ox,}, where 0 < 6 < 1. Since the
first derivatives vanish at the extremum, they do not
appear in Eq, (6.8), so it is a quadratic form. If the
sum in Eq. (6.8) is always negative, the extremum is
indeed a maximum. Thus it is necessary to show that
the matrix F whose elements are given in Eq. (6.9) is
negative-definite.

The matrix elements of F are given in Table IV.
They are all extremely difficult to evaluate, since the
true ground-state is not known. After the extremum
values of s, are determined from the PCDD, the
matrix elements in Table IV can be evaluated by
perturbation theory. The matrix F is thus an infinite-
dimensional matrix, each matrix element of which is
an infinite expansion. The determinants of all the
principal submatrices of F must be calculated to see
if the even-dimensional ones are positive, and the
odd ones are negative. If they are, the matrix F is
negative-definite, and the extremum is a true maxi-
mum. Needless to say, this program will not be
carried out here.

If the bogolon interactions are negligible, which is
the case when the potential is weak and/or the bogolon
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TasLE IV. The coefficients in the quadratic form for the
overlap expansion.

Derivative
operator

on
Element (0] o) Expression

F_ i, 0%0¢} —(uy — 1,)%0 | o)
F_,0  0%0pe0sy  (u3/2)(g — 1) €O y3t [o)
SF 1,k 0%0p0sy  ugluy — 1) 0| ‘}’IV!I’VIk lwod
Foo 0%Bse0sy  —(u32)X0| P2 — (O] it [wa)/0 | wo)]
P asds w2 O vy lye)
*PRa s ds  uud Oyl v
AFx 8%/ 0si; —uf(0] wodll — (0] (7'11'}41()2 [wo)i<0 | wo))
8k #0,—1.
Pk #1

vacuum is close to the true ground state, all the
amplitudes in Table IV describing three- or four-
bogolon processes can be neglected. The remaining
matrix elements are the diagonal ones which are
negative if the overlap is positive. Thus in this case
the overlap is a maximum. Unless the three- and
four-bogolon processes are very important, this
conclusion is expected to be valid in general. It is,
however, conceivable that if the bogolon vacuum
state is not a good approximation to the true ground
state, the PCDD would not correspond to a true
maximum.

7. TRANSITION AMPLITUDES

The criterion of maximum overlap in the fermion
case was shown by Smith? to imply that the density
matrix determined from the bogolon vacuum state
be equal to the transition density matrix (0] aja, |y,)-
Maximum overlap also implies that the pair amplitude
determined from the bogolon vacuum state be equal
to the transition pair amplitude (0] a,a_, |,). In the
independent-particle model the transition density
matrix is also related to maximum overlap.

As another criterion for the PCDD, the density
matrix calculated from the bogolon vacuum state
can be equated to the transition density matrix

(ol aray 1wo) = (O] abay o). (7.1)

The expectation value of g, in the bogolon vacuum
state can be equated to the transition one,

(ol ag 9oy = (0] ap |9y). (7.2)
If intermediate normalization
O] =1 (7.3)

23 Y, H. Smith, Jr., Nuovo Cimento 48, 443 (1967).
2 W. Kutzelnigg and V. H. Smith, Jr., J. Chem. Phys. 41, 896
(1964).
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is used, and the canonical transformation in Eq. (2.3)
is substituted into Eq. (7.2), the condition

©f 7§ lye) =0 (7.4)
is obtained. Equation (7.1) along with Egs. (7.3) and
(7.4) implies

O 747" lyo) = 0. (7.5)
Equations (7.4) and (7.5) are just the PCDD obtained
in Egs. (6.4) and (6.6) by the maximum-overlap
criterion.

A variational method could have been used here
also. The sum of the squares of the differences between
the density matrix calculated from the bogolon
vacuum state and the transition density matrix could
have been minimized. The result would have been
Eq. (7.1). A similar method could have been used to
obtain Eq. (7.2). It was felt that using a variational
procedure to obtain Eqgs. (7.1) and (7.2) would not
have given any further insight, however.

An alternative criterion for the PCDD is to equate
the pair amplitude calculated from the bogolon
vacuum state to the transition pair amplitude

(ol apa_y lyo) = O aa_y lwo) (7.6)

and use Eq. (7.2) in addition. By substituting the
canonical transformation in Eq. (2.3) into Eqs. (7.2)
and (7.6), we can also obtain the PCDD in Eqs. (7.4)
and (7.5).

8. ELIMINATION OF ONE- AND TWO-
BOGOLON CONTRIBUTIONS TO THE
TRUE GROUND STATE

One way of characterizing the PCDD in fermion
systems is to eliminate the two-bogolon contributions
to the true ground-state vector.” This condition is a
generalization of the elimination of singly-excited
configurations from the true ground state for the
independent-particle model.25 In the boson case, it
will be shown that eliminating both one- and two-
bogolon contributions to the true ground-state vector
leads to the PCDD.

The true ground state can be expanded in terms of
zero-, one-, two-, three-, * - -, bogolon states,

0) = Co 90y + Cu7s o) + b CoKiv 1o
+ 3 Cilk, Dyiviyhalve + 00, (8.1)

since the set of states is”assumed complete. If the
one-bogolon term in Eq. (8.1) is eliminated, then the
coefficient

C, =0. (8.2)

28 R, K. Nesbet, Phys. Rev. 109, 1632 (1958).
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This coeflicient can be calculated by taking the inner
product of Eq. (8.1) with y{ ly,). Thus Eq. (8.2) is

(ol 7010) = 0, (8.3)

which is the same as Eq. (5.10) and the complex
conjugate of Eq. (6.4). Equation (8.3) is the com-
pensation of the dangerous diagrams describing the
creation of a single bogolon from the vacuum.

The condition that there are no two-bogolon con-
tributions to the ground-state vector in Eq. (8.1) is
that

Cy(k) = 0,

all k. (8.4)

This coefficient can be calculated by taking the inner
product of Eq. (8.1) with y{y!, y,). Then Eq. (8.4)is

(ol Y-k 10} = 0, (8.5
which is the same as Eq. (5.7) and the complex
conjugate of Eq. (6.6). Equation (8.5) is the com-
pensation of the dangerous diagrams describing the
creation of a pair of bogolons from the vacuum. The
vanishing of one- and two-bogolon contributions to
the true ground state is closely related to the general-
ization of the Bose-Brillouin-Bogoliubov condition
which is discussed in the next section.

9. PARTIAL DIAGONALIZATION OF THE
REACTION OPERATOR
In Sec. 4, the CLODD was obtained by a diagonali-
zation of the Hamiltonian up to terms cubic in the
bogolon operators. The PCDD can be obtained by a
similar procedure, but instead of using the Hamil-
tonian, the reaction operator (¢ matrix) is diagonalized
up to cubic terms. This procedure is similar to a
generalization of the Brillouin condition!® in Hartree-
Fock theory by replacing the potential with the
reaction operator.
The reaction operator (# matrix) is the operator such
that
t|pe) = V10), 6.1

where V is the bogolon interaction defined in Eq.
(2.9). The reaction operator satisfies the Lippmann-
Schwinger equation?®

= V + VGot.
The propagator G, is

9.2)

G0 — 1— W’OX'I’OI s (9'3)
& — H,

where &, is the exact ground-state energy, and has
been defined more precisely by Lowdin.?” From Eq.
(9.1) it can be seen that the reaction operator is a

28 B, A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).
27 P.-0. Lowdin, J. Math. Phys. 3, 969 (1962).
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many-particle operator. If the canonical transforma-
tion of Eq. (2.3) is made on it, we can write it as

t= 2 t]'ka
ik

where 7, contains j creation operators and k anni-
hilation operators,
b = 2 ) T, 2,0, )+ k)

1,2, -, i+k

9.4)

X VIV; T V;?’Hl Y (95)

If we simplify the reaction operator such that it is
diagonal up to terms cubic in the bogolon operators,
then we must have the operators #y,, t19, t, and #gp,
vanish in Eq. (9.4). Thus we obtain, from Eq. (9.5),

7o = 0, (9.6)
and
Too(k, —k) = 0. .7
Equations (9.6) and (9.7) are equivalent to
(ol tys [y = 0 9:8)
and
ol triy L lyo) = 0, 9.9)

which can be seen by substituting Eqs. (9.4) and (9.5)
into them.

Equations (9.8) and (9.9) are the generalization of
the Bose—Brillouin—-Bogoliubov condition obtained in
Egs. (4.6) and (4.11). The difference is that the bogolon
interaction V' has been replaced by the bogolon
reaction operator #. The Brillouin condition in
Hartree-Fock theory was generalized by Loéwdin2
and Nesbet?® by replacing the potential with the
reaction operator, and was called the Brillouin—-
Brueckner condition. In a previous paper? this
condition was further generalized to fermion Bogoliu-
bov quasiparticles by using a two quasiparticle state,
which is a generalization of the particle-hole state,
and was called the Brillouin-Brueckner-Bogoliubov
condition. Equations (9.8) and (9.9) represent a
further generalization to boson systems, and hence
can be called the Bose-Brillouin—Brueckner—Bogoliu-
bov condition (B* condition). The B?* condition is
equivalent to the usual form of the PCDD, as is
shown below.

The wave operator W is defined such that

[0) = W |wo) (9.10)

and is related to the reaction operator by
W =1+ Gyt (9.11)

Equations (9.8) and (9.9) then imply that
Ol 75 lpo) = 0 (9.12)

28 P.-O. Lowdin, J. Math. Phys. 3, 1171 (1962).
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and
O] yirly lpo) = 0, (9.13)

which is just the PCDD obtained in Egs. (6.4) and
(6.6). Thus the partial diagonalization of the reaction
operator also leads to the PCDD.

10. EXACT SELF-CONSISTENT-FIELD THEORY

In Sec. 4 it was shown that the minimization of
the unperturbed ground-state energy resulted in the
CLODD. Thus it appears that if the energy is the
property of primary interest, the CLODD should be
used instead of the PCDD. In this section it is shown
that an extension of the Hartree theory which was first
used by Brueckner?® can be applied to this problem.
The method was formulated more precisely by
Lowdin and called the exact self-consistent-field
(ESCF) theory for orbitals.” The application of the
exact self-consistent-field theory resulted in the
PCDD for the fermion case,® and is shown now to
result in the boson PCDD.

The variational principle used here has a one-to-one
correspondence with the equations of Sec. 4, but the
reaction operator ¢ defined in Eq. (9.1) is used
instead of the bogolon interaction V. The exact
ground-state energy &, can be obtained from the
reaction operator. From Egs. (5.2), (2.9), and (9.1)
the ground-state energy is

8o = (wol (Ho + 1) o), (10.1)

where the reaction operator ¢ is calculated from the
Lippmann-Schwinger®® equation given in Eq. (9.2).
Equation (10.1) is true for any choice of the param-
eters in the trial-state vector |y,), since the reaction
operator adjusts itself such that the true ground-state
energy is always obtained. Equation (10.1) is the
analog of Eq. (4.3) for the unperturbed energy.

Since &, is a constant it cannot be varied, so it is
necessary to find a related function that can be. Both
the trial-state vector |y,) and the operator H; + ¢
depend on the choice of the parameters u =
(@0, u , v,) in such a way that Eq. (10.1) is a constant.
However, a functional

8(u, x) = (po(W)| [Ho(x) + 1(x)] |yo(w)) (10.2)
can be defined, where x is another independent
choice of the parameters (po, 4 ,v,). Thus, from
Eq. (10.1),

8o = &(u, u)
for all values of the parameter, u.

In order to find the extremum points of the func-
tional &(u, x) as a function of u, we must set the first

(10.3)

*® K. A. Brueckner and C. A. Levinson, Phys. Rev. 97, 1344
(1955).
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derivative equal to zero,
08(u, x){0u = 0, (10.4)

which is the analog of Eqs. (4.4) and (4.8) for the
unperturbed energy. In principle, this relationship
can be solved to give the dependence of u on x,

u = u(x). (10.5)

In order to determine the value of & at the minimum,
the value of u in Eq. (10.5) can be used in (10.2),

min & = &@u(x), x). (10.6)

If this minimum value of & is to be the true ground-
state energy &,, then

u(x) = x, (10.7)

and the proper choice of u can be determined by
setting ¥ = x in Eq. (10.4) after differentiation,

[08(u, x)/dul,_, = O. (10.8)

If the derivatives of Eq. (10.2) are taken using Eqs.
(4.5), (4.9), and (4.10), the result of Eq. (10.8) is just

(wo(u)| [Ho(u) + t()]yo |po(w)) =0  (10.9)
and

(po()] [Ho(w) + 1@)]yayts |po(w)) = 0. (10.10)

The bogolon operators in these equations are eval-
uated with the parameters u. Equations (10.9) and
(10.10) just reduce to the B* conditions in Egs. (9.8)
and (9.9), which were shown to be equivalent to the
PCDD. These conditions are the analog of the B®
conditions in Eqs. (4.6) and (4.11). Thus this ex-
tension of Hartree theory is completely equivalent to
the PCDD.

Figure 9 compares the Hartree procedure with the
ESCF theory. In Sec. 4 the unperturbed ground-
state energy Hy, was minimized with respect to the

i \/

&

F16.9. A schematic
comparison of the
Hartree  procedure
and the exact self-con-
sistent-field (ESCF)
theory. (a) The mini-
mization of the unper-
turbed ground-state
energy H,y, implies
(cLODD) u the compensation
{a) of the lowest-order
dangerous diagrams
(CLODD). (b) The
condition that the
minimum of the ex-
pectation value of the
“effective  Hamilton-
ian” H, + tlie on the
exact  ground-state
energy &, implies the
PCDD.

Elux) X s u(PCDD)

u(PCOD) u
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parameters u = (@,, ¥, , v,). The minimum condition
was shown to imply the CLODD. In Fig. 9(a) the
minimum of Hy, is an upper bound to the true
ground-state energy by the variation principle. Fig.
9(b) shows the ESCF theory. The condition that the
functional &(u, x) defined in Eq. (10.2) has its minimum
(or extremum) at the true ground-state energy &,
implies the PCDD as shown in the previous para-
graphs.

- The derivative of Eq. (10.1) with respect to u is zero,
so that

2 (ol (Hy + ) |Oyof0u)
+ (pol [B(Hy + )[0u] lyo)= 0.

The variational principle in Eq. (10.8) says that the
first term must be zero so the second term must also
vanish. Thus the variation of the ground-state wave
vector holding the operator H, + ¢ fixed is equivalent
to varying the operator holding the ground-state
vector fixed.

Figure 9(b) shows that a first-order variation in the
parameters of the ground-state vector holding H, 4 ¢
fixed results in a second-order variation in the energy.
Equation (10.11) shows that holding the ground-state
vector fixed while making a first-order change in the
“effective Hamiltonian H, + ¢ also makes only a
second-order change in the energy. The Lippmann—
Schwinger equation given in Eq. (9.2) cannot, in
general, be solved for f exactly. Various approxima-
tions like, for example, including only two-body
parts,2® give some approximate reaction operator
f(u). If this approximate reaction operator can be
written as the true reaction operator evaluated with a
different set of parameters u + du, i.c.,

#u) = t(u + du), (10.12)

then using this reaction operator will result in only a
second-order change in the energy from the true
value &;. If the condition in Eq. (10.8) were not used
to determine the parameters, then there would be a
first-order change in the energy. Since the Lippmann—
Schwinger equation is very difficult to solve exactly,
this variation principle is very important in a calcu-
lation of the true ground-state energy. It is not
obvious under what conditions Eq. (10.12) is satisfied,
however. .

The function &(u, x) as a function of u is. bounded
from below if the Hermitian “effective Hamiltonian”
Hy(x) + t(x) can be considered as the true Hamil-
tonian for some physical system. The system will then
have a finite ground-state energy €,(x). If we take the

(10.11)

30 This approximation is used in Refs. 25 and 29, and is the usual
one.
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FiG. 10. The compensation of the dangerous diagrams leading from
the vacuum to the one-bogolon state up to second order.

expectation value of the *“effective Hamiltonian™ with
respect to the trial wavefunction |yy(u)) to obtain
an energy &(u, x) given in Eq. (10.2), we will have an

upper bound on €,(x) by the energy variation principle.

In other words, the true lowest eigenvalue to Hy(x) +
#(x) is a lower bound to &(u, x).

11. SECOND-ORDER PERTURBATION
CALCULATIONS

The PCDD was recently used by Woo and Ma?
in calculating corrections to the ground-state energy
and excitation spectrum of a charged boson gas. They
considered only one of the second-order diagrams
describing the creation of a pair of bogolons from
the vacuum. Thus there is some interestin obtaining the
other diagrams in second order contributing to the
vacuum-to-two-bogolon state and the vacuum-to-one-
bogolon state. Some comments on the reducibility of
the diagrams will also be made.

If the perturbation expansion for the wave
operator®! in Egs. (9.10) and (9.11) is used in the
PCDD in Eq. (5.10) for the vacuum-to-single-bogolon
processes, the result to second order is

0 = (ol ¥010) = (ol yoW |y

= (—Ep) (a)
+ > (—Ep)h15(0123)

X (—Ey; — E; — E3) 7131 hy(123) (b)
+ D (—Ep)thy(123)

X (—Ey — E, — E, — E;)714! h,,(0123) (©)
4+ (—Ep)Yhe(—2E;) 12! hyy(0, 0) (d)
+ 2 (—E))hy5(012)

X (— Ey — E5) 12! hyy(12) (e)
+ 3 (—Eo)hex(12)

X (— Ey — E} —Ey)713! hyo(120) (f)
+ .-, (11.1)

31 See, e.g., Ref. 27, Eq. (92).
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FiG. 11. The compensation of the dangerous diagrams leading from
the vacuum to the two-bogolon state up to second order.

The diagrams corresponding to the various terms in
Eq. (11.1) are shown in Fig. 10. It can be seen that
Fig. 10(d) involves a vertex for the annihilation of a
single bogolon. This vertex can be dressed with
higher-order diagrams, and thus replaced with a box
describing the annihilation of a bogolon to give the
vacuum, If the box describing the creation of a bogolon
from the vacuum vanishes, so will the box describing
the annihilation of a bogolon to give the vacuum.
Figure 10(d) can be eliminated in the compensation
process. It is a reducible diagram since it can be broken
into two parts by cutting only one line.

The vertex describing the creation of two bogolons
in Fig. 10(e) and the annihilation of two bogolons in
Fig. 10(f) can be dressed by replacing them with
boxes. If the box in Fig. 11 vanishes, then these
diagrams will also, and thus do not have to be
considered in the compensation process. They are also
reducible diagrams since they can be broken into two
parts by cutting two lines. Thus only the irreducible
diagrams that cannot be broken into two parts by
cutting one or two lines need be considered in the
compensation process.

The propagator for a single bogolon with zero
momentum is —E;*, which diverges if there is no
energy gap. The bare-bogolon energy does have such
a gap, but the dressed bogolon presumably does not
have such a gap. The energies £, in the denominators
of Eq. (11.1) should be replaced with energies E|
dressed in the order of the calculation. In the case
that —Eo‘l diverges, a source term® o >, wyaa , +
h.c., where wy is arbitrary, can be added to the
original Hamiltonian to insure a gap in the dressed
spectrum. The coefficient of — £; can be set equal to
zero, and the limit « — 0 can be taken at the end.
It is not known whether the compensation of all the
diagrams of the type shown in Fig. 10 will eliminate

32 This kmd of source term is used in the theory of supercon-
ductivity, N. N. Bogoliubov, Physica 26, S1 (1960).
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the energy gap entirely,® but presumably a gap
would not be present in an exact calculation.

A possible way of satisfying Eq. (5.8) in all orders
is to use Bogoliubov’s method! of setting y, = 0.
This method, of course, violates the commutation
relation between a, and a;. However, this approxi-
mation is presumably correct in the infinite volume
limit for the thermodynamic functions.3* It is not
obvious that the compensation of all the dangerous
diagrams leading from the vacuum to the single-
bogolon state is equivalent to the Bogoliubov approxi-
mation, though. Presumably, it is an alternative but
equivalent way of determining the chemical potential.

The dangerous diagrams describing the creation of
two bogolons from the vacuum in Eq. (5.7) can be
compensated by using the expansion for the wave
operator® in Eq. (9.11). The result to second order is

0 = (ol Yy« 10} = (ol Yy W |y

= (—2E,) thy(k, —Kk) (a)
+ X (—2E)h,(k12)
X (—E, — E; — E,)) 13! hyy(—Kk12) (b)

+ 2 (—2E,) T hyy(k123)

X (—E, — E, — E, — E)) 4! hyy(—k123) (c)
+ 2 (=2E) hy(k — k12)

X (—E; — Ey) 12! hyo(12)
+ 2 H(—2E) he(12)

X (—E; — Ey — 2E )74 hyo(12k — k) (e)
+ %(_ZEk)_lhol

X (—Ey — 2E,) 13! hgo(0k — k) (f)

+ (—2E)Yhay(k, —k, 0)(—Ep) 1y (2
+ (—2Eo) " hyo( — Eg)h100k0 (h)
+ k—> —K)+---. (11.2)

Figure 11 shows the diagrams corresponding to the
terms in Eq. (11.2). The diagram in Fig. 11(d)
involves a vertex describing the creation of a pair of
bogolons which can be dressed in higher order and
replaced with a box. It vanishes if the original box
describing the creation of two bogolons vanishes, and
thus does not have to be considered in the com-
pensation process. For a similar reason, the diagram
in Fig. 11(e) does not have to be considered, since it is
also reducible.

In the diagrams of Figs. 11(f), (g), and (h) the
vertex describing the creation or annihilation of a
single bogolon from the vacuum can be replaced with

33 The energy gap in the bogolon spectrum was shown to vanish in

the RPA by A. Coniglio and M. Marinaro [Nuovo Cimento 48,

262 (1967)].
34 J. Ginibre, report of work prior to publication.
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the box in Fig. 10, or its Hermitian conjugate. If
the diagrams of Fig. 10 are compensated, then these
diagrams will not contribute in Fig. 11. Thus only
the irreducible diagrams need be considered in the
compensation process. To second order these irre-
ducible diagrams are Figs. 11(a), (b), and (c).3.:36

Woo and Ma?® considered the contribution of Figs.
11(a) and 11(b), but not Fig. 11(c). If the depletion is
high, the latter diagram would be expected to be of
the same order as the former, and should be investi-
gated. The diagrams in Fig. 10 were not considered by
them either, and it would be interesting to see what
effect they would have.

12. RELATIONSHIP TO ANOTHER FORM
OF THE PCDD

In a subsequent paper® it will be shown that the
criterion of minimum number of bogolons in the
true ground state gives another form of the PCDD,

0] 7910) =0 (12.1)
and
Of yxy_x 10) =0, (12.2)

which is called the PCDD(II). The PCDD(II) differs
from the PCDD(1) in Eqs. (5.7) and (5.10) in that the
bogolon vacuum state is replaced with the true
ground state of the full Hamiltonian with a source
term. The relationship between the PCDD(II) in Eqgs.
(12.1) and (12.2), and the PCDD(]) in Egs. (5.10)
and (5.7) is discussed in this section, and will also be
discussed in the subsequent paper from another point
of view. The diagrams used in this paper are based on
the wave and reaction operator formalism, whereas
the subsequent paper will use bogolon Green’s
function diagrams.

If the wave operator in Eq. (9.10) is substituted into
the amplitude in Eq. (12.1) the result is

O o 10y — (ol ¥ 10) = (ol tGoyoGot l1po).  (12.3)

The right side of Eq. (12.3) is the difference between
the PCDD(II) and (I). If the perturbation expansion
for the reaction operator ¢ is substituted into the right
side of Eq. (12.3), it can be seen that a bogolon with
zero momentum will be annihilated before the other
bogolons are annihilated. The class of diagrams that

35 A similar analysis was carried out for fermion systems in Ref. 8.

36 The above argument of reducibility does not properly take off-
the-energy-shell effects into account. These effects would be present
in Figs. 10(d), 10(f), and 11(h). If the gap in the spectrum is small,
the effects would presumably also be small in these diagrams. On
the other hand, in Figs. 11(e) and (f) the off-the-energy-shell effect
would play a role, but to what extent is not known. These diagrams
can be explicitly taken into account by considering them as irreduc-
ible. The concept of reducibility would then be restricted to diagrams
that are on the energy shell, like Figs. 10(e), 11(d), and 11(g), and the
above analysis applies exactly.
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compose the right side of Eq. (12.3) is shown in Fig.
12(a). These diagrams are not dangerous in the sense
that there is not necessarily any intermediate state
with only one bogolon. Thus with the diagrams based
on the wave and reaction operator formalism, the
PCDD(I) should be used.?”

n

:{};

Y

(o)

FiG. 12. Classes of diagrams which
occur for the difference between the
PCDD(If) and PCDD(J).

n

L~
N

(b)

The wave operator in Eq. (9.10) can also be
substituted into the amplitude in Eq. (12.2), which
gives
O yiy—x 10) — ol Yy« 10)

= (yol tGoyiyxGot I90). (12.4)
The right side of Eq. (12.4) is just the difference be-
tween the PCDD(II) and (). It also shows that two
bogolons are annihilated from a group before the
others are annihilated. The class of diagrams that

OF DANGEROUS DIAGRAMS. I 1793

compose the right side of Eq. (12.4) is shown in Fig.
12(b). These diagrams are not dangerous, either, in the
sense that the final state is not a two-bogolon state.
Thus with the diagrams based on the wave and
reaction-operator formalism, the PCDD(I) should
again be used®.

In the subsequent paper, bogolon Green’s functions
and their diagrams will be used. In that case, only
the PCDD(I1) can be expressed in terms of the Green’s
function diagrams. The PCDD(I) cannot be expressed
in terms of the usual Green’s functions for the bogo-
lons, since they are true ground-state expectation
values of time-ordered products of operators. Thus
which form of the PCDD one uses will be based on
the choice of perturbation formalism and the corre-
sponding diagrams.

13. CONCLUSION

The PCDD has been shown in this paper to have
many theoretical advantages over the CLODD.
These advantages can be seen from Table V where
the PCDD and the CLODD are compared. The
CLODD was shown in Sec. 4 to be based on the
minimization of the unperturbed ground-state energy.
Thus it appears that from the energy point of view it is

TABLE V. Comparison between the compensation of the lowest-order dangerous diagram (CLODD) and the principle of
compensation of dangerous diagrams (PCDD).

CLODD

PCDD

Lowest-order dangerous diagrams are zero:
< -0
—> =0
Unperturbed ground-state energy is a minimum,
0 (pol (Ho + V) wo) = 0.
Hamiltonian is a constant operator,

(ol 6(Hy + V) |wy) = 0.
Bose-Brillouin-Bogoliubov condition,
{yo| V|nbogolon} =0, n=1,2.

Distance between true ground state |0) and bogolon

vacuum state |y,) is not a minimum:

110> — lwo Il % min.

Some contribution of one- and two-bogolon states to the

true ground state:

{0 n bogolon) # 0, n=1,2.

Lowest-order dangerous contributions to the ground-
state energy vanish.

All dangerous diagrams are zero:

D__,=0.

True ground-state energy is a constant,
O (yol (Hy + 1) |lwo) = 0.
Variation of the “effective Hamiltonian” is zero,
(o 8(H,y + 1) Jyy) = 0.
Bose—Brillouin—Brueckner«Bogoliubov condition
(ol £ |n bogolony =0, n=1,2.

Distance between the true ground state 10) and the bogolon
vacuum state |y,) is a minimum:

110> — [y || = min.

No contribution of one- and two-bogolon states to the
true ground state:

{0 | n bogolon) =0, n=1,2.

All dangerous contributions to the ground-state energy
vanish. :

37 If the PCDD(I) is used, the diagrams of Fig. 12 that can be dangerous, because the intermediate state has only one or two
bogolons present, vanish because of the B* condition in the form of Eqs. (9.6) and (9.7).
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the best method and would be preferable to the
PCDD obtained from the maximum-overlap criterion.
However, the discussion of the exact self-consistent-
field method in Sec. 10 shows that the PCDD implies
that the expectation value of an *“‘effective Hamil-
tonian” has the true ground-state energy as its
minimum. Thus the PCDD gives the optimum way
of determining the true ground-state energy, whereas
the CLODD just gives an upper bound. Thus even
from the energy point of view the PCDD is superior to
the CLODD.

The CLODD was originally obtained by diagonal-
izing the Hamiltonian up to cubic terms, but the
PCDD diagonalizes the reaction operator up to cubic
terms. Since the reaction operator is an effective
interaction describing an infinite number of bogolon-
scattering processes, its diagonalization takes many
of these processes into account. Thus it is more
reasonable to use the PCDD.

The PCDD developed in this paper is based on
maximum overlap and the related criteria given in
Table I. However, another form of the PCDD, called
the PCDD(II), will be developed in a subsequent
paper®, It is based on the criterion of minimum number
of bogolons in the true ground state, and other
related criteria.? In Sec. 12 the PCDD(II) was com-
pared with the PCDD(I). The conclusion drawn was
that the PCDD(I) is more natural to use when the
diagrams based on the reaction-operator formalism
are used. The PCDD(II) will be shown to be easier to
formulate in terms of the diagrams based on bogolon
Green’s functions. Both forms of the PCDD are the
same when stated in terms of diagrams, as Bogoliubov
did, but the diagrams are defined differently in each
case.
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APPENDIX: THE BOGOLON VACUUM STATE

The bogolon vacuum state is assumed to be
generated by application of power series in ajal, and

DONALD H. KOBE

a}. Thus it has the form

[wo) = CA(a}) ll'I T(afal)) [vac),  (AD)
where the prime denotes the exclusion of the zero-
momentum state and only half the momentum states
are included. The functions A and I are defined by
the power series

A@) =3 A,z (A2)
and i
I'(z)=3T 2, (A3)

n=0
where z is a complex variable.

If Eq. (2.3) and its Hermitian conjugate are solved
for y,, and Eq. (3.1) is used, the recursion relation

ukl-‘n+l(n + 1) - DkF,n = 0 (A4)
is obtained for the coefficients of I'. If Eq. (A4) is
multiplied by z" and summed over n, the differential
equation
I"(2) - 50(2) =0, (A5)
where s, is given in Eq. (3.3) is obtained. The solution
of Eq. (A5) with I'(0) == 1 is

I'(z) = exp {82}, (A6)
which determines the functional form of I to be used
in Eq. (A1).

The function A can be obtained in a similar way.
Equation (2.3) can be solved for y, and applied to
Eq. (Al). The result is zero from Eq. (3.1), which
gives the recursion relation

”oAn+1(’1 +1)— UoAn_l + A,.‘Po(vo —u) =0 (A7)

for the coefficients in Eq. (A2). Equation (A7) can
be multiplied by z" and converted into the differential
equation

uA'(2) — [z00 + @o(uo — v9)]A(2z) = 0. (AB)
Equation (A8) has the solution
Az) = exp {po(1 — 50)z + 52%2}  (A9)

if A(0) = 1. Thus the functional form of A in Eq.
(A1) has been determined. Substituting Eqs. (A6)
and (A9) into Eq. (A1) gives Eq. (3.2).
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The principle of compensation of dangerous diagrams (PCDD) postulated by Bogoliubov to determine
the coefficients in his canonical transformation in boson systems is obtained from four criteria: (1) the
number of quasiparticles in the true ground state is a minimum; (2) the ““best” approximation to the
true density matrix and pair amplitude is made; (3) the expectation value of an arbitrary operator is
diagonalized up to terms cubic in the quasiparticle operators; (4) the most convenient starting point for
dressing the quasiparticles is used. Quasiparticle Green’s functions are introduced to obtain a diagram-
matic expansion of the PCDD. The reducibility of the diagrams is also discussed.

1. INTRODUCTION

The principle of compensation of dangerous diagrams
(PCDD) was enunciated by Bogoliubov! to determine
the coefficients in his canonical transformation to
quasiparticles (or bogolons) in boson systems. He
argued that it is necessary to set the sum of all the
diagrams leading from the vacuum to the two quasi-
particle state equal to zero in order to eliminate
divergences in the perturbation expansion of the
ground-state energy. In a previous paper? it was
shown that the PCDD could be obtained by maxi-
mizing the overlap between the true ground-state
wavefunction and the bogolon vacuum state. Other
related criteria were also discussed. These criteria lead
to a form of the PCDD that could be conveniently
expressed in terms of diagrams based on the wave-
and reaction-operator formalism. In terms of these
diagrams this form of the PCDD satisfied Bogoliu-
bov’s original statement. There are, however, diagrams
leading from the vacuum to a one bogolon state that
must also be compensated, in order that the zero-
momentum state be treated exactly.

In this paper another form of the PCDD is obtained
from other criteria.® The form obtained in I is called
the PCDD(I), while the form obtained here is called
the PCDD(II). When expressed in terms of bogolon
Green’s functions, the PCDD(Il) also satisfies the
original statement of Bogoliubov in terms of diagrams.
The PCDD(II) is the natural form to use when bogolon
Green’s functions are to be used.

The most intuitive of the criteria used in this paper
is the minimization of the number of bogolons in the

1 N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, 4 New
Method in the Theory of Superconductivity (Academy of Sciences of
the USSR Press, Moscow, 1958), Chap. 1 (English transl.: Con-
sultants Bureau, New York, 1959); Fortshr. Physik 6, 605 (1958).

2 D. H. Kobe, J. Math. Phys. 9, 1779 (1968) (preceding paper).
Henceforth this paper will be referred to as I.

3 These criteria were used for fermion systems to obtain the
PCDD by D. H. Kobe, J. Math. Phys. 8, 1200 (1967).

true ground state. If the number of bogolons in the
true ground state is small, it would be expected that
the free-bogolon model in which bogolon interactions
are neglected would be a good approximation to the
true system. In other words, the bogolons would
behave almost ideally. Mathematically, this criterion
means that the expansion of the true ground state in
terms of the bogolon states converges rapidly.

Other criteria for obtaining the PCDD(II) are also
discussed. The “best” approximation to the true
density matrix and the pair amplitude by the ones
calculated using the bogolon vacuum state is another
criterion. The criterion of simplifying the expectation
value of an arbitrary operator is also discussed. Since
the bogolon interactions should be taken into account,
the most appropriate starting point for the dressing
of the bogolon is used as a further criterion.

In the next section the Hamiltonian for the particles
is transformed to the bogolon Hamiltonian, and the
bogolon vacuum state is given. In the following four
sections the criteria given in Table I are discussed.
Section 7 gives the equations of motion for the
bogolon Green’s functions. They are used in Sec.
8 to obtain equations satisfied by the Green’s functions
describing the creation or annihilation of one or two
bogolons. A set of four coupled integral equations is

TasLe 1. Criteria for the principle of compensation of danger-
ous diagrams (II).

Section Criterion

3 Expected number of quasiparticles in the true
ground state is a minimum.

4 *‘Best” approximation to the single-particle
density matrix and pair amplitude.

5 Simplification of the expectation value of an
arbitrary operator.

6 Best starting point for the dressing of the

quasiparticle.
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obtained, from which it is shown that only the irre-
ducible dangerous diagrams need be compensated.
The PCDD(II) is compared to the PCDD(I) in Sec.
9. Finally, the results of the paper are summarized
and evaluated in the conclusion.

2. CANONICAL TRANSFORMATION

The transformation originally made by Bogoliubov
has the result of mixing the part of the interaction that
describes the excitation of a pair of particles with
equal and opposite momenta from the condensate into
the kinetic energy term for the bogolons. By including
terms resulting from the normal ordering of the bogo-
lon operators, the scattering of the pair of particles an
infinite number of times above the condensate can also
be taken into account.? If the effect of triplets or quad-
ruplets of particles scattering with each other is to be
included also, it is necessary to consider the bogolon
interaction processes.

The Hamiltonian for a system of bosons of mass m
interacting with a two-body potential » is®

H =73 (e — waja + 13 120y 34)alalaza,, (2.1)
k

where (1) = (ky), (2) = (ky), etc. The operators af
and g, are the creation and annihilation operators,
respectively, for a boson with momentum k and
satisfy the usual commutation relations. The kinetic
energy is e, = k%/2m and the chemical potential is .
The matrix element of the potential (12w |34) is
symmetric with respect to the interchange of 1 and
2 and also 3 and 4.

The Hamiltonian H commutes with the number
operator so the number of particles is a good quantum
number. However, it is invariant with respect to a
gauge transformation of the first kind; that is,

(2.2)

a, — a, = éa,,

where 0 is a real constant. Thus the ground state is
infinitely degenerate, corresponding to values of 6
between 0 and 2=. In order to remove this degeneracy
so that the usual forms of perturbation theory are
applicable, it is convenient to add a source term to
the Hamiltonian H to obtain®

H =H+ oc\/ﬁ(ao + ag). (2.3)

The passage to the limit of infinite volume €2 is taken
first and then at the end of the calculation the limit
as o — 0 is taken.

4 D. H. Kobe, Ann. Phys. (N.Y.) 47, 15 (1968).

5 For a discussion of second quantization, see, e.g., D. H. Kobe,

Am. J. Phys. 34, 1150 (1966).
8 N. N. Bogoliubov, Physica 26, S1 (1960).
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The Hamiltonian A’ no longer commutes with the
number operator and is no longer invariant with
respect to gauge transformations of the first kind.
Thus the true ground state |0) of H’is not an eigen-
state of the number operator. Anomalous amplitudes
like (0] a4 [0) and (0] a,a_, |0) can then be nonzero if
the source term is present.

A generalization of the canonical transformation
used by Bogoliubov” is

ay = @odyo + Upyx + ”kVT—h (2.4)

where ¢q, 4, and v, are real numbers to be deter-
mined.*® In order for the bogolons to be bosons also,
it is necessary for their creation and annihilation
operators p] and y,, respectively, to satisfy boson
commutation relations. These conditions put the
following constraints on the coefficients:

uf — 1 =1,

(2.5)

uk = u_k,

Dy = U_y.

Since the zero-momentum state is expected to be
macroscopically occupied, @, has been used in Eq.
(2.4), which is approximately equal to the square root
of the number of particles in the zero-momentum
state. The operators y, were taken to be zero by
Bogoliubov,” but are included here so that the zero-
momentum state is treated exactly. In the limit of
infinite volume, Bogoliubov’s approximation has been
shown to be exact for most potentials,? presumably
because the y, contribute only a set of measure
zero. However, the y, is included here to avoid any
possible approximation regardless of the volume.
By considering it, the condition determining the
chemical potential is obtained.

If the transformation of Eq. (2.4) is made on the
Hamiltonian of Eq. (2.3), the bogolon Hamiltonian
can be obtained:

H =.>:H"’“ (2.6)
5k
where j, k=0,1,2,3,4,and j+k=0,1,2,3,4.
The term Hy has j creation operators and & anni-
hilation operators:

Hyp= 2  hp(1,2,--,j+k)

1,2, itk .
Tt
XYYzt ViVia Viwwe (27)

7 N. N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947). Reprinted in
D. Pines, The Many-Body Problem (W. A. Benjamin, Inc., New York,
1962), p. 292.

& A. Coniglio and M. Marinaro, Nuovo Cimento 48, 249 (1967);
M. Girardeau, J. Math. Phys. 3, 131 (1962); H. Ezawa, J. Math.
Phys. 6, 380 (1965).

? J. Ginibre(report of work prior to publication ).
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The coefficients A, are given in Table Il of I with the
value of o equal to zero. However, these coefficients
can still be used if it is remembered that the anomalous
amplitudes can be nonzero.

The bogolon vacuum state |y,) is also needed. It is
the state such that

Y [¥o) =0 (2.8)

for all k. In I this state was determined to be

lpe) = C exp {abpo(l — s0) + %gskaia*_k} |vac),

(2.9)
where |vac) is the state of no particles and

(2.10)

S = U fuy .

The constant C is determined from the normalization
condition on |y,). The sum in Eq. (2.9) is over all
momentum states, including zero.

3. MINIMIZATION OF THE NUMBER OF
QUASIPARTICLES

The coefficients in the canonical transformation of
Eq. (2.4) have yet to be determined. They should be
determined by some criterion which would make the
free bogolon model a good approximation to the
true system, so that bogolon interactions would not be
as important.

One criterion which can be used is to choose the
coefficients such that the expected number of bogolons
in the true ground state is a minimum.® This condition
can be formulated mathematically by taking the
expectation value of the bogolon number operator
in the true ground state:

n =3 (0| ylyx |0) = minimum. (3.1)
k

Physically, this condition means that the bogolons
would behave more like an ideal gas and the bogolon
interactions would not be as important. Mathemati-
cally, it means that the expansion of the true ground
state in terms of bogolon states would be rapidly
convergent, which is discussed in Sec. 9. Equation
(3.1) leads to the PCDD(I1), which is discussed from
other viewpoints in the following sections.

Equation (2.4) and its Hermitian conjugate can be
solved for the bogolon annihilation operator .
When it is varied with respect to s, given in Eq. (2.10)
subject to the constraints in Eq. (2.5), the annihilation
operator is converted into a creation operator

(3.2)

The condition that Eq. (3.1) is an extremum is that its
first derivative with respect to s, vanishes, which gives

Ol ny_xl0) =10 (3.3)

0yx/0sy = _“lz(VT—k .
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if the amplitude is real. (If it is complex, the real part
must be taken.) Equation (3.3) is just the mathe-
matical form of the PCDD which states that the
sum of all the diagrams leading from the vacuum
to the two bogolon state is zero. This condition is
discussed in terms of diagrams in Sec. 8.

The expected number of bogolons » must still be
minimized with respect to ¢,. The derivative of an
annihilation operator with respect to ¢, gives

NS O@o = —(Uy — )0y (34)

Thus the condition obtained by differentiating # with
respect to @, and setting the derivative equal to zero
is

O 7410y =0 (3.5)

if the amplitude is real, since (4, — v,) > 0. Equation
(3.5) is the mathematical form of the statement that
the sum of all the diagrams leading from the vacuum
to the one bogolon state is equal to zero. This con-
dition supplements the usual statement of the PCDD.!
Bogoliubov was not faced with these diagrams, since
he chose y, = 0.

That the extremum is indeed a minimum can be
shown by calculating the second derivatives. The
mixed second derivatives can easily be shown from
Eqgs. (3.2) and (3.4) to be zero:

0%n/0s,.05, =0 if k #1, (3.6)
and

0%n/8s, 0@y = 0 3.7

at the extremum. The second derivative of » with
respect to s, at the extremum is

%nfds2 = (2u)*{1 + O (vyi + ylay_) [0} > 0,
(3.8)

which is obviously positive. The second derivative of
n with respect to ¢, is

8*nfdgi = 2up — vo)* > 0, (3.9)

which is also positive. Therefore, a Taylor series ex-
pansion of » about the extremum point shows that the
value of » will increase if the variables {¢,, s,} deviate
from their extremum values. Thus the extremum is
truly a minimum.

The PCDD in Egs. (3.3) and (3.5) is thus obtainable
from a variational principle which is intuitively
appealing. In the next sections the PCDD will be
obtained from other equivalent criteria.

4. BEST APPROXIMATION TO THE TRUE
DENSITY MATRIX AND PAIR AMPLITUDE

Another criterion that can be used to determine the
coeflicients in the canonical transformation is that in
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some sense the theory gives the “best” approximation
to the true density matrix (or occupation number)
(0} afa, |0) and the true pair amplitude (0] a,a_y |0).
In the independent-particle model the orbitals that
give the best approximation to the true single-particle
density matrix are Lowdin’s natural spin orbitals.'%
The density matrix in the bogolon model is just

(wol agay lyy =0} if k#0  (41)
and the pair amplitude is
(wol aya_x |wo) = vy, if k #0. 4.2)

In general, these amplitudes cannot just be equated to
the true ones because v and u,v, depend on only one
variable s,. Different values could be obtained for
s by equating either the true density matrix to Eq.
(4.1) or the true pair amplitude to Eq. (4.2). If the
numerical values of s, obtained by equating (0| afa, |0)
and (0] a,a_, [0) to Eqs. (4.1) and (4.2), respectively,
are the same, then both (0| y,¥_, |0) and (0| y{y; [0)
are zero. If (0] pfy, |0) is zero, then 7, |0) = 0 and |0)
is the bogolon vacuum state. Thus only in the case
where the free bogolon model is an exact solution can
the true density matrix and pair amplitude be both
equated to the model ones.'®

A criterion must be found for determining s, if
(0] afa, 10) and (0] aya_, |0) are given. Several criteria
are possible and in fact reasonable. However, the
criterion that gives the PCDD is that 5, and ¢, are
determined to minimize the function

(€01 a 10y — {wol a0 |y0)T*

0 0
+1iml: T(l“k“—kl) .
x-0 | 0| ayay [0) + (0] aya, |0)
_ (ol axa_x 190 :Iz
(wol a;ak o) + (ol akal lwo)

0 |0
+E'[ T(Iakak|> :
x L0 ayay 10) + (0] ayay |0)

_ (ol axa_ |90) :Iz
(%ol a;ak [po) + (ol akaﬁ |vo)

= minimum,

(4.3)

The prime on the summation denotes that the zero-
momentum state is not included. Minimization of Eq.
(4.3) with respect to s, and use of Egs. (4.1) and (4.2)
gives

(0} aya_y |0 _ Wk
t ¥ L2 2 (4.4)
(O} ayay 10) + <0l ayay [0) vy + uy
10 (a) P.-O. Léwdin, Phys. Rev. 97, 1474 (1955); see also Ref. 19.

(b) This discussion also applies to Sec. 4 of Ref. 3. A criterion similar
to Eq. (4.3) can also be used there to circumvent this difficulty.

DONALD H. KOBE

If Eq. (2.4) is used, Eq. (44) can be shown to be
equivalent to

O yey—x 10) = 0,

which is the same as Eq. (3.3) for the PCDD.
The expectation value of a, in the bogolon vacuum
state is

(4.5)

Wol a9 lyo) = @ (4.6)

from Egs. (2.4) and (2.8). Minimization of Eq. (4.3)
with respect to @, gives

@o = (0] a, |0). .7
By using Eq. (2.4), we can rewrite Eq. (4.7) as
0 710y =0, (4.8)

which is the same as Eq. (3.5) for the PCDD.

The extremum conditions correspond to a minimum,
since the diagonal second derivatives of Eq. (4.3) are
positive. The nondiagonal second derivatives of Eq.
(4.3) are zero.

The momentum distribution (0| aja, |0) and the
pair amplitude (0] a,a_, |0) have been calculated by
McMillan for He II using a variational method with
a Lennard-Jones 12-6 potential. From his values and
Eq. (4.4), which is equivalent to the PCDD in Eq.
(4.5), the values of 5, in Eq. (2.10) and ¢, can be
determined for He II. These values can then be used,
assuming a bare single-particle energy k%/2m, to find
the energy spectrum E; of the bogolons. The roton
dip does not appear if this is done, which supports the
calculation of Parry and ter Haar.!? The bare single-
particle energy should be dressed,* however, and
the effect could be sufficiently large that the roton dip
might appear.

The function in Eq. (4.3) is used in the variational
principle because it results in the PCDD. The con-
dition in Eq. (4.4) can be satisfied and yet the approxi-
mation of Eqs. (4.1) and (4.2) to the true expectation
values can be poor. In this case, the validity of the
theory is questionable. In order to check the theory for
He1, more accurate values of the momentum
distribution and pair amplitude should be calculated.

5. SIMPLIFICATION OF EXPECTATION
VALUES

In his original paper, Bogoliubov? diagonalized the
Hamiltonian up to terms cubic in the bogolon
operators. He neglected the terms coming from the
normal ordering of the bogolon interaction, however.
In I it was shown that the maximum overlap criterion
was equivalent to the diagonalization of the reaction
operator up to terms cubic in the bogolon operators.

11 W, L. McMillan, Phys. Rev. 138A, 442 (1965).
12 W, E. Parry and D. ter Haar, Ann. Phys. (N.Y.) 19, 496 (1962).
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However, too much attention can perhaps be paid to
the energy operators and too little to other operators.
If the expectation value of another operator is of
primary interest, then attention should be focused on
it. For fermion systems, it was shown that the
PCDD(I) can be obtained by diagonalizing the
expectation value of the quadratic part of an arbitrary
operator.® In this section the PCDD(I1) is obtained
for boson systems by diagonalizing the expectation
value of an arbitrary operator up to terms cubic
in the bogolon operators.

An arbitrary operator Q may be a sum of one,
two, three, -+ body operators. It can be easily
written in terms of its matrix elements and the
particle creation and annihilation operators.13 If the ca-
nonical transformation of Eq. (2.4) is made on the
operator and the bogolon operators are normal
ordered, the result for the expectation value in the
true ground state is

O] Q10) = Qgo + (0] Qo1 [0) + (0] Oy 10)
+ (0] 041 10) + (0] Q40 10)
+ (0] Qo2 10) + 0] Q3 10) ++ -+, (5.1)

The operator Q,; has j bogolon creation and k anni-
hilation operators. It is given by an equation similar
to Eq. (2.7), except that H,, and h;, are replaced by
Q; and g, , respectively. The coefficient g,;, depends on
the matrix elements of Q and the coefficients in the
canonical transformation.

If the operator Q is Hermitian, then 0, will satisfy

_ij = QII:i' (5.2)
Equation (5.2) shows that the expectation value of
Q;; is just the complex conjugate of the expectation
value of Q,. Thus the terms with two creation or
annihilation operators in Eq. (5.1) are
0l Qo2 10) + <0 Q30 |0)
=2Re g Gox(k, —K) (O] Yy 10). (5.3)

These terms will vanish if

O] 7y 10) =0 (54

which is taken to be real. Equation (5.4) is just the
PCDD obtained in Eq. (3.3).

The terms in Eq. (5.1) with only one creation or
annihilation operator are

0] Qo1 10) + (0] Q10 10) = 2 Re g5, {01 74 |0).  (5.5)
These terms will both vanish if
0] 7410) = 0, (5.6)

13 See, €.g., D. H. Kobe, Proc. Phys. Soc.(London)88, 9 (1966);
E. R. Pike, ibid. 81, 427 (1963).

1799

which is also real. This equation is the same as Eq.
(3.5) for the compensation of the new dangerous
diagrams.

If Eqgs. (5.3)-(5.6) are used, Eq. (5.1) becomes

<0| Q |0> = Qoo + <0| Qu |0> + <0| Qso |0> + -,
(5.7

which is considerably simplified. Although this crite-
rion of simplicity is rather subjective and other criteria
of simplicity could have been used, it is interesting
that the PCDD can be obtained by using a general-
ization of Bogoliubov’s original diagonalization argu-
ment.

6. BEST STARTING POINT FOR DRESSING
THE QUASIPARTICLE

In order to dress the bogolon in higher orders in the
bogolon interaction terms, it is useful to use bogolon
Green’s functions. By calculating the bogolon self-
energy,'* the effect of the emission and absorption of
collective excitations on the energy of the bogolon
can be taken into account. The bogolon interaction
terms cause a shift in the bare bogolon energy, but
the propagator has the same form as the bare
propagator if the PCDD(II) is used.

The single-bogolon Green’s function or propagator
is defined as'®®

S, =10 Ty} 10, (6.1)
where the operators are in the Heisenberg picture and
the operator T time orders the product with the
largest (smallest) time to the left (right). If the com-
plete set of eigenstates |s) of the Hamiltonian H with
the eigenvalues & are inserted into Eq. (6.1), the
result is

6u(1,2) = i X {exp [—iw(t; ~ 1,)]

X (0] yy Is)s| y4 10) (t, — t5)
+ exp [ioy(t, — 1,)]

X (O] ¥4 1)(sl y110) Oty — £))},  (6.2)
where

w; = § — &

(6.3)

are the excitation energies. The Heaviside step function
6(t) is defined as

1, if £>0,

0@) =%, if t=0,

0, if r<O0.

14 D. H. Kobe, Ann. Phys. (N.Y.) 28, 400 (1964); J. R. Schrieffer,
Nucl. Phys. 35, 363 (1962).

15 (a) For a discussion of Green’s functions and dressing see, e.g.,
A. A. Abrikosov, L. P. Gorkov, 1. E. Dzyaloshinski, Method of
Quantum Field Theory in Statistical Physics (Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1963). (b) The normalized state 'y'{ 10)/
<0} y,¢] 10)% is actually used, of course.

(6.4)



1800

The first term in the sum in Eq. (6.2) is a retarded
term since it vanishes if the bogolon is destroyed
before it is created. The second term is the advanced
part which vanishes if the bogolon is created before
it is destroyed.

The single-bogolon propagator in the free-bogolon
model is obtained by using the bogolon vacuum state
in Eq. (6.1) and the Hamiltonian for free bogolons.
The free-bogolon propagator is then just

Gh(1,2) = iexp [—iE(t; — 1)]0.0(t; — 1,), (6.5)

where E; = h;;(1,1) is the energy of a bare bogolon.
The advanced part in Eq. (6.2) vanishes in the free-
bogolon model, since an annihilation operator acts on
the bogolon vacuum state.

In general, though, the bogolons are dressed by the
interaction. However, if the interaction is not too
strong, the approximation can be made that only the
state with one bogolon excited from the true ground
state y] |0) with excitation energy &, contributes.’®® If
the momenta k, and k, are both zero, it is also neces-
sary to include the true ground state |0) in the sum.
In this approximation Eq. (6.2) becomes

S11(1, 2) = i (0] 70100 7910) d100:
+ iexp [—iéy(t; — 1,)]
X (0] 172 10) 01, — 1)
+ i exp [i£y(t; — KOl y1pLa [0
X (O y2Ls 10)O] 774 10) 6(t — 1.
(6.6)
The single-bogolon Green’s function is coupled to
the Green’s functions describing the creation (anni-
hilation) of one or two bogolons from the vacuum,
as well as to higher-order bogolon Green’s functions,
through the equations of motion. The Green’s
function describing the creation of one bogolon from
the vacuum is

Sou(1) = i (O] T{yi} 10), (6.7)

where the operator is in the Heisenberg picture. The
time-ordering operator T is unnecessary for just one
operator, and the propagator can be written as

Sou(1) = i (0] 75 10) Oy (6.8)

The Green’s function Sy, describing the annihilation
of a bogolon to form the vacuum is defined in a

manner similar to Eq. (6.8).
The Green’s function describing the creation of a
pair of bogolons from the vacuum is

Soo(1, 2) = i (0] T{ylyi} |0). (6.9)
If the complete set of eigenstates |s) of H is inserted,
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Eq. (6.9) becomes
Q02(], 2) = lz {exp [_ia)s(tl - t2)]

X (O] 71 1s)(sl v210) 0(tx — 1)

+ exp [io,(t, — ty)]

X (0] y3 1s)s] 7110)0(tz — 1)} (6.10)
The assumption made in going from Eq. (6.2) to
Eq. (6.6)—that only the state with a single bogolon
excited from the true ground state y!|0) with ex-
citation energy &, contributes to the sum for k; # 0—
can also be made in Eq. (6.10).”® For k; = 0 the
vacuum state |0) must also be taken into account.
The two-bogolon creation propagator thus becomes

Soa(1, 2) = i (0] 3 10)0] 4 [0) B1685
+ iexp [—iy(ty — 1p)]
X (0] piyly 10) 65 10(t, — 1)
+ iexp [i&,(t, — 1,)]
X (0] pLup] 10) 85,100t — 1,).
(6.11)

The propagator describing the annihilation of two
bogolons has a similar form.

These propagators can all be simplified by choosing
the bogolon-pair amplitude

O] k7 10) =0 (6.12)
and the one-bogolon amplitude
0 y410) =0, (6.13)

which is just the PCDD. Both the single-bogolon
creation propagator in Eq. (6.8) and the bogolon-pair
creation propagator in Eq. (6.11) then vanish:

Su(1) =0,

Gea(1,2) =0,

as do the single-bogolon and bogolon-pair anni-

hilation propagators. The single-bogolon propagator
in Eq. (6.6) becomes

Sn(1, 2) = iZ,6yy exp [—i&i(t, — 1)10( — to).
(6.15)
The renormalization factor Z; in Eq. (6.15) is just the

coefficient of the exponential in the retarded part of
Eq. (6.6):

(6.14)

Zy =1+ O yin 0. (6.16)

Equation (6.15) for the dressed bogolon propagator
is of the same form as the bare propagator in Eq. (6.5),
which is expected if the bogolon interactions are not
too strong. Thus the bogolon interactions do not
change the form of the propagator if the PCDD in
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Egs. (6.12) and (6.13) is satisfied. The PCDD is
therefore the most convenient criterion to use when
considering the subsequent dressing of the bogolons.

7. BOGOLON GREEN’S FUNCTIONS

In order to discuss the expansion of the PCDD in
terms of Feynman diagrams, it is necessary to derive
the equations satisfied by the Green’s function intro-
duced in the last section. Then in the next section the
relationship between the PCDD and the bogolon
Green’s functions can be investigated.

The most general bogolon Green’s function which
describes the annihilation of n bogolons and the
creation of m bogolons is®

gnm(1’25"':nsn+ 1"..5n+m)
=i O T{yys - Varher” Yham} 10, (7.1)

where the expectation value is in the true ground
state and the operator T time orders the bogolon
operators in the Heisenberg picture. The equation
satisfied by this function can be obtained essentially
by differentiating it with respect to ¢, and using the
Heisenberg equations of motion. A more sophisticated
technique was used in a previous paper!® to obtain the
equations of motion for the fermion-bogolon Green’s
functions.

The equation for the Fourier transform of Eq. (7.1)
is easier to represent by diagrams. The Fourier trans-
form of Eq. (7.1) is defined as

Gnm = (277)—n—mf o 'fdtl T dtn+m
i n+m
X exp {i > w_ltl}gnm, (7.2)
=1
where the frequency w_, is defined as
w,, if 1<n,
wW_; = .
:—w,, if I>n,

for the sake of convenience. The equation satisfied by
the function G,,,, is

Gum(1,2,- -+, n + m)
=8, 2 | (=2mphy(I'2, - -+, j + K)G(11")
ik

(1.3)

X Gn+k—1,m+:i—1(j + U+ K2, g
2y im0 0+ m)

- im8,8,,G’(1,n + 1)

XGpama2, - smsn4+ 2,0 ,n+m), (74)

'* For fermion systems, these Green’s functions were investigated
by D. H. Kobe and W. B. Cheston, Ann. Phys, (N.Y.) 20, 279
(1962). The equations of motion for the Green’s functions were
obtained in this paper in a way that maintains the antisymmetrization
of the function at all steps of the derivation. Here, of course, the
Green’s function must be symmetric in the coordinates of the
bogolons destroyed and also for the bogolons created.
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where the variables (1) = (ky, wy), (2) = (k;, w,),
etc., represent the momentum k and frequency
(energy) w of the bogolons. The integral in Eq. (7.4) is
an integral (sum) over all the primed frequencies
(momenta). The primes on the variable (1) means
(k7 , ), for example, and j+ k' = (j+ k). The
prime on the A;,(1,2,--+,j 4 k) means that it is
multiplied by a delta function for energy conservation:

5(w1+wz+"'+wa’_wa‘+1“"'—wa'+k)-

The sum over j and k is such that j, k =0, 1, 2, 3, 4,
and j+ k=0,1,2,3, 4, butthetermj =1,k =1
is specifically excluded. The operator §, is the
symmetrizer for m bogolons with the variables
n+1, n+2,-+-,n+4 m The operator §, is the
symmetrizer for #» bogolons with the variables 1, 2,
3, ,n Thus Eq. (7.4) is symmetric in the first
variables and the last m variables, as it should be
from the definition in Eq. (7.1).
The free-bogolon propagator is defined as

G(t,n+ 1)
= (—2m) Yo, — E, + 107101 5 10(wy —

wn+1)’

(7.5)

where E; = hy;(1,1) and +i0 is an infinitesimal
imaginary quantity. The Kronecker delta is for
momentum conservation, and the delta function is for
energy conservation.

Equation (7.4) is represented graphically in Fig. 1.

n m n-i m
n mE—> = a-f, mgE—— +
n-1 m n-1
= n-l, m+l =—> + n-l, ms2 m +
n-{ +1 m a-l +l, m :m +
- n, m + - n
E == '
=
m n-i
et nt2, m F—=> + _'—_j n-l,m+3 m +
n-i m-1
- =l =

FiG. 1. The equation of motion for the Green’s function G,,, in

graphical form.
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n m
A n m > Gam (1,2,-+--- n+m)
| j+k

2; : .

. j+2 =2wjh (1,2, NEYY)
i- j+t

l_ . 2 6°(1,2)

F1G. 2. The correspondence between the graphical quantities and the
mathematical quantities in the Green’s function equation of motion.

All the bogolon interactions have been put in speci-
fically to show the true structure of the equation.
The correspondence between the graphs and the
mathematical quantities is shown in Fig. 2. Figure 1
shows that Eq. (7.4) is essentially an “expansion” in
terms of the first interaction the bogolon undergoes.
As the bogolon propagates, it can undergo one of the
interactions given by the Hamiltonian in Eq. (2.6).
Then the resulting bogolons enter a “black box”
where they can interact in all possible ways. Some of
the emerging bogolons interact with the incoming
bogolon, but this process happens simultaneously
with their entering the box, so there is no breakdown
in causality.

The equation which is adjoint to Eq. (7.4) can be
obtained essentially by differentiating Eq. (7.1) with
respect to ¢,; and then taking the Fourier transform.
When the equation of motion for a creation operator
is used, the result is

Gnm(l,zy' ,n+ m)
= sz 27kh (1’2", -+, + KYG(j+1,n+1)
i,k

X Guipamia(J+ K, j+2,1,2,---,n;
1"...,j”n+2,-..’n+m)

— in8,8,G°(1,n + 1)

X Gpgma(2mn 42,0 ,n+m). (7.6)

The same notation as used in Eq. (7.4) has also been
used in this equation. The sum on j and % is restricted
such that j # 1, k # 1, but other values such that
J»k=0,1,2,3,4,and j+k=0,1, 2,3, 4 are
included.

Equation (7.6) is shown graphically in Fig. 3, where
the graphical quantities are defined in a way similar to
Fig. 2. The exact definition can be seen by comparing
Eq. (7.6) and Fig. 3. The interpretation of Fig. 3 is
similar to Fig. 1, except that it represents an ‘“‘ex-
pansion” in terms of the last interaction the bogolon
undergoes.
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Equations (7.4) and (7.6) form a hierarchy of
coupled integral equations to be solved for the Green’s
functions. Although it is in general necessary to make
some approximations to solve them, it will be seen
in the next section that they can be resumed to give
equations from which a reformulation of the PCDD
can be obtained.

8. GREEN’S-FUNCTION FORMULATION
OF THE PCDD

The PCDD as formulated in Egs. (3.3) and (3.5)
can be expressed in terms of the one-bogolon anni-
hilation (or creation) propagator Gy, (or Gy;) and the
two-bogolon annihilation (or creation) propagator
Gy (or Gyy). Equations (3.3) and (3.5) are in fact
equivalent to

f_ Z f dwy dwoyG(1,2) = 0 (8.1)

and

-2
f dw,Gy(1) =0, 8.2)
which are shown graphically in Fig. 4, where the
dashed lines indicate the integrations over the energy.

In order to discuss the reducibility of the diagrams
it is necessary to apply the equations of motion in the
last section to the functions Gy, Gig, Gy, and Gos.
The higher-bogolon Green’s functions can be sub-
stituted into the equations to obtain the perturbation

n m
— n, mE—=> =
n m-| n m-|
= n, m-l + == n+l, m-| +
nt2, m-l n nt+l, o m m-|
n y Meolp—= + - +
n -
—n m+! m-1 + n n+l, m+t m-l +
—— p— X ——
n }-.—
n n+2, m ="‘>" + —=xn, m+2pn +
= —
(___m_q n-l m-
n n+3,m-| + n-l, m-| F>
f—

F1G. 3. The adjoint equation of motion for the Green’s function
Gpp, in graphical form.
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series expansion for the functions. These series can be
resummed and expressed in terms of integral equations
with irreducible vertex parts. The equations obtained
for the four functions are shown in Figs. 5,6,7,and 8,
respectively. The circles, which will be denoted by the
symbol f with the appropriate subscripts, denote the
irreducible vertex parts, which cannot be cut in two
by merely cutting one or two lines. The single-
bogolon propagators in Figs. 5-8 are dressed prop-
agators. If the equations are integrated as in Egs.
(8.1) and (8.2) and set equal to zero, only the irre-
ducible vertex parts f;, ( fp,) describing the annihilation
(creation) of a single bogolon and f;, (fys) describing
the annihilation (creation) of a pair of bogolons
remain on the right side. They must then be zero,
since the left side of the equation is zero.

However, we will assume that f;, (or fy,) and f5, (or
Joz) are set equal to zero. The remaining coupled

tol FiG. 4. The principle of compensa-
tion of dangerous diagrams in graphical
form.

- — — -

{b)

Fic. 5. The resummed integral equation for the single-bogolon
creation propagator Gy, . The outgoing line is dressed.

FiG. 6. The resummed integral equation for the single-bogolon
annihilation propagator G,,. The incoming line is dressed.
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2 o] =

= -
0

Fic. 7. The resummed integral equation for the two-bogolon creation
propagator G,,. The outgoing lines are dressed.

+%)+

s L [¢]

FiG. 8. The resummed integral equation for the two-bogolon anni-
hilation propagator G,,. The incoming lines are dressed.

integral equations are homogeneous and, therefore,
possess the trivial solution that frequency integrals of
Gy and Gy are zero. Thus it is not necessary to
compensate all of the dangerous diagrams, but only
the irreducible ones.!” Compensating the irreducible
dangerous diagrams results in all dangerous diagrams
being compensated as well. The PCDD can be
reformulated in the following way: The sum of all
irreducible diagrams leading from the vacuum to a
two-bogolon state should be set equal to zero. The
irreducible diagrams leading from the vacuum to a
one-bogolon state are likewise compensated.®

9. RELATIONSHIP BETWEEN THE TWO
CONDITIONS

In a previous paper,? the condition for the PCDD
was obtained from the maximum overlap and other
criteria. These criteria give the PCDD(I)

ol 7y—x 10) =0 0.1
17 In Ref. 3, the only reducible diagrams were the ladder diagrams,
which were eliminated by a similar argument.
¥ In T a less rigorous argument based on ordinaty perturbation
theory lead to the same result.
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and
(ol Y0 10) = 0. %.2)

These conditions are not in general the same as the
PCDD(II) given in Eqs. (3.3) and (3.5). The relation-
ship between the two conditions can be seen by
expanding the true ground state in terms of the bogolon
states

[0) = Co o) + Ciyd l9o)
+ 122 Co1, 2)y19% o)

+gﬁmzmM£Mku<m)

where the sums are restricted so as to insure that the
ground state has zero momentum. The PCDD(I)
corresponds to

C, = maximum,

¢, =0,

Cy(1,2) =0,
which was shown in 1. The PCDD(II) is obtained
from the criterion for the minimum number of
bogolons in Eq. (3.1). By substituting Eq. (9.3) into it,
we obtain
n=0-|Col*+ 1-|Ci]* + 2+ 3 2! |Cy(1, 2)?
1,2

+3-231C,(1,2,)P+ -,
1,2,3

= minimum.

(9.4)

(9.5)

Thus the series in Eq. (9.3) must converge rapidly if
the number of bogolons is to be small, since the higher
terms in Eq. (9.5) are more heavily weighted. In
general, Egs. (9.4) and (9.5) will not be the same. There
is no reason to be concerned, however, since it is
known that different criteria in the independent par-
ticle model give different orbitals.’® Which condition
to use then is a matter of taste.

However, the PCDD(I1) does have the advantage
if bogolon Green’s functions are to be used. It is
extremely difficult to express the PCDD(1) in terms of
the bogolon Green’s functions. For the PCDD(I) the
wave- and reaction-operator formalism is most
suitable. The PCDD(II) also has the advantage that
to extend it to finite temperatures it is only necessary
to replace the ground-state average with a thermal
average. The derivation based on the minimization of
the number of bogolons is unchanged in this case.

10. CONCLUSION
The four criteria presented in this paper all lead
to the PCDD(II). The criterion of minimizing the
expected number of bogolons is the one that is the
19 W. Kutzelnigg and V. H. Smith, Jr., J. Chem. Phys. 41, 899

(1964). Equation (3) of this reference applies to the best overlap,
not the best density orbitals.
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most physically appealing, since the bogolons would
be expected to behave more as an ideal gas if their
number were small. The “‘best” approximation of the
bogolon density matrix and pair amplitude to the
true amplitudes as formulated in Sec. 4 focuses
attention on particle amplitudes. However, there are
a large number of other criteria that could be used,
but do not lead to the PCDD(II). The simplification of
expectation values of arbitrary operators and simpli-
fication of propagators are criteria that by themselves
are somewhat subjective. However, it is interesting
that these criteria also lead to the PCDD(II) as
obtained by the other criteria.

Both the PCDD(I) and the PCDD(II) satisfy
Bogoliubov’s original statement in terms of diagrams,
but the diagrams are defined differently. The PCDD(I)
is most advantageous when the wave- and reaction-
operator formalism is used with their associated
diagrams. The exact self-consistent field approach to
obtain the PCDD(I) shows that the condition also
leads to the true ground-state energy. The PCDD(II),
on the other hand, is most convenient when the
Feynman diagrams of the Green’s-function method
are used. It is perhaps more convenient to discuss the
self-energy of the bogolon'? in terms of bogolon
Green’s functions and develop a systematic way of
dressing the energy denominators. In order to deal
with the problem at finite temperatures, thermal
averages can be used instead of the ground-state
averages. However, in the final analysis which form
of the PCDD to be used is a matter of taste. In the
independent particle model there are several criteria
for choosing the “best” single-particle orbitals, which
give different equations.' Itis necessary to ask in which
regard the orbitals are the “best.” Usually, the
simplest method is used, but that is only a practical
consideration. In the case of bogolons the com-
pensation of the lowest-order dangerous diagram
(CLODD) is the simplest, but it was shown in I that
it has theoretical drawbacks.

There is a deeper question that can be asked about
the PCDD. Is the PCDD even necessary to use at
all? The formalism developed by Beliaev?® using
anomalous-particle Green’s functions is in lowest order
equivalent to the CLODD (omitting pair-correlation
terms coming from the normal ordering). If the
particle Green’s functions are extended to all orders,
an exact result can be obtained if perturbation theory
converges. The use of the anomalous propagators can
be justified by using a source term in the Hamiltonian.®

20 8. T. Beliaev, Zh. Eksp. Teor. Fiz. 34, 417 (1958) [English
transl.: Soviet Phys.—JETP 7, 289 (1958)]. See also N. M. Hugen-
holtz and D. Pines, Phys. Rev. 116, 489 (1959).



PRINCIPLE OF COMPENSATION OF DANGEROUS DIAGRAMS. II

On the other hand, if the PCDD is used in all
orders, the many-boson problem can also be solved
exactly. It is necessary to use bogolon Green’s
functions or another type of perturbation theory
when dealing with more than just the CLODD. The
diagrams are also more complicated. However, if the
canonical transformation to bogolons is made, it is
not necessary to introduce anomalous propagators in
an ad hoc manner. Since the bogolon interaction is
“richer”” than the particle interaction, it is possible
perhaps to see some new and better approximations.
The PCDD has a well founded physical significance
and is no longer just a “recipe” for determining the
coefficients. If all orders of perturbation theory are to
be used, it does not make any difference what choice
of coefficients is made, since the exact answer will be
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obtained if the series converges. In particular, the
Beliaev formalism corresponds to the trivial canonical
transformation with u, = 1, and v, = 0. However,
by using the PCDD to determine the coefficients, the
series will converge more rapidly.

There is an advantage to having more than one way
of looking at a problem. It is even better when the
different methods can be extended to show that they
are essentially equivalent. Which method to use then
depends on the problem to be handled and the
inclination of the user.
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such as “Gaussian process,” etc., cannot be given a fully invariant meaning. Markovian processes are also
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are made to generalize these results.

1. INTRODUCTION

Beside their intrinsic interest, relativistic stochastic
processes may be involved in a series of semiphenom-
enological theories. For instance they permit the
establishment of a theory of relativistic irreversible
processes and hence relativistic Onsager relations.
They also permit one to give a probabilistic inter-
pretation of various Fokker-Planck equations con-
sidered when dealing with relativistic plasmas.
Furthermore, the study of relativistic Brownian
motion might be of importance in some theoretical
problems.! In two further papers, the present theory
will be applied to problems of turbulence of a rela-
tivistic plasma and to an acceleration mechanism of
cosmic rays of extragalactic origin.
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In this paper we limit our study to relativistic
stochastic processes in u-space, i.e., in a one-particle
phase space. In fact, the generalization to more
complicated spaces is straightforward, although the
notations might be rather sophisticated. For all
practical purposes these processes are sufficient.
However, the definitions we give are not the only
possible ones (for more general spaces) and therefore
we give an outline of other possibilities.

In Sec. 2, we give the basic definitions of stochastic
processes in u-space. However, these definitions do
not correspond to the modern and precise mathe-
matical definitions® used nowadays, but rather to an
“old” point of view,** although it is more useful in

® See, e.g., J. Neveu, Bases mathématiques du calcul des prob-
abilités (Masson et Cie., Paris, 1964).

® R. L. Stratonovich, Topics in the Theory of Random Noise
(Gordon and Breach, Science Publishers, New York, 1963).

 Ming Chen Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17,
323 (1945).
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physics. However, our considerations may probably
be made as rigorous as we want. In Sec. 3, we study a
case of particular importance, the case of relativistic
Markovian processes. Section 4 is devoted to stochastic
processes in Minkowski space-time. Section 5 is
mainly concerned with a brief discussion of our
results. In the Appendix we give a completely different
approach based on the use of proper time which we
illustrate in treating the case of a particle embedded in
a random force field.

In this paper we mainly use the notation of a
previous article.> However, let us recall that

g% =—g=+1, g =0 for u#vy
(/"""=0s""3;i=11"'s3)’
c=1

(where g#¥ is the metric tensor of Minkowski space-
time). The Einstein convention is also used.

Finally we want to warn our readers that the use of
classical mathematical symbols throughout this paper
is adopted for the sake of clarity and concision. It is
not intended to give our results a mystifying appear-
ance of mathematical rigor. Our approach is mainly a
physicist’s approach, although we "are generally
conscious of the mathematical problems we have
discarded.

2. RELATIVISTIC STOCHASTIC PROCESSES
IN u-SPACE

Let us consider the problem of a particle whose
motions are random. The motions of this particle are
random for different reasons. For instance, the
particle may be embedded in an external random
force field. The “initial data” necessary to specify
completely the behavior of the particle may also be
random, an ‘“observer” being unprecise while
performing his ““measurements.” Another example of
a random particle is the one of a test particle (that is,
a generic particle of a gas), whose motions are
assumed to represent more or less the main properties
of the system under study.

A convenient way of describing this problem is by
using what is commonly called the u-space, i.e., the
one-particle phase space. As u-space we choose®

u= M x U4, 1

where M is the Minkowski space-time, while U* is

5 R. Hakim, J. Math. Phys. 8, 1315 (1967).
¢ Actually, the 4-velocity space is 3-dimensional, because of the
constraint
ubu, =1, u®>0, u'eUL
However, the use of the 4-dimensional space U4 is more interesting
(from a practical point of view), as is explained in Ref. 5.
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the four-dimensional 4-velocity space.® In fact, the
choice (1) for the u-space is not completely general:
we implicitly assume that we are interested only in
space-time and velocity properties of physical
quantities. However, in all that follows we limit
ourselves to (1), the extension of our results to more
general u-spaces being straightforward (for instance,
we could add the acceleration space,” etc.). In what
follows, x4 (4=1,--+,8) denotes an arbitrary
coordinate system in u space; for instance, the usual
coordinates in g-space are (x*, u*) = x4.

Physics imposes that the trajectories of a random
particle (or of the stochastic process) be timelike (in
Minkowski space-time). However, there are also
random processes that are not related to “particles”
and hence whose trajectories may be spacelike in the
space under consideration. We shall come back to that
question in the sequel. In 4-velocity space, trajectories
are spacelike by construction. In what follows we call
a trajectory in u-space “timelike” when its projection
in Minkowski space-time is timelike. “Spacelike”
trajectories in u-space are defined in the same way.
Similarly, a 7-dimensional surface in u-space is called
“spacelike” when its normal is a “timelike” 8-vector.

Definition of a Relativistic Stochastic Process in
1-Space

Let now 27 be a spacelike hypersurface embedded
in wp-space (for instance, X7 = 8% x U4, with
S$% < Mt and SB an arbitrary spacelike hypersurface).
Furthermore we impose that X7 cuts all the possible
timelike trajectories of the process in u-space. As we
explained at length in two preceding papers,®® “physi-
cal space at a given time” is represented in Minkowski
space-time by an arbitrary spacelike hypersurface so
that we have to deal with a spacelike hypersurface
27 in u-space. Physical measures or observations
always refer to such arbitrary spacelike hypersurfaces.
Therefore we set the problem in the following way.
Let A be a Lebesgue-measurable subset of X7. We
want to define the probabilities

Prob {x4ecA c X7 < u}, VA. 2)
These probabilities are completely determined by the
distribution W, (x4) through
Prob {x4 €A c 57 ¢ p} = f  nPW,(x) dE,
ACI ' Cpu
3

where dZ g is the usual differential form “‘element of

7 R. Hakim, J. Math. Phys. 8, 1379 (1967).
# R. Hakim, J. Math. Phys. 6, 1482 (1965).
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hypersurface”

1 —
dEB = '7_!\/G€B,A1,"',A7 dxAl /\, T, A dxA7’ (4)

with
+1, when (B, 4,,---, A;)is aneven
permutation of (1,-- -, 8),

—1, when (B, A,, ", 4,) is an odd
permutation of (1,-- -, 8),

B4y, -, 4, T

0, otherwise.

In Eq. (4), G represents the absolute value of the
determinant of the metric tensor in g-space.’ In Eq.
(3), 1P is an 8-vector which need not be specified at
this stage: essentially, #® is an “8-velocity”; i.e., 75 is
“tangent” to the trajectories of the process, which
property insures the invariance of definition (3) with
respect to coordinate transformations. We see later
what 77 actually is. Of course, W;(x*) is a positive
density and is normalized by

Prob {x* e X’ < u} =f W (x)dEs = +1, VI
x
(5)

In the same way we can look for the probability
Prob {[x{'e A, © Z] < u] N [xff €A, = Z} < pl},
(6)
i.e., the probability of finding x4 within A; < X7 and

A, < Z7. Exactly as above, these probabilities are
entirely determined by a density Wy(x{!, x31):

Prob {[x{! €A,  Z]] N [xil e A, = 1]}

Joss o EPPGE, ) g, ()
A1XApCEy XEy Cp

Ad4=1,---,8; By=1,---,16, i=1,2), where
dXp p, is the usual differential form *‘element of
surface” corresponding to a 14-dimensional surface
embedded in a 16-dimensional manifold. In Eq. (7),
&B1B: is defined as follows®:

g0 = £ A £ ®
with
E=mn @0,
=007, &)
Wy(x4!, x5!) also gives the following probabilities:
Prob {(xf, xs) e A < T1 < 42}, (10)

Wy(w, xg) is a positive, not necessarily symmetric,

? Since Minkowski space-time is a (pseudo-) metric space and
since u can be considered as its tangent fiber bundle (with Lorentz
group as structure group), we can always endow u with a metric
G4Z (which need not be specified).
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function. In the nonrelativistic case, the density
W, (Xy, ", Xn; 1 ** 5 t,) is @ symmetric function
with respect to the permutations of the set of variables
(x;,°**, X,) and not with respect to the permutations
of the set of variables (x,,?,; - ; x,,,). Conse-
quently, there is no reason why the relativistic
density should be symmetric with respect to the
permutations of (xf, -+, x%). However, in some
particular cases such a symmetry property may be
verified.® In what follows we shall see how the
probabilities (7) are restricted by causality conditions.

More generally, a relativistic stochastic process in
u-space is completely determined when all the proba-
bilities

=k
Prob{n [xfeA, < X! < ull;

=1

keZ*, VI (“spacelike”) (11)

are given (Z* being the positive integers). This defini-
tion is completely similar to the customary one.?~* Of
course, we have

=k

Prob U [x2 e ] < pl} = +1.

i=1

(12)

Now, we assume (and this assumption is, as usual,
quite restrictive, although it is useful for practical
purposes) that the set of probabilities (11) is fully
characterized by the densities W, (x;*, - - -, x{1). These
densities W, (xs!, - - -, x#) should verify the following
conditions:

(@) Welx;t, - -+, x7) > 0;

(b) W, (xf4, - - -, x;1) is not necessarily a symmetric
function of (x#, - - -, x{);

(©
vI% (B,=1,---,8k i=1, -, k;

A=1,--,8);

(d)
A4 L Ay Bn_kr+ " +Bn
‘u.)k(xl s > x7~ ) fz-“”_k)c lﬂ'*k)(,”’ . ,n_k)g

X wn(xfa Y xtr‘i) dzB,._kw s By

V27(n—k); vn > k.
In Conditions (c¢) and (d) we have set®
=k
ghn B = A gP (13)
i=1
with
E,=00009 &0, @ @0 (149
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In Condition (d), the notation

Z7(n—k) c M(’n—k)(n, ceen — k)

signifies that the surface 27»*) is embedded in a space
spanned by the coordinates (x, 4, ", x,_; 4). Con-
dition (d) is simply a consistency condition: W, may
be obtained from all W,, (n > k) and independently
of the surface on which W, is integrated. Condition (c)
is the normalization condition of W,. Conditions
(a)-(d) are the natural generalization of the similar
nonrelativistic ones.>*

In order that Conditions (c) and (d) be valid
whatever the various surfaces X, it is necessary and
locally sufficient that the differential forms

EBn-re o BoY) (xfl, - xDdSp, ., (15)
be closed forms, i.e.,
d {‘,EB1 ..... Bn—lc‘U)n(xi‘i, cee x‘i) dzBl""!Bn-k} =0,
k < n. (16)

Conditions (16) imply the infinite number of inte-
grability conditions®

Vi W, (xt,--,x)} =0, i<n.  (17)

Later, we shall see that, in fact, Eqs. (17) are kinetic
equations such as Fokker-Planck equations.

Let us now try to characterize a relativistic stochastic
process in u-space in a more mathematical manner.
Usually, a stochastic process in a given space E is
defined as being a measurable application of the
product of the “sample space” by an interval (possibly
infinite) of real numbers (i.e., time) into E 2:

T x (Q, #, @) X4 E (18)

[ = sample space = {w}; T < R, real numbers

(time); A = ¢ algebra on Q; @ = probability on #;

X,(w) € E = stochastic process]. In the relativistic

case, instead of the diagram (18) we have
X5lo)

{£} x (Q, £, @) ——>pu

(19)
({Z} = set of all “regular” spacelike hypersurfaces in
u-space). In other words a relativistic stochastic
process in u-space is a random variable in u-space
indexed by a hypersurface! The fact that the set
{2} cannot be totally ordered (for a natural order, of
course) can give rise to difficulties. However, {X} may
be partially ordered®: %, < X, if and only if %, is in
the futurel® of X,. Note also that if we restrict our-
selves to a ¢ partition of u-space (i.e., to a family of

10 ¥, is said to be in the future of X,, if its projection in

Minkowski space-time is in the future of the projection of X, in
Minkowski space-time.
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hypersurfaces indexed by one parameter and satisfying
some regularity conditions®), namely {Z}.p, then
definition (19) is essentially equivalent!! to the classical
one (18).

Average Values, Characteristic Functions, etc.

In another paper® we defined average values. If
®(x4) is a given function on u-space with tensorial
values, then

@ = [ BEOPWGH AT, QO

is the average of @ on X7. Classically we would say
“average value of @ at time 1. In general (®)y,
actually depends on X7 except when the integrability
condition

VA{(D(XB)WA‘IDKXB)} =0 (21)
is verified. Because of Eq. (17), we can have!?
[UA‘w1(xB)] -V, ®(xp) =0, (22)

when, for instance, [V, #4] = 0. More generally,
average values are defined by®

<¢(x1A s, xkA))En =J;7k¢EBl' o ,Bk‘qu dEBp e B

(23)

and do not depend on X™ when the integrability
conditions

Vp{®EsBrpl =0, i<k

are fulfilled.
These definitions allow us to determine the entropy*?
of a given distribution W,. Indeed, we have®

249

DEF
SH{W,}, == —Alog Wygw, 4> 0. (25)

By analogy with statistical mechanics, a relativistic
stochastic process in u-space is termed irreversible of
kth order whenever

SEw,}, 27 < S[{W,;}, 23, i<k, (26)

with
TE<ITE (< k).

It is easy to see that the necessary and sufficient con-
ditions for a relativistic stochastic process in u-space
to be irreversible is that the following inequalities be
fulfilled:

Vg {log W, - 81 B} <0, j<i<k (27)

11 With the restriction that ‘‘admissible” measures in u-space
should have their support on X.

12 We shall see later that 74 is, in general, an operator acting on
densities ‘W, . Therefore we have to be careful and avoid *‘simpli-
fying” Eq. (22) by ‘W, (for instance).

13 From the point of view of information theory.
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or, equivalently,
g8 i B, LV, A, < 0, (28)

where use has been made of Eq. (17) and of the
implicit assumption [V, E] = 0. A relativistic process
in u-space is called reversible when Eq. (26), Eq. (27),
or Eq. (28) are equalities, with k running from 1
to oc.

In the same way, we can determine the characteristic
functions of the densities W, . For instance, the
characteristic function of W, on X7 is

(KA, B9 E (exp {iK4x )y (29)

This characteristic function implies, as usual, the
knowledge of all moments of W, on 27 (and on X7
only) through

<(xAl)(I1, T (XAB)QB>E7

z
_ (_i)quk or ke

O(K 1), -+, O(K )"

A 7
(p(K ’ z )KAf=0

(30)

(with the restriction that the moments exist, of
course). Therefore we see that in the relativistic case
there is not a unique characteristic function corre-
sponding to a given density. This feature was, of
course, expected, since the dependence on a surface is
the relativistic analog of the usual time dependence
of characteristic functions and more generally of
average values.

At this point it seems to be worthwhile to make
several remarks about average values. Let us return
to definition (20) with the choice ® = x, i.e., to the
definition of (x4)y,. In the classical case, (X,(w))
generally represents a curve (an average trajectory)
either in £ or in T x E [see Eq. (18)]. What about
the relativistic case? When X7 belongs to a given
o partition, then it is clear that (x4)y- also determines
acurve in u-space (u-space is the relativistic analog of
T X E). However, this curve depends, in general, on
the chosen o partition of u-space so that there is not
actually a unique average trajectory of the process as
in the nonrelativistic case. This point will be made
clearer in the Appendix. The same features are also
true for higher moments of the process. For instance,
in the classical case (X, (w) ® X,,(w)) determines in
general a two-dimensional surface either in £® £ or
in (T x E)® (T x E) while there is in general no
such unique surface generated in u ® u by

<xA ® XB>214 >

etc. In some cases, of course, (x4)ys may really deter-
mine an average trajectory of the process in u-space.
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For instance, let us take
no(X,)

Wy(x,,u,) = m exp {—&"u,} 20(u”)o(u*u, — 1),
(31)

ie., the Juttner-Synge density (with §&*¢, =1,
0,£" = 0, and where K is a Kelvin function of order
two). In Eq. (31), ne(x,) is such that all the possibly
used integrals are convergent. Since ‘W, depends on
only one 4-vector &*, then necessarily

(xMygs o &, (u*)gs oc &

Therefore, (x*)g determines a straight line in A4,
while (u*)gs merely yields a point in U* (or rather in
the hyperboloid w*u, = +1, u® > 0). Finally, (x4)g.
gives rise to a curve in u-space.

Of course, we could try to limit ourselves to those
sets of W, which give rise to unique moments in g,
L®u, p®- - @pu, etc. (ie., to unique surfaces:
a k-dimensional surface in u®%). However, we have
not yet been able to find the necessary and sufficient
conditions the W, should satisfy in order to get these
unique surfaces. Furthermore, this would be only a
very particular case of stochastic processes in u-space.
However, these remarks suggest another way of
defining this latter class of stochastic processes.
Indeed, in the nonrelativistic case a large class of
stochastic processes (at least those considered in
physics) are determined by the data of all their
moments

(32)

(Xy(o) e E, (X, (0)® X,(w))eE®E,etc., (33)

le., by a curve in T X E, a 2-dimensional surface in
(T x E)® (T x E), etc. This suggests that a partic-
ular class of relativistic stochastic processes in u-
space may be defined not through the W,’s but rather
through the data of an infinite number of merely
geometrical objects, i.e., a curve in u-space, - -, a
k-dimensional surface in u®*, etc. These surfaces
have to satisfy a number of requirements connected
with “timelikeness” or “spacelikeness.”

Gaussian Processes

In the nonrelativistic case, Gaussian processes may
be defined in a number of equivalent manners. For
instance, X,(w) is a Gaussian process when one of the
following conditions is verified (the list below is not
exhaustive):

(a) Its distribution functions are Gaussian.M

!4 Gaussian distributions are themselves defined in a large number
of equivalent manners.
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(b) It is completely determined by (X,(w)) and
(X;,(w) ® X, (w)), where the higher moments are
obtained from the first two through a definite way.?

In the relativistic case, definitions (a) and (b) are no
longer equivalent. Suppose that W, and W, are
exponentials of quadratic forms of x4, ie., are
“Gaussian.” Then it is easy to realize that these
densities are not determined by their first two
moments; the coeflicients of the quadratic forms are
not directly related to the first two moments. Con-
versely, if we adopt definition (b), i.e., if we assume
that we are given the moments (x4)gz: and
(x4 ® x4z)y14 (Y27, w214, then it is easily seen that
these data do not determine a unique W; (or W,): On
each X7 (or X) they determine a ‘W; (or W,), but
these densities do depend on the particular X7 (or
214) chosen.

It results from the above considerations that it
seems hardly possible to define Gaussian processes in
an intrinsic manner. Of course, if we are given a
particular o partition of u-space, then [and only for this
o partition) a Gaussian process can be defined in the
usual way (i.e., with either definitions (a) or (b)].
There is another possibility of defining Gaussian
processes for the subclass of processes considered at
the end of the last paragraph. Indeed, such a process
may be defined—at least in principle—by the data of
an average trajectory in u-space and by a two-dimen-
sional surface in u ® u. However, the obtention of
higher-order moments (i.e., surfaces) from these ones
is far from being clear.

Causality

An important difference between usual and relativ-
istic stochastic processes is related to causality. Indeed,
usual stochastic processes—either in u-space or in
configuration space—may have arbitrary trajectories.
However, in most cases a physically admissible
relativistic stochastic process in u-space must have
timelike trajectories (either in Minkowski space-time
or in u-space). This causality requirement imposes
conditions on the various W,’s and more particularly
on the various transition probabilities. For instance,
if we define!® the second-order transition density by

‘u)2(x64’ xi{)

wl(xﬁ[) ’ 39

P 2(3‘64 I x{') =
then we have the following obvious property:

Proposition 1: If a relativistic stochastic process in
u-space has timelike trajectories, then its second-

15 See the next section for the details.
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order transition density is such that

Vx4, x*e M* such that:
Po(x§, uf | xt', ut) = 0 {(xh — xf)(x,0 — x,0) <O

or x§> xi.
Proof: See Ref. 8.

This proposition may be generalized in a straight-
forward manner for higher-order transition densities.
It can also be generalized to the case of spacelike
trajectories. In such a case P, vanishes when x4 and
x% satisfy

(x§ — x{)(*p0 — X,2) > 0. (35

For a relativistic Markovian process (see Sec. 3) the
above proposition becomes a necessary and sufficient
condition since P, characterizes the process.

Stationarity

The notion of stationarity in the relativistic frame-
work is much more complicated than the Newtonian
one. In fact, there are several possible generalizations
of such a notion. A stationary process is commonly
defined as one whose statistical characteristics are
invariant under time translations. 4 priori, the first
natural relativistic generalization is to call stationary
those processes whose statistical characteristics are
invariant under space-time translations. This kind
of stationarity is referred to as the strong stationarity.
It implies immediately that W, is a constant, W,
depends on x% and x# only through the combination
(x4 — x*#), etc. It also implies that the process is both
stationary and homogeneous in each Galilean frame of
reference. In fact, we are looking for a definition of
stationarity, valid for each Galilean frame of reference
(Lorentz invariance), which would not also imply the
spatial homogeneity of the process. To do so, we
might call stationary a relativistic stochastic process in
pu-space whose statistical characteristics are invariant
under the semigroup of space—time translations Gt
defined by

o € Bt ate, >0, o> 0. (36)

However, although this definition seems to achieve our
goals, it is not completely satisfactory in so far as (a)
it involves a semigroup and not a group, (b) this
semigroup is a four-parameter semigroup as opposed
to the one-parameter group (or semigroup) of time
translations of the usual case, and (c) it is easy to show
that the invariance under this semigroup implies the
strong stationarity (essentially because G algebrai-
cally generates the group of space-time translations).
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Therefore we are led to the notion of stationarity
with respect to a one-parameter group of transforma-
tions in space-time. This transformation group must
have timelike orbits in space-time. Let * be the time-
like unit 4-vector field tangent to the orbits of the
group in space-time. The stationary property of the
process then implies that all the W,’s are invariant
under this group of transformation. More explicitly,
we have

£(AW, =0,
{£By I + 1@ LYW, =0,

and similar expressions for higher-order distributions.
In Eqgs. (37) and (38), £(*) is the Lie derivative with
respect to the field f# while 7 is the identity operator in
1 space. When the field p* is a constant field, and in
the frame of reference where it reduces to (1, 0), one
can easily check that one recovers the usual definition
of stationarity. Another expression of stationarity
with respect to the field 8# (or equivalently, to the
group of transformations generated by f*) is the
following:

(37)
(3%)

1@ @ xfer = ({1 @ @ X,
k=1,...,w; Vzw"cluk’ and

Vo € (transformation group generated by f*). (39)

All these features (and more particularly the non-
uniqueness of the definition of stationarity) occur
because of the equivalence of all timelike axes
(principle of relativity): in Newtonian physics all
these axes are parallel and therefore there is a unique
definition of stationarity. We must bear in mind that
the above definitions are probably the most natural
ones, but there exist other possible notions of station-
arity, such as the stationarity with respect to a o
partition, etc.

Definitions of ergodism may also be obtained, but
they are all very artificial and not easy to handle.

Comparison with Usual Definitions

In order to consider the connection with usual
definitions let us look at the probability:

i=k
Prob {n xAeA, < 57 ,u]}
=1

=J\ o f EAl,'“'Ak.wk(Xfi, ey, xf) dZAp"‘rAk'

Ay A
(40)
Since the surfaces X7 considered are of the form
7= 8% x UlwecansetA = 6 x y(6 < 83,y < U9).
To compare with usual definitions let us assume that
the surfaces 27, - - - , 27 belong to a given o partition
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of u-space (or equivalently let us assume that the
surfaces 3, - -+, S3 belong to a given ¢ partition of
Minkowsky space-time). Let s be the parameter
indexing the surfaces of the o partition:

2= F(sy), -, B = (s,

[or equivalently: $3 = §%(s,), * * -, ST = S3(5;)]. Then
Eq. (40) represents the probability of having x{ € A,
at “time” 5;,* - -, and xg € A, at “time” s, . Apparently
this is similar to the common definitions. However, we
must remember that the various A, do not belong to the
same space, except when the 27s are all obtained from
a given one through timelike translations. This latter
case is of practical importance although it is most
restrictive. Indeed the ¢ partitions constituted by
spacelike 3-planes enter in this category. So far we
have dealt with the lhs of Eq. (40) only. Now we
consider the rhs of this equation. To achieve our
goal we use the coordinate system x4 = (x*, u*), in
u-space. This coordinate system is adapted to the
structure of 27, i.e., takes into account the fact that
X7 = §% x U4 It follows that

d¥, = (d%,,0,)
and more generally that
glv A dS, L,
=t W dX,, e dE dauy - dauy,  (42)
where 7" designates the first four components of #4.
However, since 74 is tangent to each realization of the

process,® it follows that n* = u*, whatever the last
four components of 4. Hence, Eq. (42) reads

gAve A dy,
= W - - - wrdguy dZ, - - - dyu, dX, . (43)

Taking into account the constraint w*u, = 1, u® > 0
(i.e., dyu has to be replaced by dyu/u®) and using
locally a coordinate system with a local time axis
orthogonal to the surface $®, we can finally write Eq.
(42) in the form

-‘EAl' - 'Ak‘wdeAl, = wkdaxldaul e dsxkdsuk,
()

which is the usual expression. When S3 is restricted to
being a spacelike 3-plane, then the probability (40)
has the same expression as usual. At the nonrelativistic
limit, it reduces to the usual expression whatever S3,
since all spacelike hypersurfaces “get flat” and reduce
to 3-planes, # = const.

(1)

3. RELATIVISTIC MARKOVIAN PROCESSES

Let us now restrict ourselves to the important class
of stochastic processes constituted by Markovian
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Ks

(a)

(b)
F1G. 1(a). Partial ordering of space-time: x, < x,. (b) Partial
ordering of space-time: x; and x, are not comparable.

processes. To this end we first define the conditional
density of probability
W, 1(Xop > X185 " ** 5 Xnp)
W, (X153, " Xpp)
(45)
Expression (45) represents the density of probability
for the process to reach the state x,5 knowing that it

passed through the states x,5, * * -, x, 5. Of course this
sequence of states is (partially) ordered as

P (x5, " 'aanIXOB) =

Xpp <" <X X1 < XoB> (46)
where the order < is generated in u-space by the
order of Minkowski space-time. [In space-time we
have

xi < x5, (47)
if and only if
(et = %), — %2) 2 0,
xg—x7>0 (48)
(see Fig. D].
Note that the density (45) is normalized by

L’?A(XOB)P A(XoBs """ s Xup l Xop) AZ 4(Xop) = 1,

VE < yu, (49)

and verifies the conservation relation'®
VA[WA(XOB)P (X1, Xnp l Xop)] = 0. (50)
18 Equation (50) represents the conservation of a ‘‘conditional

current.”
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We now define a relativistic Markovian process, as
usual, as one such that

Pn(xlB, Tt XyB l x()B) = P2(x1B I xoB)’ (51)

which property immediately implies that Wy(x,5, Xo5)
completely determines the process.®* In particular, we
have
W, (x5, * 5 Xup)
= Py(x,p I Xn18) " Palxep l x18)Wi(x,5)
Xop < Xp1p << X1p. (52)

Using now Eq. (52), with n = 3, and the compati-
bility relation

J;:"?A(xzzz)wa(xm st Xap)AX 4 (Xop) = Wa(xy 4, X5 4),

(53)
we find

Py(xop I X15)

=LnA(sz){P «(Xop ] X313)Po(%sp3 | x15)} dZ ((%2p),

(54)
with
Xop < Xop < X1p -

Equation (54), which is the relativistic Chapman-
Kolmogorov equation, leads to

VAz{UA(sz)[Pz(xoB I Xop)Pa(Xap l xpl} =0, (55)
which is nothing but Eq. (17) with n = 3. From the
compatibility relation

LnA(sz)w2(xlB, Xop) A2 4(%25) = Wi(x,5), (56)
we obtain in a straightforward way

L"?A(sz)[P oX2p l X18)Wi(xap)] = Wi(x,5). (57)

In principle, and modulo well-known supple-
mentary conditions, the Chapman—Kolmogorov equa-
tion (54) allows the derivation of the relativistic form
of the Fokker-Planck equation. Using the coordinates
(t, x, u), we are immediately led to this equation 4
which reads

VA{—BA(xB)Pz + % Vi DAB(xB)Pz} —0, (58)

once rewritten covariantly. Equation (58) reduces to

0 10
! —B*P, + == D*"P,} =0, (59
ou* { 2+ 2 ou’ 2} %

when using the coordinates (x,, #,) and after taking

ud,P, +
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into account the fact that, since

/Ax\

v =£I-E)\Ar/

/Ax ® Ax>
Equation (61) explains why Eq. (59) does not involve
terms in 02, P2 Unfortunately we have not been able
to derive Eq. (58) or (59) in an arbitrary coordinate
system or even with the coordinates (x,, u,). 4 priori,
the Fokker-Planck tensors B* and D** (or B4 and
D4B) seem to depend on an arbitrary surface, since
they represent average values of increments of x< {or
(x*, u")]. However, it is not so, since P, does not
depend itself on an arbitrary surface [see Eqs. (54)
and (55)].

Equation (59) is extremely interesting. It represents,
indeed, a conservation equation® in u-space. It shows

(60)
we have

(61)

At—*l)

that in the systems of coordinates (x,, u,), n< has the
following form:
l=ut, A=1,-,4,
d 10
A= — B4+ =—D"|, A=5---,8 (62
= | 2 @

and thus is an operator. Of course for a non-Marko-
vian process, 14 would have a completely different
form and might be an integral operator. This cir-
cumstance is by no means unusual and also occurs in
the nonrelativistic framework.?

4. STOCHASTIC PROCESSES IN MINKOWSKI
SPACE-TIME

Although stochastic processes in u~-space implicitly
include processes in space-time, in this section we
derive their main properties in a more direct manner
because of their particular importance.

In Minkowski space-time, a stochastic process is
assumed to be determined by the data of the “time-
like”” currents

J.‘]f(xv)’ Jg“‘z(xlv ’ x2v)’ Y J‘:ll e ”"(XI‘, 5T xnv)a T,
(63)

normalized through
23nc%4"'];1, Xy s X ) d Em, Y T 1, (64)

where 23" is “spacelike.”” The currents (63) have to
verify the following compatibility relations:

Jﬂx P
_ n
HE—kr — g Hn=hy

— JH1, ", BE
“Jkl (xlva H

’un(xlv’ Y nv) dzukJrl y My

V2R wk < n. (65)

xkv)s

STOCHASTIC PROCESSES

1813

Besides the positive and antisymmetric character of
these currents, they must satisfy the conservation
relations

Otk s Xny) =0 (66)

in order that they should not depend on the various
surfaces involved in Eqgs. (64) and (65). [Of course, we
used above Lorentzian coordinates in A%”; otherwise
0,;in Eq. (66) should be replaced by V,,.]

If we restrict the surfaces X to be products of
spacelike 3-planes of the type ¢ = const, then we can
easily see that the zeroth components of the currents
(63) may be interpreted as ordinary densities of
probability.®4

The currents (63) are linked with the distributions
W, of the preceding sections through

JE

:Hn(xlv,.. P FNRL

‘ El x’ﬂV)
f W, X1y Uays " * 5 X ) 11 Wdt;,  (67)
i=1

and after antisymmetrizing the indices (uy, - - -
as can be seen from Ref. 5.

s Bn)s

Properties of the Conditional Current J#(x, | x,;)

Since it will play the basic role in the theory of
Markovian processes in Minkowski space-time, let
us now define the current of transition probability as
being
J‘Zw(xvo > xvl)le(va)

JH(Xy0)14(%y0)

J”(XVO ! xvl) = 3 (68)

with
Xyo < X

The conditional current (68) is obviously normalized
by

[ ol mdz o =1, v, (9
TcM

which implies the following conservation relation:
aulJ“(xVO l xvl) = 0’ (70)
resulting from Eq. (66) in a straightforward way
(n=2).
Conversely, given the currents J#(x,,) and

J“(xvﬂ l xvl)’
we have

JB" (%00 I Xy1) = J4(x,0)J (X0 | Xy1), (7
which may be found either from the probabilistic
interpretation of the various currents or from Eq.
(68) considered in a local system of coordinates,
where J#(x,) reduces to its zeroth component.

The current of transition probability (68) has to
satisfy some causality requirements. First it should be
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such that

JH(X,0| x,0) = 0, whenever x,0 K x,;. (72)

Next it must be such that the restriction of the
differential form

T4 (%0 | X,1) dZ,(x,0) = Q (73)
on the forward null cone I'(x,,):
(xVO - xvl)(xvo - x{) = 09
Xgp — X0 > 0 74

vanishes identically. Indeed, if we denote by X; and
2, two spacelike 3-surfaces cutting I'*(x,,) and such
that 2, < X,, then the conservation of the number
of particles joined to the causality condition (72)
implies that there should not exist any contribution
from the part of I'*(x,,) lying between X, and Z,,
say S. We have (see Fig. 2)

f Q =| Q (conservation of “particles”), (75)
I X,
and

f Q =0, (76)

£, VS VI,
from which it follows that
fQ =0, W)
8

and since J# is positive, Eq. (77) leads to Q = 0 on
F-(P(xvo)'

This property shows that on I'*(x,,), the current
J#(x,0 | x,1) is necessarily a null 4-vector: It should
be orthogonal to the null 4-vector dZ,,.

Finally let us note the important property

f A5, (e (0 (kna | 1,0) = Ji(x,0),  (78)
X

obtained by integrating Eq. (71) and using the com-
patibility relation (65) with » = 2, k = 1. Equation
(78) immediately leads to the following conservation
relation:

auO{Jil(va)Jv(xvo l xvl)} = O’ (79)

FiG. 2. Illustration of Eq. (77).
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or, using Eq. (66) with n = 1,

J’f(xvo)auOJv(xvo l xvl) =0. (80)

Markovian Processes in Minkowski Space-Time

Now in the same way as usual®* we can find the
covariant form of the Chapman-Kolmogorov equa-
tion. We derive it in the same way as in the preceding
section except that we no longer deal with densities but
rather with currents. For instance, the Markovian
property is expressed on JA*°(x,;, X,q, X,3) a$

IEP(Xy15 Xy25 Xy3) = J4(X, )" (X0 I Xy WP (Xya | Xy3)s
(81)
with
X1 < Xyg < Xy
Integrating Eq. (81) over x,; and using Eq. (65) with
n=3,k=1, wefind

Pxa | 20 = [ A2 G5 [ 1Dt 5,0, (82)
with

Xy < Xyz < X35
which is nothing but the relativistic Chapman-

Kolmogorov equation. It leads to the conservation
relation

avZ{Jv(xVI l xv2)‘]"(xv2 l xva)} = 0, (83)
which reduces to
Jv(xvl | xv2)av2‘lﬂ(xv2 l xv3) = 0’ (84)

after using Eq. (70).

Equation (82) has already been given by f.opus-
zangki,'? though without proof. Note that the
relativistic Chapman-Kolmogorov equation cannot
be obtained simply by integrating Eq. (54) over the
4-velocity variables. It is indeed well known that the
projection of a Markovian process is not necessarily
a Markovian process itself (see, e.g., Ref. 4).

fopuszanski has also shown!” that the Fokker-
Planck equations we could get from Eq. (82) reduce
to the conservation relation (84) and the adjoint
equation as a consequence of causality. As another
consequence he also obtained the “physical” inter-
pretation of the spatial components of the current of
transition probability: They are simply the increments

im{ A%\

im\ A/

This absence of a second-order Fokker-Planck
equation shows that a theory of relativistic Brownian
motion at local equilibrium cannot be erected on the

17 3, Lopuszahski, Acta Phys. Polon. 12, 87 (1953).
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basis of the assumption that it may be represented by
a relativistic Markovian process.

Invariance Properties

(1) The strong stationarity of a relativistic process
immediately implies that

Ji(x,) = J3(0) = (const)",
J‘2w(xv1 » xv2) = J2(xv1 — Xy25 0;1)7

(85)

and therefore the conditional current (68) is a function
of the only variable: x, = x,; — x,4. From the
continuity equation (70) and the fact that this current
has necessarily the form'®

JH(x,) = x* - f(r = {x*x, ), (86)
it follows that
"L 1) + 4 =0, 7
or
1) = 5. (88)

However, the current (86), with f given by Eq. (88),
is singular on the null cone I'*(0) and therefore
satisfies neither the normalization condition (it is too
singular on the light cone) nor all the causality
conditions [it does not vanish on I'*(0) after multi-
plication by the normal vector of I'*(0) at point x,].
Therefore we can conclude:

Proposition 2: There exists no relativistic Markovian
process invariant under the inhomogeneous Lorentz

group.

Therefore, it seems a priori difficult to generalize the
very interesting results of Nelson' in a relativistic
framework.

(2) Let us now consider the invariance of a process
under timelike translations parallel to a 4-vector
«*, In such a case we have [see Egs. (37) and (38)]:

()% = 0,
(L) @I+ I ®La)}JE =0,
' (89)
18 Where we have assumed that we have no other 4-vector than

x# in the theory, i.e., a strict invariance under the proper homo-
geneous Lorentz group.
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which reduces to
Ji(x,) = Ji(x, 0),

ng(xvl ) va) = J‘év(xl’ t, — 15 Xy, O),

(90)

in a frame of reference where «* = (1, 0), etc.

Other invariance properties may be found in a
similar way. However, when the invariance group is
such that the field «* actually depends on the space-
time position, then the conditions fulfilled by the
various currents are more complicated.

5. DISCUSSION AND CONCLUDING REMARKS

We have now to discuss several points about the
preceding results.

(1) The approaches (see Appendix for an alter-
native approach) that we have given have essentially
been suggested by relativistic statistical mechanics®
and therefore present the same essential characteristic
features. In particular, instead of using the proper
time in the Appendix, we could as well have used any
other parameter and the corresponding 4-velocity
u* = dx*|ds, no longer normalized to one. This last
remark raises the point that such an expression as
dx*|ds or dx*[dr does not always exist as a mathemat-
ical object (even dr does not necessarily exist).
However,we do not want to enter into these details
since such quantities may be given a precise meaning.'®

In fact we can always think that a stochastic process
in p-space is nothing but an idealization of an under-
lying dynamical problem, given assumptions about
scales of time and length, etc. It is the reason why we
do not have to worry too much about the mathemati-
cal problems involved, though they have an interest of
their own.

(2) Let us now come to the question of Markovian
processes. First, if we think that they occur as an
idealization and simplification of hidden dynamical
processes, then we may wonder whether they do exist
at all. 1t is indeed well known that nonquantal
relativistic interactions between particles are pro-
foundly nonlocal; i.e., the system “keeps the memory”
of its past during at least a finite interval of “time” and
therefore is not Markovian. However, if we denote by
2 an invariant parameter characterizing the spatial
extension of the system and by 7 the correlation time
of the process, and when the condition T Ac! is

1% See, ¢.g., E. Nelson, Dynamical Theories of Brownian Motion
(Princeton University Press, Princeton, N.J., 1967).
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valid, then a Markovian process may be a consistent
idealization.

(3) As we have seen, causality requirements impose
strong limitations. In particular, in Minkowski space-
time it limits the Fokker-Planck equation to be a
first-order equation.}” Furthermore, it demands that
there should not exist stochastic processes invariant
under the inhomogeneous proper Lorentz group? and
this is a very strong demand. However, causality is
required only if we consider a random particle and
therefore can be relaxed if we look at our stochastic
process as describing a system of particles, i.e., a gas.
Obviously, two particles of a gas may be separated by
a spacelike interval, whereas it is not possible for a
single particle to pass through points separated by
such an interval.

(4) Throughout this paper we have given a formal-
ism of relativistic stochastic processes in u-space. If we
except the case of stochastic processes in more general
spaces such as @V (which can be dealt with in a
similar way, with the only difficulty of complex
notations), we may say that we have probably treated
the most complicated case, although not the most
general one.

Unfortunately, we cannot consider an abstract
relativistic random process in an arbitrary (but
given) space. Indeed, the random process has to be
specified further before we build up the corresponding
theory. For instance, we have to answer the following
questions. What is the tensorial character of the pro-
cess ? Isit “timelike” ? “Spacelike”’? How may causality
be expressed? What is (are) the “time” parameter(s)
that indexes (index) the process? etc. The answer to
these questions depends on the physical meaning of
the process under consideration.

In order to be a little more specific let us consider
an ‘“abstract” relativistic random process a of
unspecified tensorial character. 4 priori, a covariant
way of indexing this process might be to do so with
space-time points. Therefore, such an abstract process
would be a measurable mapping of M* X (Q, £, =)
into the space {a}. This could be very convenient,
essentially because A is partially ordered. However,
this procedure does not obviously make much sense
when applied to processes occurring in M* itself. Of
course this does not mean that it never makes sense
at all. This just shows that we have to be careful and
need to know the specific physical meaning of e.
Another way of indexing the process would be with the
help of an invariant parameter, for instance the proper
time of an “observer,” etc. Here again we have to

20 This invariance also leads to nonnormalizable currents. How-
ever, this property is not as important as causality.
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specify a. More generally it seems to us that not only
a has to be specified, but also the way it can be ob-
served or measured.

(5) Finally, it is easy to realize that the preceding
results can be transposed in a straightforward manner
into a general relativistic framework.
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APPENDIX: ANOTHER APPROACH TO
RELATIVISTIC STOCHASTIC PROCESSES

In a preceding paper® we gave two equivalent
formalisms for relativistic statistical mechanics: a
‘“‘geometrical” one and a more intuitive one based on
the use of proper time. Here we give also an approach
based on proper-time-dependent densities. This ap-
proach is completely equivalent to the geometrical
one studied in the preceding sections insofar as
equivalent statistical assumptions are used.

Generalities

Let us consider the random point x4 € u. It may be
considered as proper-time-dependent: x(7). Hence, if
we consider = as a time variable, then x-I(7) is a
“true” stochastic process in u space. However, the
proper-time parametrization of the trajectories of the
process is only a possible one among many others.
Thus the results we obtain hereafter have no direct
physical meaning wunless they are linked to the “geo-
metrical” approach of Sec. 2. We come back to this
point below.

The stochastic process x-(r) is assumed, as usual,
to be completely determined®* by the data of the
following distribution functions:

n=1,2,---,0, (Al

V(Tl9 e ’Tn)ERn’

f’ t ﬁ d/’tiWn(xf’ Tl; e ;x‘37 Tn)

i=k+1

= I/Vlc(')‘:‘lfl’ Tl; Tt xkA’ Tk)s Vk < n, (A3)

(A2)

Note that the densities W, are normalized in the
entire u-space and not merely on a hypersurface as in
Sec. 2. With Egs. (1), (2), and (3) we can develop the
theory of relativistic stochastic processes in the usual
way. However, it is important to realize that the
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stationarity of the process x4(r) with respect to the
proper time has in general no physical meaning.
Furthermore, all the discussion of Sec. 2 on station-
arity or causality remains valid.

In Ref. 5, we have shown, mutatis mutandis, that
(a) lim W, =0, and (b)

Tk ©
+oo +a0 4 4
J ol Wl T X%, T,)
-0 —00

=W, (xi, - -, x7), (Ad)

which establishes the link between the two formalisms.

Markovian Processes

Once again we can apply conventional methods and
definitions and find the following properties:
(a) The Chapman-Kolmogorov equation

g‘2(36(34, To | xfl, 1)
= dlu‘g‘.Z(x(A)‘la To I xA9 T)?z(an T I xfla 71)5 (AS)
with
Ty < T < T15

and, with appropriate assumptions®-4;
(b) The Fokker-Planck equation
E)iz 1 o

0
mF, = — — {B"F,} + -
or o, au“{ o+ 2 Ju*ou®

{D"'T,},
(A6)

where the coefficients B* and D** may be called,
respectively, the friction and diffusion tensors which
we study below.

It is easy to realize that the “proper-time” Marko-
vian processes studied in this Appendix are not
equivalent to the “true” ones studied in Sec. 3.
Indeed, the integration over =, of Eq. (A5) does not
lead to the Chapman-Kolmogorov equation (54).
Furthermore, if we consider the definitions of the
Markovian property in both approaches in a closer
way and use Eq. (A4), we can see that they do not
mutually agree. However, in the case where the
Markovian process is stationary with respect to the
proper time, we do recover the form of the Fokker—
Planck equation used in relativistic statistical me-
chanics,” after integration on the proper-time variable.
Indeed, in this case, the Fokker-Planck coefficients
B*(x,, u,)and D*(x,, u,) do not really depend? on the
proper time and therefore Eq. (A6) reduces to the
following:

® 0 prpy 1 @
0Pt o B = e

after using the above properties (a) and (b).

{D"P,} =0, (A7)
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Let us now give some properties of the Fokker—
Planck coefficients. Note that the properties given
below are valid whatever the formalism used.

(1) If the process x4(r) is strongly stationary,
then B* and D** do not depend on x,:

B(x, , u,) = B¥u,),
D¥'(x,, u,) = D*(u,). (A8)
(2) In a large number of problems, the Jiittner—

Synge® equilibrium distribution function is a sta-
tionary solution of Eq. (A7), i.e.,

P(u,) ~ exp {—mé'u,} (A9)

is a solution of

0

ou*

Such a case occurs, for instance, when we think of
Eq. (A7) as a kinetic equation.> Then, Eq. (Al0)
leads to

_ppyil [D““P]} —0. (Al0)
2 ou’

0 1 0
— ——— Bﬂ ILB s v
ou* + B+ 2 ou*ou®
1 d 0
— =&, — D" — D"l = 0. (All
2 d ou* + ou’ } (ALD

(3) In Ref. 5 we noticed that provided the 4-force
F* is such that F*u, = 0, the uniform distribution
O[u*u, — 1] is identically a solution of Eq. (Al0).
This leads to the relations

D™y, =0, (A12)
1 0 0
- D* = — B*, (Al3
2 dutou’ ou* (AL3)
1 0 0 o
E{u”—a-l;Du + uvﬁD" = B“u”. (A14)

Of course, Egs. (A11)-(A14) depend on the nature and
the interpretation we give to the basic stochastic
process.

Iustration of the Formalism

As an application of the preceding ideas let us
consider the problem of a particle of mass m embedded
in a random force field.

There are two possible equivalent ways of dealing
with this problem. Either we study the random
differential system?®

m W _ pu
dr
u
‘{di = u*, (A15)
n

2 J. L. Synge, The Relativistic Gas (North-Holland Publishing Co.,
Amsterdam, 1957).
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with given (or random) initial data, or we directly
write the equivalent random Liowville equation®
satisfied by

R(xv’ U, T) = 6(xv - xv(T)) ® 6(14‘, - uv(T))9

"
Irtuwor+T LRy,
al‘

or m ou (Al6)

where we have assumed implicitly that (9/0u*)F* = 0,
and next solve it. The former method is inspired by
Stratonovich,® while the latter is from Kubo.??

The random force field F* is assumed to be com-
pletely specified (in a statistical sense) when all the
moments

(FM @« @Fr) = Qrv "Bk =12+ 0

(A17)
are known. Mathematically, F* is in fact a random

variable in a functional space.
Let us now set

L0= _u"au,

F* 9
L=——. Al8
1= (A18)

With these notations, Eq. (A16) can be written

2 R = (1, + LR, (A19)
or
and, in the interaction representation, it reads
0
— R =LR, (A20)
or
with
R = exp [—Ly7]R, (A2la)
£ = exp [—Lyr]L; exp [Lo7]. (A21b)

Equation (A20) is formally integrated and yields

R = exp [ f (s) ds:|:R(0) = exp [ L t(s) dsj| - R(O),
' (A22)

where exp [ ] designates symbolically the series

exp I:Lrﬁ(s) ds}

© T 1 Tp—1

=3 [lon[ [ anpie e, a2
n=0,0 0 0

with r; < 73 < - - - < 7,, and where P designates the

chronological operator. Our purpose is to derive an

equation satisfied by (R) = W,. It is easy to show

22 R. Kubo, J. Math. Phys. 4, 174 (1963).
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that (R) satisfies

5%(3» - —a%—_<exp [ fo (s) ds:l>

x {<exp [ L () ds]>}—1(31), (A24)

so that W, satisfies
0

O W, = LW, + {exp [Lyr] X ;; <exp [ ﬁ rﬁ(s) ds:|>

or
X <cxp U:ﬁ(s) ds]>nlx exp [—Lo—r]}Wl.

(A25)

Of course, the second term of the rhs of Eq. (A25) can
be explicitly written with the help of definition
(A21b), (A23) and the moments of F*. If we consider
that F* is a term of order 1 in a squared coupling
constant, then the various series of operators involved
in the rhs of Eq. (A25) give a development in powers
of this constant. Equation (A25) may be useful in
connection with problems of kinetic equations. To
the second order in thé squared coupling constant,
Eq. (A25) reads

0

o Wl - L0W1 - <L1>Wl
or

- f 'ds K[Ly(r) exp {Ly(r — 5)} Ly(s)
x exp {—Lyo(r — 5)}] X W, (A26)

where K[ ] signifies “correlation function of [ }1.”
Next we have to solve Eq. (26) and use its solution to
find the “true’” density W; by using Eq. (4). The
assumption that F* does not depend on w* is, of
course, an oversimplification of the real situation
and thus a fully correct treatment is in fact more
complicated.

In another paper we shall show that these equations
are useful when dealing with problems of acceleration
of relativistic particles by random fields (i.e., accelera-
tion of the charged component of extragalactic cosmic
rays) and also in problems of turbulence.

Concluding Remarks

We can repeat here what has been said in Ref. 5
about the proper-time-dependent formalism. It has
no specific meaning by itself and has only a heuristic
value. It may be used as a useful intermediary in the
calculations leading to the “true” geometrical densi-
ties. The main advantage of this approach lies in the
fact that it allows the use of standard methods al-
though usual definitions should be used only after a
careful analysis of their “physical” meaning.
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In this paper we study the effect of a spatial modulation in the magnetic field on invariants such as the

magnetic moment p = Vj_ /B. In particular, we investigate whether an invariant still exists when the
wavelength of the modulation is comparable to the gyro radius of the particle. In an axially symmetric
magnetic field, with a square-wave modulation, the orbit equations reduce to algebraic relations con-
venient for numerical study. We find from such studies that orbits are of two types: (a) regular orbits
which generate an invariant; (b) orbits which are quasi-ergodic. We have also calculated an invariant by
perturbation theory with the depth of modulation of the field as a small parameter. For this we developed
a modified form of perturbation theory which overcomes the difficulty of infinities arisirg at resonance
between the perturbation and the cyclotron period. This difficulty in fact corresponds to a change in
topology of the invariant curves. The invariant calculated from this theory shows very good agreement
with the numerically computed orbits of type (a). The transition to quasi-ergodic behavior cannot be
predicted analytically, but some indication of it may exist in the complex topology of the invariant curves
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in the ergodic regions.

1. INTRODUCTION

The invariants of motion play an important role
both in the trapping and containment of charged
particles in magnetic-confinement systems. For motion
in sufficiently smooth fields, an important adiabatic
invariant is the magnetic moment x = V2 /B, where
V', is the particle velocity transverse to the magnetic
field B. In this paper we consider the effect of a spatial
modulation, superimposed on an otherwise uniform
magnetic field, on the behavior of such invariants.
We are particularly interested in the situation where
the wavelength of the modulation may be comparable
with the gyromagnetic radius of the particle. In this
case u is no longer a valid invariant and we investigate
whether any alternative invariant exists.

Interest in a possible invariant in a modulated
magnetic field arose out of studies of the containment
properties of magnetic traps incorporating such
fields,’™® but here we are concerned only with the
invariant itself, not with any possible containment.
Accordingly we consider a very simple field, with axial
symmetry and without any end effects. The axial com-
ponent of the magnetic field B, is By[1 + eg(z)] where
g(z) is the periodic modulation with wavelength 1;
_ﬁDunnett, E. W. Laing, S. J. Roberts, and A. E. Robson,
J. Nucl. Energy: Pt. C, 7, 359 (1965).

2 A. E. Robson and J. B. Taylor, Phys. Fluids 8, 2026 (1965).

3D. A. Dunnett and E. W. Laing, J. Nucl. Energy: Pt. C, 8,
399 (1966).

there is no radial dependence so that V x B 3 0,
although V. B = 0.

The motion of a charged particle in this field is
studied both numerically (Sec. 2) and analytically
(Sec. 3). In the numerical studies g(z) is taken to be a
step function, alternately 41 with discontinuities at
z = nA[2. With this form of magnetic field the orbit
equations reduce to a set of transfer matrices so that
the orbit can be computed over many field periods
with speed and accuracy.

The results of these numerical calculations show
that, depending on their initial values, orbits can be
classified into two types: (a) regular orbits which
correspond to the existence of an invariant of the
motion, and (b) orbits which fill quasi-ergodically all
the available part of phase space not mapped by
orbits of type (a).

In the analytic investigation we study invariants
using perturbation theory, with ¢ as a small parameter.
Straightforward perturbation theory fails because the
perturbation may ‘‘resonate” with the cyclotron
period of the unperturbed orbit, leading to the problem
of “vanishing denominators.” However, a modified
form of perturbation theory is introduced which
overcomes this difficulty and permits us to generate an
adiabatic invariant J, as a series in e. This is valid
throughout phase space, even in the region of the
resonances. Comparison of the first few terms of the
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-1 0 ¢ + 9

Fic. 1. Numerically computed orbits, ¢ = 0.025.

invariant J ~ J, + &/, with the numerical computa-
tions shows excellent agreement with the regular
orbits calculated numerically.

2. NUMERICAL COMPUTATIONS

It has been shown by Laing and Robson! that,
within a range of z for which f(z) = 1 4 €g(z) has a
constant value f;, the orbit equations may be put in the
form

d’rldr® = ro/r® — rf, n
d’z|dw* = 0. 2
We have used as a dimensionless time variable + =
lot, o = eByfme, and the length r, is related to the
constant canonical momentum p, conjugate to the
azimuthal coordinate 6 about the axis of symmetry.
The general solution of (1) is
r*=a; + f;cos Qfi + ¢, €)
where
o — B7 = ro/fi.
At any time 7, the state of motion of the particle is
thus described by only two parameters a;, ¢,. At a
discontinuity in f, both r and dr/dr are continuous,
so that at the boundary between region i and region
i+ 1,
a; + Bicos b = oty + Piy1COS Pipy

SiBisin ;= fiy1fi1 SN Y - @
Here we have set = = 0 at the boundary between
the ith and (i + 1)th regions and y;, ¢; denote the
phase at the beginning and end, respectively, of the
ith region. Thus

and

b = w; + Afifu; (5

4+ E. W. Laing and A. E. Robson, J. Nucl. Energy: Pt. C, 3,
146 (1961).
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where u; = (dz/dr), and can be determined from (3)
and the energy equation. This takes the form

dr\2 dz\ r2 2,
- - - I = 6
@)« @)+ (=)= ©
where we have written v = 2V/w. A more detailed
account of the procedure for computing the trajectory
of a particle is given by Dunnett ez al.!
Instead of using ¢ and « to represent the orbit, the

results are presented in terms of the phase ¢ and the
normalized magnetic moment

5=v_i=1__i(£)2

v v? \dr

The value of ¢ is constant with a region of uniform
magnetic field, and is related to «; by

& = 2£/0")ouf; — 1)

In the calculation, then, values of (&, ¢) are com-
puted in successive periods of the magnetic field and
the successive points (&;, ¢,) are plotted to give a rep-
resentation of the “orbit.” Some typical results are
shown in Figs. 1-3. These all refer to orbits with
v=2, A=2m, ry=2, which were of particular
interest in the containment problem studied by
Dunnett et al! They represent a particle injected
parallel to the axis at a distance r, = 2 from the axis
with a velocity satisfying the resonance criterion
V = wi[2m, i.e., v = 2 for A = 2=. The three figures
are computed with amplitudes of the modulating
field which are 0.025, 0.05, and 0.10, respectively,
of the main field.

From these diagrams it can be seen that orbits are
of two distinct types. In some regions of the (&, ¢)
plane the successive values of (£;, ¢,), along an orbit,

1-0

" ;«

-1 0

Fic. 2. Numerically computed orbits, ¢ = 0.05.
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- 0 ¢

FiG. 3. Numerically computed orbits, e = 0.10.

. +.“

lie on a smooth curve. These [type (a)] orbits corre-
spond to the existence of an invariant of motion.
However, for orbits in other regions of (£, ¢) the
successive values of (&;, ;) do not lie on a regular
curve but fill, quasi-ergodically, part of the (£, ¢)
plane. In fact, one of these [type (b)] orbits eventually
fills all the (&, ¢) plane except for regions already
mapped by type (a) orbits and some regions of large &.
(These excluded large £ regions correspond to particle
reflection at the field discontinuities.) It should be
stressed that with type (a) orbits each initial value
(&0, $o) generates only one invariant curve (except
that it may generate a chain of “islands,” as shown).
However, with the type (b) quasi-ergodic orbits,
any single initial state (£, ¢,) will ultimately map the
whole area. It is in this sense that we claim that the
motion is quasi-ergodic.

The region occupied by type (a) (regular) orbits
decreases, and that occupied by type (b) (quasi-
ergodic) orbits increases, as the strength of the field
modulation e is increased. In Fig. 1, where ¢ = 0.025,
almost all possible orbits are regular and possess a
valid invariant. In Fig. 3, where € = 0.1, almost the
whole plane is mapped by a quasi-ergodic orbit and
only a small class of orbits possess a valid invariant.
In all cases there is a sharp transition between regions
where an invariant exists and those where quasi-
ergodic behavior pertains.

This kind of behavior is similar to that found in
several other problems, notably in the quest for a
third invariant of galactic motion.® It is worth noting,
however, that in our present problem the motion for
€ = 0 is unbounded, whereas interest usually centers
around motion which is periodic when € = 0.

5 M. Henon and C. Heiles, Astron. J. 69, 73 (1964).
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We note in passing that, if x4 were an invariant, the
orbits (&;, ¢,) would be on horizontal straight lines
& = const.

3. THE INVARIANT

The results of the numerical calculations indicate
that, at least for small ¢, an invariant may exist even
when the usual magnetic-moment invariant is no
longer valid. In this section we show how this invariant
may be calculated by a perturbation expansion in e.
The essential problem is to devise a perturbation
expansion which remains valid even when the modula-
ted magnetic field gives a perturbation in resonance
with the unperturbed cyclotron orbit, i.e., when its
effect is no longer “small.” In conventional perturba-
tion calculations this resonance gives rise to vanishing
denominators in the coefficients of the € power series.
We shall show how this difficulty may be overcome, in
principle, to any finite order in e.

Perturbation Theory

The Hamiltonian describing the motion of a charged
particle in the magnetic vector potential A is given by

H = (p — eAlc)*[2m.
In our case, using cylindrical coordinates, the vector
potential has only one nonzero component, 4, =

3rB,. Using C for rZ, but otherwise the same notation
as in Sec. 2, we may then write

H =1 + p; + [Clr — r(1 + eg(@)P). (D)

As we evaluate the invariant only to first order in e,
we express H approximately in the form H, + H,:
H, = 3[p; + p; + (C[r — 1)),
Hy = (" — O)g(2). ®
H, is thus the Hamiltonian for motion in a uniform
magnetic field.

The object is to generate a new constant of the
motion J which is to replace the constant P, or,
equivalently, the constant &, which exists when € = 0.
The system is still conservative and H = H, + eH,
is a constant of the motion so that any other constant
of motion J has the property [J, H] =0, where
[, ] is the Poisson bracket. Setting J = J, + eJ +
-+, H= Hy+ eH;, and expanding the Poisson
bracket, one obtains a set of recurrence equations, of
which the first two are

[Jo, Hol = 0,
V1, Hol + [Jo, Hi] = 0. ®

We first perform a simplifying canonical transforma-
tion® (r, p,) — (Q, P), so that }[p? + (C/r — r)*] — P.

8 B. McNamara and K. J. Whiteman, J. Math. Phys. 8, 2029
(1967).
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This is effected by the generating function

W= J dr2P — (Cr — PR, (10)
which gives
r2=P+ C+ Asin2Q, (11)
where
A =[P+ Cr -2t
The transformed Hamiltonian then becomes
H—P 4+ }p? + Q, (12)

where
Q = (P + Asin 2Q)g(z).

The recurrence equations (9) become, writing p, = p
for brevity,

0, 13
a0 0z (13)
oJ, oJ,

9h 4 p%h Q] =o.
aQ+paz + [Jo, Q] =0 (14)

Equation (13) indicates that J; is an arbitrary func-
tion of P, p, pQ — z. However, dependence on the
last of these is ruled out by requiring thatJ, be periodic
both in @ and in z for all p. In fact, we need regard J,
only as an arbitrary function of p. Then, after a
change of variables to « = pQ — z, § = z, Eq. (14)
may be written

a1, _ 100,00
o8 pop 0z
so that
8 I
J, = 1dJ, dﬂ'l:P + A sinz(oc + ﬂ')] "%3,—)- (15)
p

Now g(p) is a periodic function of period 4, so that the
integral is unbounded in 8 whenever p = A/mn. In the
neighborhood of such points our expansion in € must
apparently break down—the well-known vanishing-
denominator problem.

This failure of perturbation theory near a resonance
has a simple interpretation. It is 2 manifestation of the
fact that at such a point the topology of the true
invariant curves, J = const, differs from that of the
curves Jy = const. Generally, if ¢ is small, the contours
of (Jy + &Jy) = const can be topologically different
than those of J, = const only if J; is large. Thus the
appearance of a large J; is simply the response of
perturbation theory to the change in topology.
Consequently, a valid perturbation expansion can
be obtained if J, is chosen so that a small J, can make
the topology of the (J + €J;) curves differ from that of
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the J, = const curves. This is the case if 9Jy/dp
vanishes at the points concerned.

We illustrate this by evaluating J; for the square-
wave modulation used in the numerical calculation,
g(') = £1. Then

48 S 1ys(8" —
T 2_200( 1D"3(8" — nf2),
and so
_2(3s
h= p(ap)
14+ (=1 A . Qo — A/2)
% { 2 + 2 cos (l/2p)l:Sln p
x (=) sin w}} + C(a, p, P).
p
(16)

In (16), B has been chosen in the interval [NA/2,
(N 4+ 1)A/2] so that B =Ni2+y, 0 <y < A2
The integration “‘constant” C may conveniently be
chosen so that terms independent of N disappear;
then, if J; is evaluated at the midpoint of an interval,

J1=(—1)Nl%|:P+ 4

pop L T eosizn) 2Q]' (1

We now observe that, as expected, J; is unbounded at
p = 0 and at the zeros of cos (4/2p), unless dJ,/dp is
chosen so that it vanishes at these points. A suitable
choice for Jy is

Jo = p*(sin (4/2p) — 6p/[2 cos (4/2p)),
giving finally
J = Jy + eJ; = p¥(sin (4/2p) — 6p[4 cos (4{2p))

FieA[l + 48(p/A)?}[P cos (A/2p) + Asin2Q]. (18)

Of course, other functions J, may be chosen, provided
0Jy/dp vanishes at the appropriate points, and these
would apparently lead to a different function for
Jo + ¢J; (= J, say). However, it can be shown that
there would then be a functional relationship between
Jand J, so that the curves J = const would be identical
with the curves J = const.

For comparison with the numerical computations,
J must be expressed in terms of the variables &, o
The only dynamical variable in Jy is p, and this is
exactly v(1 — &) InJ,, we need only zero-order (in €)
relations between P, Q and &, ¢. These are

P = v, Q=f—%¢~
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- 0 ¢ +7
Fi1G. 4. Invariant curves J, + ¢J, = const, € = 0.025.

Consequently J can be written
A
J = o*1 — &% sin —F—
G — o
4

~ 81— &2 cos —’1—%
A 20(1 — &)

F 3eA[l + 480°(1 — &)/4%)
X :%025 cos

A
201 — &)

+ [(30%6)% + v*ECTE cos ). (19)

Curves J = const are shown in Figs. 4-6 for the
same parameters (v =2, C=4, A1 =2n, and € =
0.025, 0.05, 0.10) as were used in the numerical
computations of Figs. 1-3. It is seen that there is close
agreement between curves derived from the invariant
(19) and the computed orbits of type (a).

-0

-

i
i

A\

[

0

0 ¢ +1
Fi1G. 5. Invariant curves J, 4+ €J; = const, ¢ = 0.05.
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0 E
- 0 ¢ +

Fi1G. 6. Invariant curves J, + €J; = const, e = 0.10.

SUMMARY AND DISCUSSION

We have investigated the motion of charged particles
in a spatially modulated magnetic field, in particular,
to see whether any invariant exists when the modula-
tions give resonance with the cyclotron period and
destroy the magnetic-moment invariant. A study of
numerically computed orbits in a modulated field
shows that they fall into two classes: (a) regular
orbits, corresponding to the existence of an invariant;
and (b) quasi-ergodic orbits. Provided the modulation
¢ of the field is not too great, the regular orbits
predominate.

For small €, then, these numerical studies indicate
that an invariant exists, even in the resonant situation.
We have, therefore, computed this invariant as a
power series in e. For this we developed a form of
perturbation theory which avoids the usual problem of
vanishing denominators near resonance and shows
that this phenomena really indicates a change in
topology of the invariant curves. The invariant
calculated in this way is given by Eq. (18) and shows
very good agreement with the numerically computed
orbits of type (a). This agreement confirms that,
when an invariant exists, it can be calculated by our
modified form of perturbation theory.

However, perturbation theory can give no direct
indication of the transition to quasi-ergodic behavior.
An indirect indication may lie in the chain of “islands”
which the numerical studies show near the boundary
between regular and ergodic behavior. These-islands
represent further changes in topology which would be
reproduced if our perturbation theory were carried to
higher order, and we may speculate that the increas-
ingly complex behavior of the analytic curves represent
the onset of quasi-ergodic behavior.
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The crossing relation for transversity amplitudes is used in a simple proof of the kinematic-singularity
structure of helicity amplitudes, both in the general-mass and in various particular-mass cases. A com-
parison with earlier results is made. The kinematic properties of helicity and transversity amplitudes are
employed in the derivation of an asymptotic expression for the contribution of Regge poles to the

amplitude,.

1. INTRODUCTION

The kinematic-singularity structure of helicity
amplitudes has been given by Hara! and by Wang.?
Both the proofs and the final results are, however,
rather complicated. At thresholds and pseudothresh-
olds the behavior of helicity amplitudes may be
related to that of partial-wave amplitudes, and
Frautschi and Jones® have shown how, at least in
certain cases, this relationship may be used to obtain
the powers of the singularities very simply. We show
that this result is quite general.

Cohen-Tannoudji ef al.* also derived the kinematic-
singularity structure of helicity amplitudes, this time
from the properties of invariant amplitudes, without
using crossing, and Stapp® obtained similar results
from basic analyticity properties. Reference 4 also
employs the transversity amplitudes of Kotanski® in a
derivation of kinematic constraints on the helicity
amplitudes. Section 2 of the present paper is devoted
largely to the presentation of a very simple proof of the
kinematic-singularity structure of helicity amplitudes.
The method employs the same physical assumptions
as does Wang,? but by using transversity amplitudes®
and their kinematic properties? great simplification is
obtained.

In Sec. 3 some results on the high-energy limit of a
Regge-pole contribution”™? to the helicity amplitude
are derived (for general mass), and questions about
daughter contributions, conspiracy, and evasion are
considered. In Sec. 4 it is shown how recourse to

* Present address: Department of Applied Mathematics, The
University, Liverpool 3, England.

1Y. Hara, Phys. Rev. 136, B507 (1964).

2 L.-L. Wang, Phys. Rev. 142, 1187 (1966).

2 8. Frautschi and L. Jones, Phys. Rev. 164, 1918 (1967).

4 G. Cohen-Tannoudji, A. Morel, and H. Navelet, Ann. Phys.
(N.Y.) 46, 239 (1968).

5 H. P. Stapp, Phys. Rev. 160, 1251 (1967).

¢ A. Kotanski, Acta Phys. Polon. 29, 699 (1966).

7M. Gell-Mann, M. L. Goldberger, F. E. Low, E. Marx, and
F. Zachariasen, Phys. Rev. 133, B145 (1964).

8 L.-L. Wang, Phys. Rev. Letters, 16, 756 (1966).

? L.-L. Wang, Phys. Rev. 153, 1664 (1967).

10 A, McKerrell and L. Sertorio, Nuovo Cimento 52A, 1223 (1967).

transversity amplitudes may make for a simpler
phenomenological analysis, in spite of the various
helicity-dependent kinematic factors. Since this part
of the paper is for application to inelastic processes,
where data are at present rather inadequate, no
apology is made for the somewhat crude approxima-
tions suggested.

The Appendix is devoted to showing the equivalence
of the results of Sec. 2 with those of Wang??® and to
the derivation of the kinematic-singularity structure
of the helicity amplitudes in various particular-mass
cases.

2. KINEMATIC-SINGULARITY STRUCTURE OF
HELICITY AMPLITUDES
We review briefly the properties of helicity states
in order to establish some notations and conventions.
Single-particle rest states of a particle of mass m and
spin s transform under rotations according to

R|pAy = 3 Diu(R) |pu), p = (m,0). M

We use the conventions of Edmonds!! for the rotation

matrices.
States of momentum p with p? = m? are defined by

IpA) = H(p) |pA), 2
where
H(p) = R(p)Z(p), (3)
and, for
P = [m cosh {, m sinh {(sin 6 cos ¢,
sin 0 sin @, cos )], (4)
we have
Z(p) = exp (—ilK,), ®
R(p) = exp (—ipJ,) exp (—i0J,) exp (—ipJ,). (6)
In particular, for
ql = (ml ’ 0, 0’ q)a (7)
g = (m2s 03 0’ —Q), q 2 0, (8)

11 A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, N.J., 1960), 2nd ed.
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we define
R(g) =1, )
R(gy) = ™. (10)

The generators J, K of the homogeneous Lorentz
group satisfy the usual commutation relations:

[Ji, JI] = ieJ¥, (1
[K', 1] = ic*KY, (12)
(K, K'] = —ie Tk, (13)

Two-particle states in the over-all center-of-mass
frame are defined in terms of direct products of
single-particle states by

[P111P2'12> = R(Pl)(|‘]1}*1> ® qulz»a (14)

where ¢, and ¢, are defined in (7) and (8), with
g = |p1) = |p.|. We have omitted the Jacob and
Wick!? factor (—1)®=**: for the second particle. For
momenta p,, p, in the xz plane, the parity operator
acts according to

P |pi2ypale)
= 771"]2(_1)s1+h+sz+lze_iﬂ” [Py —Aipe — 22y, (15)

1, and 7, being the intrinsic parities.
We define the scattering amplitude f,;,, for the
reaction

a+b—>c+d (16)

in the usual way, and normalize it by the requirement
that the differential cross section be

do -
P [m83(25, + D(2s, + DI bZ | feawl®s  (17)
abed
where
8% = [s — (my + mp)lls — (m, — mp)*. (18)
Parity conservation is expressed [from (15)] as
fcdab = 7}(_l)sa+3b+sc+3d+a+b+c+‘7—c —d —a—b (19)
in agreement with Ref. 4. Here
N = Na"s"ela- (20)

(We assume that all intrinsic parities are real.)
Transversity amplitudes® are defined in terms of
helicity amplitudes by
Tcdab = E u*(sc)c’cu*(sd)d’du(sa)a'au(sb)b'bfc’d’a’b'7 (21)
c'da’t’
where

u(s) = Ds(e—%inJ, e—%inJ,, e+%inJ,)’ (22)

u(S)pp = TG (— 4, (23)

12 M. Jacob and G.-C. Wick, Ann. Phys. (N.Y.) 7, 404 (1959).
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The matrices u(s) are unitary and symmetric and

u($)_q_p = U(S)ap> (24)
u*(8)p = (— 1" u(8)as> (25)
(— 1) u(s)g = €"°u(s)_gp- (26)

These matrices diagonalize the rotation matrices
d*(9), so that the crossing matrix for transversity
amplitudes takes a particularly simple form*

t — Sq+Spt+8c+8g,—in(b—c)
T! o aq—p = €(— 1%

ilaxa—brptexc—dxa) s
X e N ¢ Tcdab >

@7

where ¢, = —1 if @ and d are fermions and is 41 in
all other cases.

Each y, is the angle between the s and ¢ rest frames
as seen from the corresponding particle. Their sines
and cosines are as follows:

(s + m2 — md)(t + m: — md> + 2m2A

cos y, = — ,
Xa Sabigca
1
sin z, = ¥ 28)
8abT;ca
cos 4. = (s + mi — m(t + my — mby) — 2mzA
1
2
sin yp, = 2Sm’lg ; 29)
ab>db
cos 7, = (s + m2 —md)(t +md —md) — Zm?,A,
Scd.zgca
. 2m, gt
sin y, = —S—m—ig—)— , (30)
cd>ca
cos g, = — S = Mt o+ mg — my) + 2mah
% Schdb
. 2m
sin gz = — 5 ';;P , (31)
cd™~db
where
A=m24+md—ml—m. (32)

The threshold factor §,, was defined in (18); §,; is
defined similarly, and also T,,, G, with ¢ replacing s.
The function g is zero on the boundary of the physical
region:
g = stEm® — s — 1) — s(my — mg)(mg; — m)

— tmg — my)(m; — m)

— (mgm — mgmy)(mg + mg — m% — mj). (33)

We deduce the kinematic singularities of the

helicity amplitudes from the result, basic to the argu-
ment of Ref. 2 and proved in Ref. 4, that the only
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s-kinematic singularities of the #-channel amplitude
JS* are those appearing explicitly in

féwary = (cos 36,)***(sin 3014 owars (34)

where

(39)

The formulas for the sines and cosines of the s- and
t-channel scattering angles follow:

AN=d -V, p=c—ad.

2st + s* — sEm® + (m% — mi(m® — m?)

cos 0, =
Sabscd
1
sinf, = 2se)” , (36)
abscd
2 _ 2 2 _ 292 9
cos 0, = 2st + t° — 1Zm* + (m; — my)(m: — m?) ’
.Gc;(”db
i
sin 6, = 211" (37)
tcagdb

The s-channel scattering amplitude is written in the
form

fiaar = (cos 360,)*I(sin 364 #1/%,,  (38)

where

A=a—b, p=c—d, (39)

and f* has no t-kinematic singularities.

It is convenient at this point to introduce the
following linear combinations of f,4,, and f,_ 4,
although the necessity for doing so is not yet apparent:

St = feaar £ 9Nl =1 (=)l (40)

= Jcdad :*: na"?b( - 1)85—85-—’0( - 1)_u+lmfcd —a—b>
by (19). (41)
Here,

v = 0 or  so that 5, — s, — v is integral, (42)

and
A = max (4], |p])

=34 — pl + 4 + p)).

The choice of phase in (40) is governed by the applica-
tion to Regge-pole theory,”1® but we postpone
discussion of this point since the results on kinematic
singularities are quite independent of this model.

We now derive the s-kinematic singularities of the
f£. Since f*, cos 36,, sin $6,, and the crossing matrix
are regular at s = 0, so also is f*. However, the factor
cos 30, or sin 40, introduces st singularities into f,
and we have

(43)

~¥max (| At+ulla—uD) — s‘*"“““”, (44)

=+
faas~s s—0.

A. McKERRELL

Our treatment of the singularities at thresholds and
pseudothresholds will use the behavior of the trans-
versity amplitudes at these points. Since T is kine-
matically regular at S, = 0, §,; = 0, it follows from
the crossing relation (27), which of course contains
no summation, that 7% behaves near these points like

exp [—i(ay, — by, + cxo. — dya))
= exp [—}i[(xa + )(a — b) + (x, — x)(a + b)
+ (e + 2 — ) + (e — x)c + D). (45)

We write

Pap = [s — (ma + mb)zlt’ (46)

Yoo = [s — (m, — mb)zlt CY))
and similarly for ¢,;, ¥.4, and note, following Ref.
4, that the vanishing of the denominators of cos y;
and sin y, leads to poles or zeros of exp [i(x, + x,)],
exp [i(x. £+ x4)]. It is clear that whether a pole or zero
occurs depends on the determination of ¢* in the
sin y;, and hence on whether €is +1 or —1 in

cos B, ~ —iesin 6, (48)

at the corresponding pole of cos 0, and sin 6,. (Here
we use ~ to mean “is asymptotically equal to” rather
than “is asymptotically proportional to”; which
sense is intended will always be clear.)

The results for the behavior of T* at thresholds and
pseudothresholds are as follows?:

Tisr~ P, @up—0, (49)
Town~ ¥ 0, (50)
T:dab ~ (Pgi(c-*-d)’ Pea ™ 0, (51)
T:dab ~ ¢§&¢€.(c—d)’ 'Pcd - 0 (52)
Here,
€=M (53)
|m; — m;l

Since the ¢,; and y,; are themselves square roots, any
kinematically regular amplitude must contain only
even powers of each. This is the reason for defining
f* and f~ as will appear. Consider first the threshold
P = 0. We have

cos O, ~ —ie, sin 6, ~ @, (54)

1 + cos 0,

sin 30, ~ —ie; sin 30, ~ q);,,& .
sin 0,

(3%

cos 30, =
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Thus, from (41),

S~ (sin §0)WHHHITIAHI(—je ym1Arulfe
+ 77(mb(__ l)sa—%—'v(_ 1)_“+A’"(Sin 3 08)—|A+ul—ll—ul
X (_ i€1)_|l_”|fgd —a—b (56)
~ (sin 30,7247 f 2up £ Nam(— 1)o7
X el o)
We write f° in terms of T*, using the inverse of (21);

because of (26) we can express f* as a single sum over
the T°:

(57

f;ctdab ~ ‘Piz;" E u(5e)or (S att* ()aratt™* (55)p
c'd’'a’d’

X (1 & 7= DY) T gy (58)

It is now clear that the sum is over even or odd values
of @’ + b’ and therefore that multiplication by a
suitable power of ¢,, will make f* kinematically
regular. From (49) the most singular terms on the
right of (58) are those with @’ = —¢;5,, b’ = —e5,,
except that the factor in front of T® may vanish. We
allow for this by writing

Sraan~ @ap o, (59)
where
6, =0 or 1, (60)
and
(=1t = (61)

For total and initial orbital angular momentum j
and [, respectively, parity is #,%,{—1)"* and j-parity
is (—1)"-*.- Thus (60) and (61) define 6, such that
L =j—s,—s,+ 0 is the lowest orbital angular
momentum for parity X j-parity = +1. This will
acquire greater significance when we come to consider
Regge poles.

Consider, now, the pseudothreshold y,, = 0. From
(50) we find in an exactly similar manner that

+ Am—84—Sp+0s
fcdab ~ Y H

(62)
where

0 =0 or 1, Hnm(—1r @bt = 11 (63)

Equation (63) for 6, differs from Eq. (61) for 6, only
in that the parity of the lighter particle is replaced by
the parity of the corresponding antiparticle. The same
arguments apply to the final-particle threshold and
pseudothreshold.

It may be convenient to have the definitions of the
6, and /; displayed explicitly, though it should be
emphasized that in practice one does not need to
refer to formulas since the interpretation in terms of
initial and final orbital angular momentum and
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threshold factors can be used as a mnemonic:
6, =0 or 1, (64)
:tna,’]b(_l)v—sa—s”—el = +15 ll = j - sa - sb + 61,
(65)
:|:["7«17]111("])v_s“_sb_‘hﬁ'2 =41, Lh=j—5,—5,+ 0,,
(66)
incnd(_l)v—gc_sﬁ—oa = +19 13 =] — S;— S + 03;
(67)
(=) = 1, = — 5, — s, + 0,
(68)

Here we have
My = nm;(—l)“", m; < my,

[nm,] = {’Z ’ 69
’ my = nam(—1%% m; < m;. (6

In particular, for BB reactions [n,7;] = #;n;, for
FF (or FF) [n;n;] = —n;m;, for FB (or BF) [n;n,] =
+ 7,7;, depending on whether the fermion or boson
is more massive.

The final result, then, for the general-mass case is

+ s—%(|z|+|u|)

Am—38q—8p+01  Am—3Sa—spt+0a
J edaab ™ ab Yap

'4

Am—S8e—3q+03, Am—S8c~sq+0q
X @eq e (70)

Frautschi and Jones® brought out the connection
between kinematic behavior at thresholds and pseudo-
thresholds and orbital angular momentum, and
remarked that this method agreed with the results of
Wang? in all cases they checked. We show in the
Appendix that the agreement is quite general.

3. ASYMPTOTIC EXPRESSIONS FOR REGGE-
POLE CONTRIBUTIONS

We take from Ref. 10 the following expression
for the contribution to the s-channel amplitude of a
single Regge pole of signature o, parity X j-parity =
+1, trajectory « = a*, and residue f*:

kil —i7{a—
feaar~ — 5(1 + oemE)

20 +1

T —1 M—vaaA - 0 :cta ’
sin (o — U)( ) u /1(77' t)ﬂ dad

(7))

where @ + b — ¢ + d is now the ¢ channel and
95 _i(m — 6,)
3 T2+ 1)(sin 36, **(cos 36,
[C(ottp+ D (a—p+ D0 — A+ Dl e+ A+ DE
X F(u — o, 2 + o; —2a; cosec® 36,). (72)
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Changing (2.35) and (2.36) of Ref. 10 to take
account of the omission in the present paper of the
Jacob and Wick!2 factor (—1)*~%, we have

ﬂ:c!jiab =+ Yyl b( - l)sa—s"_vﬂ:ctd —a—b

= 29N~ 1P —aar (73)
==, . ()
Let us write
m = max (4, ), m' = min (4, g). (75)
Because of (19) we may assume that
m > |m'|. (76)
This saves some trouble with phases.
We write the denominator of (72) as
Lo + 1)%/ K (), W)
and use the result?
TQu + DT + 1) = 227 M + 3)  (78)
to obtain
a:—;.("; - Bt)
7T+ 3 - ER—
= ———— 2 K («)}2 sin $0,)* "™
Ta+ 1) 1(0)(2 sin $0,)
X (2¢0s 30,)™ ™ F(m — «,m’ — a; —2a; cosec® }0,)
. (79)
+inw(a—m) ul F(tX + %)K o)(2 1 2a—m—+m’
= —_— cos 30
e T+ 1) 1()( 30,
X (2sin30,)™ ™ F(m — a, —m' — a; —2a; sec® 30,).
(80)

The last line follows from the properties of the
hypergeometric functions 1* and is a familiar one for
the ordinary rotation matrices &’ (for which, however,
it is true only for physical values of j). In the asymp-
totic limit s — oo we have, for ¢ % 0,

cos 30, ~ 747 sin 16,;

(81)

the alternative signs in (80) correspond with those in
(81), as is easily seen from the fact that both hyper-
geometric functions become unity in that limit.

For t— 0 we have sin 6, ~ r* and either sin 36,
or cos 30, behaves like 3. The asymptotic limit F = 1
no longer applies, but the correct behavior of the
scattering amplitude is nevertheless obtained by
assuming F =1 in (79) and (80) for sin 6, ~ rt,
cos 30, — t3, respectively. The daughter hypothesis is
one way of arranging additional contributions to the

13 A, Erdélyi, et al., Bateman Manuscript Project, Higher Trans-
cendental Functions (McGraw-Hill Book Co., New York, 1953).
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scattering amplitude to make this true.}4-1¢ With this
modification to the asymptotic limit, (71) becomes

flaas~ =7H(1 + 0e™"*™)
Do + H(=1
I'(e + 1) sin 7 — v)

’ _4St xm
X (2 cos 36" (—) e >

Ky(@)(2sin $6,)""™

GayGea
s— oo, allt. (82)
Now from (19), (73), and (76) we find
foan ~ Fnana( =1 Am(=1)%707fL 4 (83)
= En(— D)1 Yy, (84)

valid without the restriction (76). This shows that the
choice of phase in (40) and (41) is such that a pole
with parity X j-parity = 41, residue 8= contributes
only to f* in the asymptotic limit, /T being of lower
order in 5.7-1® The #-kinematic behavior of f** is given
by (70) (on replacing s by £), but § must contain an
additional factor (Pup.)* ™ = (CeGeaf4t)™ to
cancel that appearing in (82). Thus '

Am—3{ )—t
By oc Uit g iyl (g5)

where the /; are defined in (65)-(68). The interpretation
given earlier of the behavior of the amplitude at
thresholds and pseudothresholds in terms of initial
and final orbital angular momentum should now be
more transparent,

Since f* is regular at ¢ = 0, we see from (38) (for f*)
that if f* is nonzero at ¢ = 0, either /%, or f, ...
will be more singular than the other there, and there-
for that f*+ and f*- differ, if at all, only by a sign.
However, we have found that a single pole with
residue §+ contributes only to f* in the asymptotic
limit, and therefore, either there is another trajectory
of opposite parity X j-parity passing through the same
value as « at ¢ = 0 and contributing equally to /7
(conspiracy) or evasion takes place, the residues
having additional factors ¢ beyond those in (85).17-1°
Working back from (85) we see that f 4, and f~,_ 4
behave like 1 and #~!™ (not necessarily respectively)
at ¢ = 0, and therefore that an extra factor #'™! must
appear in (85) in order to make both f},, and /% _ ..,
regular at ¢ = 0. Factorization of the residues also
may introduce factors ¢,® and these may be sufficient
to satisfy the condition for evasion.l™1® We write

14D, Z. Freedman and J.-M. Wang, Phys. Rev. 153, 1596 (1967).

13 L, Sertorio (private communication).

18 D, Z, Freedman and J.-M. Wang, Berkeley Preprint, 1967 (un-
published).

17 E. J eader, Phys. Rev. 166, 1599 (1968).

18 §. Frautschi and L. Jones, Phys. Rev. 167, 1335 (1968).

1 H. Hogaasen and Ph. Salin, CERN preprint TH 788, 1967
(unpublished).
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K4(t) for any additional factor in §# coming from
evasion or factorization.

We require also the ‘“‘sense-nonsense” factors”
such as [a(a + 1)} if zero is a sense-nonsense value
of o, and a«(e + 1) if zero is a sense—sense value and
the trajectory chooses nonsense, or a nonsense-non-
sense value and the trajectory chooses sense. We
write the factor coming from this source as Ky(a),
and note that K,;(«)K,(®) is a polynomial in «. We
now define reduced residues y.4,, Which are free from
kinematic singularities and zeros, but are still subject
to kinematic constraints at thresholds and pseudo-
thresholds 4

1
Braar = Kot 2 1HHIHD 42— t50)

X KO @as ¥t @esWosVoaar» (86)

where s, is a scaling constant which may be taken to be
the geometric mean of the squares of the masses, or
set conveniently at 1 GeV.

We write
; + —3g—S§,
K(1) = KKK PITD glomrmeors
X T Py T T, (87)
then, from (82),
/i'cilab ~ —TT%(l + O..e—iﬂ(a—v))
=1y o—Am
L L 2)( DR eiab (i) . (88)
[(a + 1) sin #(2 — v) So
The restriction max (4, #) > 0 still holds: other

residues are obtained by using (19). The reduced
residues y* satisfy the same symmetries (73) and (74)
as the 8+, and from (88), as from (82), we see that in
the asymptotic limit y+ contributes only to f*=, i.e.,
to the amplitude with the same index of parity
X j-parity.

4. PHENOMENOLOGY USING TRANSVERSITY
AMPLITUDES

In this section we assume that —z = —cos 0,,
as well as s, is large and positive. Then

2st

z ~Z 1 <0, 89
8,6 (89)
g \F
sin 40, ~ ( ) cos 30, ~ —ie( St ),
ab cd. tGab‘Bcd
e=+1. (90)

From (82), for the contribution of a Regge trajectory
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o, we obtain
flaay ~ —77'%(1 + oe ")
Do + $(=D*"
['(ee + 1) sin 7r(oc — v)

—4st ¥
X ( ) :é:dab'
T;ab‘ch

By analogy with Eq. (21), we define transversity
residues 57 by

. l "
cja'l:;b = z u*(Sc)c'cu*(Sd)d’du(sa)a’au(sb)b'b(_1) .

c'd’'a’b’
X Kl(“)(if)}'+u/3ctdab, (92)

so that the transversity amplitude (in the 7 channel)
is given by

Ky(o)(ie)*H*

on

Ty~ _,”%(1 + gemirlev)y
I + 2) A
(o + 1) sin 7(e — v) (‘t;ab‘zs’cd) cdab:
As we have seen, T is regular at ¢t = 0, while at
thresholds and pseudothresholds the behavior is

given in Eqs. (49)-(52). Let us define reduced residues
yT by

ﬁ = ( 450t)_aK12(t)(pm+€1(a+b)1pag—eab52(a+b)
cda

(93)

X (paH ea(c+d)wa(—i+eme4(c d)yc’{'w:tb, (94)
and put
KT(I) —_ Kﬂa(’)‘%’;lz;(aﬂ)i/’;m(a b)(pces(c+d)wzc;ded(c —d)
95)
Then
T gy ~ —w%{l + oexp [—im(a — v)]}

D + )
['(e + 1) sin 7(e — v)

KT ()7, (:)

(96)
The function KZ,(¢) represents the contribution to the
behavior from K;(«), Ky(x), and K,(¢). Any factor
common to all helicity amplitudes will appear in
KZ,(1), the others should be treated as constraints,
but an “average” function may be defined if there is
not too much variation between different amplitudes.
The reduced residues are regular at r =0 and at
thresholds and pseudothresholds. The g cut remains,
but can be ignored in the region considered. The
variation in ¢,, and ¢, willalso be smallin most cases.
For the purposes of phenomenological fitting of
do/dt, the various ¢, in (94) are clearly irrelevant,
since a change in their determination amounts only
to a permutation of the amplitudes.
By employing transversity amplitudes we have
obtained directly the wide variation in kinematic
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behavior of the different amplitudes at the pseudo-
thresholds, instead of having to take this into account
by means of the kinematic constraints of Cohen-
Tannoudji ef al.* A further advantage is that all the
nonzero amplitudes are independent. From an argu-
ment close to that leading to Eq. (58), we see that for a
trajectory of parity X j-parity = 41, which therefore
contributes only to f* in the asymptotic limit, we have

Ttaar ~ F07(— 1) Ty, o7
where ¢ is now that given by (90), and, similarly,
Thaas ~ NN~ D" Tl (9%

Taking these two together we get the equation for
parity conservation:

T:'dab = 17(_1)“+b'_c‘_dedab . (99)

Thus about three quarters of the amplitudes vanish.
Since K7 is clearly invariant under change of sign of 4
or u, Eqs. (97)-(99) apply also to yT=.

The theory outlined in this section will be used in a
forthcoming paper to improve the fit to do/dt for
7 + N — o + A found in Ref. 10.

Since the matrix relating f and T is unitary [that
relating K,(«)p and g7 in (92) is also real or pure
imaginary], f may be replaced by T* in (17), the
expression for the differential cross section. The
situation with measurements involving polarization
would of course be much less simple.

Note added in proof: The work of Jackson and Hite?
on helicity amplitudes shows that the results of this
section have to be interpreted with care. The poles in
some of the tran/sversity amplitudes at thresholds
and pseudothresholds in ¢ do not appear in do/dt.
The powers of g¢,, etc., to be used in fitting are the
nonnegative ones, including zero whether or not any
nonzero transversity amplitude has this behavior.
This point will be discussed more fully in a later
paper.2
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APPENDIX

First we show the equivalence of our results on
kinematic singularities with those of Wang.? Results

20 3. D. Jackson and G. E. Hite, Phys. Rev. 169, 1248 (1968).
21 A, McKerrell, Nuovo Cimento 56A, 249 (1968).
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for the singularities at ¢ = 0 and s = 0 are clearly
identical. We have to show that our formulas (64)-(70)
agree with equations (IV3)f and (I1112)f of Ref. 2.
Wang’s? formulas for «,(+), 8,(£) are clearly of the
form

ot —3(A —pl+ 1A+ u) -0 (AD
and

Jo+Jg— (A —pl + A+ p) -0, (A2)

respectively, where each 6 is 0 or 1. We need only
show that the value of § in every case agrees with that
given by (65)-(69). For this we use the result
maxgofn=n—0, 6=0o0r1, n(—1)"%= +1,

(A3)
which is equivalent to Wang’s? definition of “max 7
of n.”

First consider the cases BB— BB, BB— FF,
FF — BB, FF — FF, where v = 0. The sign between
Seaas and f_,_g,, which Wang writes + is, for our
amplitudes f* in (40), F,5,(—1)%+ %t 4n  where
we change back to Jacob and Wick!? amplitudes for
the purposes of this comparison. Thus for the 6
corresponding to «, we have, from (A3) and Wang’s?
formula,

k(= 1)t A A
X nab(_1)J«;+Ja—#(v,,+e,,>+i(|z—u|—|z+,‘n+o = +1

(Ad)
which simplifies to

N (— 1) = +1
in agreement with Eq. (65) for 6,.

The proof for g, is similar, if slightly simpler.
Agreement for a, and 8, may be shown in the same
way, or we may note that «; and «, are the same or
different in Wang? exactly when [#,7,] is plus or
minus 7,7, , and similarly for §; and f§,.

For FB — FB interactions, the 0 corresponding to
Wang’s? . is defined by

+1 =F ncnd(_l)sc+sa—§+l+lm
% ,’}ab(_l)sa+sb+‘}(l).—u|—|).+u|)+0 (A6)

= g (— Do, (A7)

which agrees again with (65). The case of #, is similar.
To obtain agreement for «, and f§, we must assume
that each fermion is more massive than the corre-
sponding boson (so that [n,7,] = +#,1,).

Our formulas agree exactly with Table IV of
Ref. 4 for the general-mass case.

We turn now to a consideration of particular-mass
cases. At particular values of the masses, two or more
singularities may coincide. A special treatment is then
required at that point. For singularities with no such

(A5)
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coincidence the treatment is the same as in the general-
mass. case. The same cases I-V of Ref. 4 will be
considered.

(i) Elastic Scattering: a=c, b=d, m, # m,,
n = +1. Here both thresholds and both pseudo-
thresholds coincide. Equations (49) and (51) may be
combined to give

Tigap ~ PabHorer™, (A8)

Since by parity invariance (which we always assume),
Tiaa = 1= " Tigan, (A9)

only even (or only odd) powers of ¢, (= ¢.5) appear
(the other components of T*° vanish). In this case,
therefore, we need not define f*, and it follows that
each f* behaves like the most singular 77, that with
a=c= —€s,, b =d= —¢s,. [This is consistent
with (A9) since # = +1.] The pseudothreshold result
is similar. Thus,

f Saap ~ (S2p)**. (A10)
At s =0, cos 63 = +1, sin 6, ~ s}, Therefore
cos 30, ~ +£1, sin 30, ~ s,
and so
Fraan ~ s7HH(S s, (A1)

(i) m, = m,, m, # m,, v =0. Here y,, = st so
that the point s = 0 requires special consideration,
Nevertheless, (50) still applies and

Seareala—d)
2

Tigan~S s—0, (A12)

It is true that ¢, is no longer defined, but its value will
turn out to be irrelevant. At s =0, sinf, = 41,
cos 0, = 0, tan 30, = +1. Thus

fcdab fcdab :*: nanb( l)sa—%_“-'-lmfcd —a—b (A13)
~ Z [“)eaavcian
c¢'d'a'b’
X (1 & ganp(—= 1+ TE ey (A14)
~ s—§(3a+sb—02 ), (AIS)
where
:’:naﬂb(_ ])}.—u+1 m+02"+3a—8p _ +1. (A16)

Combining this with the results from the general-mass
case for the other thresholds and pseudothreshold, we
find

+

—(sat35—02")
cdabd (S -

4m2)éu,,.-s,,—s,,+al)

~ 8

Am—8,—34+03  Am—8s—S4+04
X @Peq Yea .

This is equivalent to the result of Appendix I of Ref. 9

(A17)
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[when due account is taken of the Jacob and Wick!?
factor (—1)**] and to Table VII of Ref. 4.

(iii) m, = my, m, ¥ my, v = 0. This case is exactly
similar to the last, and we have

dab ~ S_%(sﬁs"—o")(s - 4m2)£(zm—sc—sa+oa)
X ¢l;n—sa—8b+91v)lm—sa—sh+az (A18)
a ab R
where
i — 1At = 1 (AL9)

iv) my =my, m, =my,, m, # m,, v=0. Again,
only the point s =0 (which now coincides with
Yar = 0, 9,4 = 0) requires special treatment, but now
@ ~ s, sin y; ~ %1, cos y; ~ st, and so (50) and (52)
no longer apply. Now, however, the crossing matrix
is no longer singular, and we work directly with
helicity amplitudes. We have sin 30, ~ s, cos 46, =
41 at s = 0. Thus, from (34),

fowan~s

The crossing relation for helicity amplitudes given by
Cohen-Tannoudji et al.? is as follows, where we use
the notation of (27) and the conventions of Edmonds!
for the rotation matrices:

b, (A20)

S oaar = 60(—1)23b+28aei7(b-c)

X z dsa(xa)d (Xb)dx’(xc)d;‘:i'(Xd)ftc'a’d’b"

a'b'c'd
At s = 0 we have, from (28)-(31),

+1, +1.

(A21)

sin x, = sin y, = sin y, = sin y; =

It follows that
don () oy (o) = (= 1) 270G (0 )AL (),
(A22)

and similarly for ¢, d. Since a + b is an integer, the
uncertain sign is irrelevant. Parity conservation implies
that

feway = naagn,(—ystotscratasiesdft o v,
and therefore we may write (A2)
S caan ~, ch o (oo (1) (1 ) die ()

X (1 4 p(—)rrorereaste=d) fl e (A24)

for s — 0. Thus we see from (A20) that f* is a sum
over even or odd nonnegative powers of s¢ at s = 0,
accordingly as n(—1)***+°+¢ js even or odd. Using the
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familiar 6 notation, we may write At s = 0 the discussion of (iv) applies; at s = 4m? the
argument given for general elastic scattering (i)

st 30 _ 4\ n—sams 01 (¢ 4,0 2\Am—Se—54+0g
(s — 4m,) (s — 4me) > goes through unchanged. The result is

cdad
(A25) o,
where Soaan ~ 575 — 4mlyrn—remn, (A27)

0=0 or 1, n(_1)a+b+c+d+e — +1 (A26) where
V) my=my=m,=myg,a=c,b=d, n=+1. =0 or 1, (—1)FreHdtd = 11 (A28)
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Matrix elements for the spin-orbit interactions of the configuration [*Y'f" in L-S coupling are
expressed as linear combinations of radial integrals.

1. INTRODUCTION

In a previous paper! the techniques of the Racah algebra® were used to obtain the matrix elements of the
Coulomb interactions for the configuration d"~1sp in L-S coupling. The purpose of the present paper is to
obtain the spin-orbit interaction-matrix elements for the more general configuration /*~/'/”, again in L-S
coupling.

The spin-orbit interactions for the configuration /*=/'l", denoted by SOy, , can be written as®*

SOyotar = L (" @aSoL)l (S1LYVSLIM| sy Ly -+« + 5,1 Lo (1" SELYV (SILYIS'LI'M')
+ L (" 0uSa L)V (S LVSLIM s, - 1, |1 (3 SsL) ! (STL)I'S' LI M)
+ Lo (P 0aSaL)l (SIL)VSLIM| s34+ Ly [P (iSSL) U (SILDI'S'LI'M')
= SO(l) 4+ SO(I") 4+ SO(I"). ¢y}

The parameters {;, {;, and {;- include the gyromagnetic ratios of the spin and orbital motions and an integral

over radial eigenfunctions.

2. THE SPIN-ORBIT INTERACTIONS OF THE / ELECTRONS
From (1) the spin—orbit interactions of the / electrons is given by
SO() = (n — DL, (" (#Se L)l (SILYI'SLIM| 5,0y * Ly [P (w38 L)V (SILYIS'LI' M), 2
Expanding (2) by means of coefficients of fractional parentage® yields

SO =(n— )&, 3 [(I"*(vsSsL)ly 1(SaL)l' (S1L)V'SLIM| 5,y - 1y 1" *(#4Ss L)l 1(SsL)I(SILDI'S'LI'M”)

vaSsLy

X (" (9,85 Lo){ 1" ?(v3S3L3) IS Loy (1" 2(w5SsL)ISLy ™ ' (viSs L. (3)
By ITS Eq. (15.6), the matrix element of (3) [ME(/)] is given by
ME(l) = [exp #i(S' + L + J + DIS| s, |8y L]l 19, ||L'>W(S S

1
' N
L J)a(J,J)6<M,M) @

1 C. Roth, J. Math. Phys., 9, 686 (1968).

2 G. Racah and U. Fano, Irreducible Tensorial Sets (Academic Press Inc., New York, 1958), henceforth referred to as ITS.

3 G. Racah, Phys. Rev. 63, 367 (1943).

4 E, U. Condon and G. H. Shortley, Theory of Atomic Spectra (Cambridge University Press, Cambridge, England, 1935), Art. 65.
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3 G. Racah, Phys. Rev. 63, 367 (1943).

4 E, U. Condon and G. H. Shortley, Theory of Atomic Spectra (Cambridge University Press, Cambridge, England, 1935), Art. 65.
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Successive applications of ITS Eq. (15.7) yield
SISy =Sy & Shsahisi & S)
= [exp mi(S, + Sy + S + S” + DI2S, + DQ2S] + DQ2S + 125" + INH

/S, S I\N—./S S 1
x Wi+ ot )W( )sss‘;l 1S5, (5)
(sgsg% s 5, 3) Sl

By ITS Egs. (15.7°) and (14.9),

(Soll st 1S9 = (S5 & Sall sS4 ISy & 59

o S; 1
= fexp mi(S, + SOIRCS, + DS 0P (T 5 o), (®)
2
Similarly, by repeated application of ITS Eq. (15.7), we have
LB Ly =Ly 1" LB L] 17 L)
= [exp mi(Ly + Ly + L{ + L + I' + I"]IQL, + DEL; + DEL + DL + O
—(L, L WL L 1
x w( b )w( )L L. 7
e L R AL T (

By ITS Egs. (15.7°) and (14.9),
<L2u 15»2111 ”Lé> ={(L; 1 Ly IE:EI HLa ! Ly

— [exp wf<L3+L2+z+%)1[<2L2+1)<21:2+1)l<l+1)(zz+1)1%W(1;2 b j) (®)

Inserting (4), (5), (6), (7), and (8) into (3) yields, for the spin-orbit interaction for the electrons /,
SO(D) = (n — DGO, INVSM, M expmi(Ly + Ly + L+ L+ 14+ +1"4+28,+ S5, +S1+28 +J 4+ 3)]
x B+ D21+ DL, + DQ2L; + DL, + DL + DEL + DL + 1)
X (25, + 1)(2S5 + DS, + D(2S; + DES + DES + D

XW(LI L I)W(L L 1)W(Sl h I)W(S S I)W(S S 1)
LooL,o )\ L) \sy s, 3 \s; s, 1)\ Loy
x 3 {[exp wi(L3+S3)1W(L2 Ly 1)‘W(S“~’ S 1)<l"-1(v2S2L2>1

vaSalLa l i La % % S3

X {|I"*(#5SsLa)IS;Lo) <l"“2(v333L3)lSéLé!}l""l(VéSéLé»}- 9

3. THE SPIN-ORBIT INTERACTION OF THE !’ ELECTRON
From (1) the spin-orbit interaction of the /” electron is given by

SO(I) = &y (I (wsS L)V (S LYVSLIM] s, - I [ wiSLLYV(SILDV'S' LI M.

Since the interaction pertains to the nth electron, the quantum numbers of the first (n — 1) electrons must be
the same on both sides of the matrix element. Hence we must have

v38:L5 = v,8,L,.
Then, by ITS Eq. (15.6), we have

SO(I) = {,[exp mi(S" + L + J + DXS| st |87y (L] B | L)

x W(i i })6(1, T)O(M, M)S(rsSaL, %SiLY. (10)
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Now, by ITS Egs. (15.7), (15.7"), and (14.9), we have

SIsfsy=(s, 3 S|sM|s; 3 )
= [exp mi(S, + 25; + S 4 DIEQS, + 1)(2S; + 1)(2S + 128’ + D
/S, S 1\=/S S’ 1
x W+ "1 w
(% 3 sz) (s; s, 1) (11
and also
LN ILy = (L, 1" LEEM|L] 1" L)
= [exp mi(Ly + L 4+ V' + I + DI + DR + DEL, + DQL, + )L + DQL + )i
(L, L, 1\ /L L[ 1
S P LA

. 12
l’ ll L2 L;- Ll lll ( )

Hence substituting (11) and (12) into (10) yields, for the spin-orbit interaction of the /' electron,

SOy =y fexpmi(Lyg+ L+ L+ 1+ 1"+ S;+ 25, +28 +J +1)]
X I + D@V + DEL; + DEL; + DEL + DEL + 1)(2S; + DES; + 125 4+ @S’ + DI
% W(Ll L; 1 )W(L L 1) W(SI N I)W(S S’ 1) W(S s’ 1)
r 1 L, L L, I" 1 1 S, S: S, % L L J
X 6(J, J)3(M, M")o(v2SsLy , v2S3L3). (13)
4., THE SPIN-ORBIT INTERACTION OF THE [/ ELECTRON
From (1) the spin-orbit interaction of the /” electron is given by
SOy = LI Ny Se L)' (S{LYV'SLIM| sty + Uy oy [ (03 Ss L)l (SILDI"S’LI'M').
Since the interaction pertains to the (z + 1)th electron, the quantum numbers of the first # electrons must be
the same on both sides.
Hence we must have
v3S;Ls = v,S,L, and S;Li = §,L,.
Then, by ITS Eq. (15.6), we have
SO(I") = {plexp mi(S' + L + J + DS s751 1187
s s
L
By ITS Egs. (15.7°) and (14.9), we have
Sl sd18Y =S, & SIS ¢ 8

17! "NTI7 1 7 !’ r ’ ! r I
x (L| ;4 lL>W( J) 8(J, J')S(M, M")o(v,S,Ly, v3S4LO(S Ly, SiLY). (14)

= [exp mi(S, + S)IEEAS + DES' + DI W‘(i f} Sll) (15)
and also
@iy =@, r LRI 1oL
— [exp mi(L, + L + " + DI + DRI + DEL + DRL + 1)]*W(;; f 1:) (16)
Substituting (15) and (16) into (14) yields,for the spin—orbit interaction of the /" electron,
SO ={plexpmi(Ly + 1"+ S: + S+ 8"+ J + D]
X [0 + DI + DL+ DEL + 1S + DES -+ DI, : Z) W(“; S% ;)
x W(i i }) 5(J, J)S(M, M)5(vgSsLa, vS4LO(S, Ly, SiL)). a7



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 9, NUMBER 11

Local Field Theory and Isospin Invariance. II. Free Field Theory of
Arbitrary Spin Particles*

P. CARRUTHERST
Istituto di Fisica ““G. Marconi,” Universita di Roma, Roma, Italia
and
Laboratory of Nuclear Studies, Cornell University, Ithaca, New York

(Received 18 December 1967)

The properties of free field theories of arbitrary spin and isospin particles are investigated. Self-con-
jugate isofermion (I = 4, $, 3, - - -) field theories of arbitrary spin § are shown to be nonlocal, with
commutators (or anticommutators) failing to vanish outside the light cone. Special attention is given to
discrete transformations C,#, and G. Forself-conjugate multiplets the parity, charge conjugation, and time-
reversal phase factors ¢, 71p, 77 are not arbitrary but obey np = (—1)*, 9% = (—=1)4n%, n§ = ()%,
where the phase 7, = §(—1)** (|§| = 1, @ = —I, - - -, +I) arises when the complex-conjugate repre-
sentations of SU(2) are transformed to the standard basis. Composite products of C, ¥, and G are
discussed, with general phases and attention to the dependence on order of the operators. The six possible
CST operations ©; are analyzed. For pair-conjugate multiplets, the operator ®%is, in general, a gauge
transformation, with phase (w¥*)? depending on the C, ¥, G phases and the order in which C, ¥, and G
enter into ©,. By postulating that ®*y®;* be independent of the order of C, ¥, and B, we derive the
Yang-Tiomno parity factors (%1, +i) for pair-conjugate fermions. For self-conjugate multiplets,
however, the phase restrictions previously stated lead to a unique order-independent result ©@2y@-% =
(—1)*1**%_ The usual local field theory result lacks the factor (—1)%/. The latter differs from unity only
for the case 21 = odd integer, in which case we are in fact dealing with a nonlocal field theory. The
technical details of the theory involve construction of local fields from helicity wavefunctions and helicity
particle operators. Fields of spin greater than one are described by the Rarita—Schwinger formalism. An
appendix treats in detail the form and properties of the high-spin wavefunctions in the helicity basis.
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1. INTRODUCTION

It was recently discovered that the usually accepted
principles of local quantum field theory preclude the
existence of self-conjugate isofermions, i.e., half-odd
integral isospin multiplets in which the antiparticles
lie in the same multiplet as the particles.!~® The result
is true for any spin. In Refs. 1-5, it was shown that the
field theory of selfconjugate isofermions is nonlocal;
in particular, the commutators of many physical den-
sities (energy, isospin, etc.) fail to vanish for spacelike
separations, as shown in Paper 1.° References 6-8
instead assume the existence of a “normal” TCP oper-
ation ©, and show that contradictions with the latter
arise for the anomalous theories in question. The latter
approach depends on locality only to the extent that
the usual TCP theorem depends on weak local
commutativity.1o-1!

* Research supported in part by the U.S. Office of Naval Research
and the National Science Foundation.

+ National Science Foundation Senior Post-doctoral Fellow on
leave from Cornell University, Ithaca, New York.
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All That (W. A. Benjamin, Inc., New York, 1964).

11 R. Jost, General Theory of Quantized Fields (American Mathe-
matical Society, Providence, Rhode Island, 1965).

In the present work we explore further the relations
between locality, internal symmetry, and discrete
transformations. Some interesting work along these
lines has already appeared.1?~14 Here we are especially
interested in restrictions placed on phase factors
involved in the discrete transformations.’®* For
self-conjugate particles'® these phases are greatly
restricted. We use Rarita—Schwinger fields'? to
describe high spin. The detailed account of the
associated helicity wavefunctions given in Appendix
A may be of independent interest.

The theoretical reasons for rejecting field theories of
self-conjugate isofermions are very similar to those
used to arrive at the spin-statistics connection. The
similarity is quite striking in the analysis given by
Weinberg,!® who showed that quantization of bosons
with anticommutators (or fermions with commutators)
led to noncausal commutators, a result quite similar

12 L. Michel, in Group Theoretical Concepts and Methods in
Elementary Particles, F. Giirsey, Ed. (Gordon and Breach, Science
Publishers, Inc., New York, 1964), p. 135.

181.. C. Biedenharn, J. Nuyts, and H. Ruegg, Commun. Math.
Phys. 2, 231 (1966).

14T, D. Lee and G. C. Wick, Phys. Rev. 148, 1385 (1966).

18 P, Carruthers, Phys. Letters 26B, 158 (1968).

18 In this paper the concept of selfconjugacy refers to the partic-
ular group SU(2); ® U(l)y [or better, U(2); see Michel, Ref. 12].
Multiplets which are pair-conjugate with respect to this group may
become self-conjugate in a larger group containing operations
changing the quantum numbers distinguishing particle from anti-
particle. For example, X and X belong to the self-conjugate meson
multiplet 8 in SU(3)/Z;.

17 W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941).

18 S. Weinberg, Phys. Rev. 133B, 1318 (1964).
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to the results of Sec. 2. An alternative expression of
the spin—statistics connection is thus to remark that its
violation would lead to nonlocal physical quantities.
This aspect is usually ignored because of the more
serious difficulties associated with negative energies
or indefinite probabilities.

An even more compelling difficulty of field theories
of self-conjugate isofermions is the inevitable break-
down of Lorentz covariance when interactions occur.
This aspect is analyzed in a sequel to the present
work.1®

2. FIELD OPERATORS AND
COMMUTATION RULES

Except for technical details associated with spin,
the analysis parallels that given in detail for spin
zero in Ref. 9. As there, we distinguish between
pair-conjugate (PC) and self-conjugate (SC) isospin
multiplets, although for some purposes the latter
is a special case of the former. Particle states with
isospin /, spin S, momentum p,* and helicity A*! are
created by the operators a)(p, ). For antiparticle
states the same task is accomplished by the 27 4 1
operators b¥(p, ). We only consider particles with
finite rest mass, and employ the standard spin-
statistics assumption. We require that the a¥ and b}
create isospin multiplets whose members are con-
nected by the Condon-Shortley phase convention, in
order that the standard apparatus of the theory of the
rotation group can be used intact.

The Rarita—Schwinger field may be expanded in the
form

Yu(x) = Zz (au(p, D, (p, D) fo(%)

+ 70D, Dgslp, Ny (). (2.1)

The details are given below. Here y% is a Rarita—-
Schwinger field—a four-component spinor symmetric
in its four-vector indices @ = uy, -, 4, where
k = S for bosons and S — } for fermions. 3, obeys
appropriate wave equations and subsidiary conditions.
The spin S-wavefunctions are discussed in detail in
Appendix A. yx° denotes the conjugate wavefunction
of the antiparticle, and f,(x) is N,e~?%, where N, is
(2E)~* or (M/E)? for bosons and fermions, respectively.
The phase factor 7, is introduced so that the particle
and antiparticle constituents of (2.1) transform
identically under isospin transformations.? %, can be

18 P, Carruthers, Phys. Rev. 172, 1406 (1968).

20 For simplicity of writing we write the four-momentum p =
(po, P), even though the quantity in question only depends on the
three-vector p. Later, when space and time inversions are considered,
the symbol —p is (py, —p); in each case p, = +(p*+ m?)i.
Kronecker deltas dpp’ refer to box normalization and enforce

=p’.
21 M. Jacob and G. C. Wick, Ann. Phys. (N.Y.) 7, 404 (1959).
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represented as &(—1)'*, where &(|£| = 1) accounts
for the arbitrariness in the phase of x° or the operators
b, describing the antiparticle multiplet. We are
especially interested in learning what freedom remains
to this phase as various restrictions are put on the
theory. For SC multiplets we set b, = g, in Eq. (2.1).

The field (2.1) transforms as suggested by the
notation under Lorentz transformations and as D¥
under isospin transformations,?® where D is an
irreducible representation matrix for isospin J. For
clarity we approach the generality of Eq. (2.1) in easy
steps: first spin 0, 4, 1, followed by bosons of spin
S 2 2 and fermions of spin § > §.

A. Spin 0

In this case, the functions y and y° are unity; for
PC multiplets

#) = 3 @nf) + 1b D f(x). (2.2)

The pertinent field commutators are
[4°(x), $7*(x)] = i8,4A(x — x'), (PC,SC) (2.3)

[$°(x), $°(x)] = 0. (PC) 249

However, for SC multiplets [ =a in Eq. (2.2)]
in place of Eq. (2.4) we find

[6°(x), $5(x))] = 6, LAu()J(Cx__x;c)f’) Z : ;i:’
(2.5)

In the case 2I = even integer, the relation (2.5) is
completely equivalent to Eq. (2.3a). However, in the
isospinor case this is not so; in particular, the non-
causal commutator A% contaminates the whole
theory. The rest of this section shows that the results
(2.3)-(2.5) extend to any spin, provided that we take
account of the “statistics” and supply appropriate
spin factors in the commutators (or anticommutators).

B. Spin 1

This case has been treated in the usual formalism by
Einhorn.® The only difference here is the purely
formal one of replacing ordinary spin states (referred
to a fixed axis) by helicity states. Letting i designate
the components of the Dirac field y#(x),

yix) = EA (a(p, Dup; (%)

+ 1,b%,(p, Dodp, Dy (x), (2.6)

22 P, Carruthers and J. P. Krisch, Ann. Phys. (N.Y.) 33, 1 (1965).
In the present work we use / for isospin to avoid confusion of the
previous symbol (T) with the time-reversal matrix.
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where the wavefunctions u and v are defined in Appen-
dix A, one easily computes the anticommutators:
{93, PN} = iliy - 0 + m)udpAlx — ),
(PC,SC) (2.7

{¥i(). ¥{(x)} =0, (PO) (2.8)
{3(x), wh(x")}
= 1pa,—p 2,1 [u;(p, Do, (p, Ae ™"
+ (=1 ,(p, Du(p, A)e”**"2E
5 C 3 ) iNx — x"), 2I = even,
= «,— iy + J
M8%,~8 wally mj;; A(l)(x__ x), 2I = odd.
2.9

In Eq. (2.9) the matrix C; is the usual charge-con-
jugation matrix. Comparison of Egs. (2.3)-(2.5) with
(2.7)-(2.9) reveals a one-to-one correspondence. The
self-conjugate isospinor—spinor fields suffer from the
same troubles as the zero-spin case. (The usual
Majorana field*® corresponds to the special case
1=0)
C. Spin 1
For the PC vector-meson field we have

Vi) = 3 @b, Deu(p, D)
+ b2 p. Mel(p, DS F(x), (2.10)

where e,(p, A) is the vector wavefunction for helicity
A, transverse to p*, thus guaranteeing 0*F? = 0.
The commutators are

[VI(x), VEX(x)] = i6,4M,(—id)A(x — x'), (PC,SC)

(2.11)
[Vi(x), VE(x)] =0, (PC) (2.12)
[V(x), V(")
= 0y 2 Leulp, Ne; (p, He™ =)
— (=1)¥el(p, Ne(p, A =" 2E
5 M 9 iA(x — x"), 2I = even, sC
= —Np0q uv(—’ ) Am(x —x), 2I = odd. (8C)
(2.13)

The operator M,, is (g,, + 0,0,/m?, obtained by
replacing p, in Eq. (A26) by —id,.

The extension to arbitrary spin is now quite cle-
mentary using the wavefunctions and projection
operators of Appendix A.

D. Spin-S Mesons

The only change from the vector field is to replace
ubyasetof u, (i=1,---,5) and the polarization

23 E. Majorana, Nuovo Cimento 14, 171 (1937).
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vector e, by the spin-S wavefunction e5(p, 1). Equa-
tions (2.11)-(2.13) are changed only by the replace-
ments (g, ¥) = (1, v), e, —~>e5, —M,, —> (—=1)SM .

E. Spin-S Fermions

This case is quite similar to that of spin §, but we
give a few details. The field % (x) has the expansion

Ya(x) = X (a,(p, Dulp, D f,(%)

DA
+ 1.b2 P, oD, Dfa(x), (2.14)

where v3(p, ) = CaST(p, 2) (cf. Appendix A).
For either PC or SC fields we find

{whs(x), Po(x)}
M = —ip-(e—x’
= Z}.—E_ (ufj(P5 Z)u:?k(p’ A’)e i !
2

+ 05,(p, NS (p, Ne'™ =)

= (= DF I (50577 = (350)87 )
D

= i(— 1S YA, (—id)iy - @ + m)]uAx — x)

(2.15)
on making use of Eqs. (A30) and (A34).
For PC fields we find
{95,060, ¥h(x)} =0, (2.16)

while for SC fields a calculation similar to that of
Eq. (2.15) gives

{’Pﬁa’(x), wgk(x/)}
= nﬁéz,——ﬂ(—I)S_%Clkl[Apv(—ia)(iy 0+ m)l;
iA(x — x'), 2I = even,

X 2.17
AV (x — x), 2I = odd. (217)

In all these cases we expect that for SC fields = is
dependent on ¢**. For 2] = even, this dependence is
a simple proportionality, in which case the quantities
[w, v]. are not independent of [y, y*],.. For 2/ =
odd, the dependence is more intricate. The relation
between ¢~ and y** is essentially the same as derived
in I for zero spin. We do not repeat details of the
calculation. Let 9Z°(x) be y**(x) for mesons and
Cy#f(x) for fermions. An elementary calculation
gives the SC conditions:

¥t (x) = n_,pil(x), 21 = even,
PA(x) = in_, J d3x’u);c(x’)§o'A‘”(x’ — x), 2I=odd.
(2.18)

Although (5.1) is nonlocal in configuration space,
the general expression has a space-time translation-
invariant structure. Thus, in momentum space, one
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can write a linear connection between ;%(p) and
¥2°(p). In the case of interactions this allows for a
seemingly more general definition of self-conjugacy,
as has been noticed by the authors of Refs. 4, 6,
and 7.

We have shown that self-conjugate fermions of any
spin give rise to noncausal commutators. It should be
amply clear from I that the associated field theory is
nonlocal.

3. G, ¥, AND G TRANSFORMATIONS

Our discussion of C, 7, and G transformations is a
straightforward generalization of the results of I
for zero-spin particles. We omit details of arguments
essentially the same as given there. The idea is first
to define the discrete operations by particle mappings
and then to require that the associated field have a
sensible transformation law. Results are first given for
PC multiplets; equating particle and antiparticle
operators yields consistency conditions among the
phases which must be satisfied in the SC case. Re-
peated use is made of results derived in Appendix A.

Requiring that antiparticle conjugation C maps
¥(x) into %¥(x) with an «-independent phase, we
obtain for the particle transformations®

Ca (p, HC! = nemyb_p, 1),
Ch(p, HC™ = ngm_.a_(p, A). (3.0

For SC multiplets the phases on the right-hand side of
Eq. (3.1) are equal, giving the constraint

N6 = Nal—e = (=D}, (3.2)

The field transformation law follows easily, using
Eqgs. (2.2) and the last of Egs. (A24):

Cpi()C™ = 5o Ci 9l (). 3.3

The matrix C; is #ygy, for fermions and unity for
mesons. The bar-transpose operation is the usual one
for fermions; for bosons it simply means taking the
Hermitian adjoint. We do not consider here the other
possible mapping for € discussed in I, which was
nonlocal in the independent fields but unitarily
equivalent to (3.2) for the anomalous case.

The parity transformation is somewhat more
intricate because of the more complicated behavior
of the wavefunctions under parity. For spin O we have

Fa(p)T" = npal—p),
Fb,(p)T ™ = npb(—D),
Ty*(x, )T = 9py*(—x, 1).

3 We always assume that the vacuum state |0) is an eigenvector
of C, 7, and B with unit eigenvalue.

3.4
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In the usual discussions of the Dirac field, one uses
wavefunctions and operators referring to a fixed axis.
We review this before going over to the helicity
formalism. From the relations (A4) we note the well-
known sign difference of the particle and antiparticle
transformations:

"Taa(p’ s)g’—l = Wpaa(—l’, S),
ﬁ‘ba(p’ s){‘-—l = _n;ba(‘ps S),
ﬁ’qp“(x, 3W1 =npP Wx(“'x’ t)’

where P = y,.

If we use the helicity basis, the transformation
laws for the operators a,(p, 4) and b,(p, ) follow from
(3.5) and (B6):

Sa(p, DT = np(— -2 (~p, — 1),

Tbup, DI = —np(— e (—p, —1). (3.6)
We note that the helicity changes sign, although s
does not, as expected. The detailed structure of (3.6)
could have been surmised from the identities (A11),
which guarantee that the spinor-field parity-trans-
formation law is the same as shown in (3.5).

For spin 1, inspection of (A16) leads us to the
definition

Ta(p, HF™ = ynp(—1)""e**a,(—p, —2),
Tb(p, T = 1jp(= 1) e b (—p, —1). (3.7)
This gives the usual field-transformation law

gV:(X, t)ﬂ\_l = nP(—guu)V:(—“x’ t)
on using Egs. (2.10), (3.7), and (A16).

The symmetry relations for higher-spin wave-
functions summarized in Eqs. (A21)-(A23) lead the
definition for arbitrary spin (including the previous
cases):

Sa,(p, HF™! = np(—1)**e g, (—p, —A),
Tbup, M5 = (=1 np(—1)" e, (~p, — 1),
3.9
where the factor (—1)*5 is especially to be noted.
With these conventions the spin-S field transforms as
Tyi(x, D97 = npll(—g, )PYi(—xX, ). (3.10)

The over-all sign has been chosen to give 7, its con-
ventional value. P is again y, for fermions and unity
for mesons.

In the special case of SC multiplets the consistency
of Egs. (3.9) requires that

nbh = (=1 (3.11)

For SC mesons the parity factor is thus 1, while for
Majorana particles it is £7.

(3.5

(3.8)
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The discussion of time reversal proceeds in a similar
way. Recalling that G is antilinear, for spin 0 we have
Eaa(p)‘g—l = nTaa(—p)’
Bbp)E = (g [ndbo( =) (12)
It is important to note that the T-transformation
phase depends on the isospin variable, in contrast to
the parity operation, which commutes with the isospin.
The field y*(x) transforms as
By(x, NG = npyp*(x, —1). (3.13)

For spin 4 we first work in the usual basis, and then
give results for the helicity basis. The result (A6)
indicates the necessity for a spin-dependent phase
factor:

Ba,(p, Y6 = np(— ¥ a(—p, —),
Bby(p, )6 = (g nN— Db, (~p, —s). (3.14)
The Dirac field transforms as

By (x, OB~ = nyTy(x, —1),

where the matrix T = ygy, is real.
The transformation of the helicity operators follows
directly from Eqgs. (B6) and (3.14):

Bay(p, G = npea(—p, 1),

Bbo(p, N = (17, e *b(—p, ). (3.16)
These results could have been derived using Egs.
(A12), requiring the transformation (3.15).

For spin 1, Egs. (A16) suggest that the transforma-
tions of a, and b, are formally identical to (3.16). The
field transformation law is

BVi(x, )8! =g, V,i(x, —1). 3.17)

The general case is now clear from the preceding
examples and the second of Egs. (A24); Eq. (3.16)
summarizes the form of the G transformation for any
spin. The field undergoes the transformation

Tyf(x, HB7 = 77ll(g, ) Tyix, —1). (3.18)
For the special case of SC fields the consistency of
(3.16) implies

(3.15)

7y = ()" (3.19)
Combining Egs. (3.2), (3.11), and (3.19) leads to
the SC consistency conditions
nd = (—1D%
(en)® = (=1, (3.20)
We use these relations extensively in the next section.

4. COMPOSITE DISCRETE TRANSFORMATIONS;
TCP

It is of some interest to consider, instead of the
separate transformations C, &, and G, various com-
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binations of them.?® A particularly important com-
bination is the CJG operation, since every local
relativistic quantum field theory is invariant under
this transformation. In this section we study the
composite transformations with emphasis on their
dependence on operator order. The phases are kept
absolutely general (except for SC multiplets, for which
consistency restrictions arise) to exhibit an aspect of
the theory usually obscured by a remark of the type
“clearly we can choose phases so that - -.”

In order to handle all spins at the same time, we
rewrite the C, ¥, and G transformations of Sec. 3 in
a more convenient order. Let i (i = 1, 2, 3, 4) be the
spinor index, when appropriate. Then the transforma-
tions in question are

CyIC™ = neyii)Csi,

Ty(x, DT = Tl =g, i (=X, DPy, (4.1)

Bypdx, 087 = 711, )¥},(x, —Tj;.
Here summation over repeated indices is understood.
For fermions the real matrices C = C,y,, C = —iy,,
P =yy, T = y3y,,while for bosons C=P=T=1
and no spinor index occurs. T is the transpose of
T:T'=-T.

The matrices C, P, and T have been put to the right
of the fields in (4.1) so that the matrix products occur
in the same order as the operator products which in-
duce the transformation. Since C, P, and T are real,
the conjugate fields also transform as (4.1) except that
each phase 7 is replaced by 5. Thus far the various
phases: 5¢, 9p, Nz, 7, are completely general, sub-
ject to the unimodular condition and also Eq. (2.3).
Hence four arbitrary phases occur in the behavior of
the PC field; for SC fields % and one of 5 or 5, are
restricted by Eqgs. (3.20).

We begin by discussing bilinear products. We find
easily the relations for the squares:

CCE =y,
‘szﬁ-2 — (_1)28 ,
T8~ = 1py.

(4.2)

The various field labels («, ., x) are the same on both
sides of Eqs. (4.2). The phases 5y and %, drop out
since C and G involve conjugation in one form or
another. In the PC case #3% is an arbitrary number of
the form exp Qigp), np = exp (ipp), so that F2 is a
gauge transformation generated by the difference in
number of particles and antiparticles. For SC multi-
plets this operator vanishes, so no such gauge trans-
formation is possible. However, in this case %% is

2% G. Feinberg and S. Weinberg [Nuovo Cimento 14, 571 (1959))
have discussed composite transformations for spin 0, 4, and 1

without considering internal symmetries. However, essentially
nothing new results from the extension to general spin and isospin.
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fixed to be (—1)®S. Thus introducing the Fermi
counting operator F,, which is 41 for states with an
odd number of fermions and 0 for states with an even
number of Fermions or any number of bosons, we
have

Cl=1,
B = (=D)F,

D Fs . (4.3)
g2 — [(=D SC multiplets,

exp [2igp(N — N)], PC multiplets.

The products CF and 9C differ in general:

CTyi(x, D™ = 5pmoll(— g, )W (—%, H(CP)yp,
(ECYx, NECI™ = nenpll(— g, ) ¥ =%, O(PC)5;.
(4.4)
The product CP differs from PC by (—1)*5, so the
second transformation in (4.4) has phase nonhE(—1)%°
as compared to 7¢np in the first. Thus, in general,
CF # §C. However, for SC particles these phases
coincide, giving

CF = FC (SC). (4.5)

The squared operators (CT)? = (FC)* are inde-
pendent of 5¢, 7p, however:

(CT)*p(CI)™ = (= 1)y,
(CT)* = (FC)f = (=D

For G the situation is similar:

FEYLNIBY ™ = npnp(—1)yE(—x)(PT"),;,
BIPL)NEI) ™ = npnp(— )"yl (—x)(T'P);;, (4.7)

so that, in general, TG # GF, although for SC multi-
plets 96 = (—1)F+GF. 5y is the greatest integer
contained in S: 7g = S for mesons and § — § for
fermions. However, (96)? = (BF)? is independent of
phases

(4.6)

(FB)*p(3B) " = (—1)»y,

(@B)* = (6F) = (—1)F. (4.8)
The operations CG and GC give
CByi(x, HCBY T = nenryiy(x, —=D(CT )y,
BCYAx, NBO) ™ = nonzys(x, —=(T'Clyss  (49)

so that €6 = GC only when 7¢7y is real. When SC
multiplets are under consideration, 7877y is equal to
(=1D2nenyp, so that €6 = (—1)F1GC, F; being the
isofermion number.

The corresponding squared operators give

(CB*(CBY 2 = (—1)*(nin 7y,

(BO*H(BC) " = (=) (neny)’y.  (4.10)

P. CARRUTHERS

For SC multiplets (n¢o7,)? is (—1)%, giving
(CB)? = (BC)? = (—1)Fst+Fy, (4.11)

It may be helpful to classify the previous results in
order of decreasing generality.

1. Relations true for arbitrary phases:

CE=1,
g _ {(—1)“ (SO),
exp Ripp(N — N)] (PO)
B = (= 1), (4.12)
(CF)* = (9C)° = (=D,
() = (BI)* = (— 1)
2. SC multiplets; extra relations:
CF = JC,
96 = (—1)F67,
(4.13)

€8 = (-1)"BC,
(BC)Y? = (CB)? = (—1)F+¥1,

3. PC multiplets; simple useful phase choices:

§2 = J,
nd=1={CF = (=17gC,

§6 = B7,

CG = TC,

P=1
(emr) = {(G‘G)z = (GC)? = (—1)F+. (4.14)

Now we discuss the CIG transformation ©. It is
important to consider the six distinct operations ©,
corresponding to the permutations of the order of
C, ¥, and G. The six operators are

0, = CI6, ©,= GFC,
0, = BCF, ©,=7FCT,
0; =J6C, O = CTY.

Under ©,, the general field transforms as
0, ()O7* = (= )"y (—xYPCT e e
PCT' = —iygy1ysys = iys, 2Sodd, (4.16)
=1, 28 even.

(4.15)

ys = y%lp2y® is purely imaginary, symmetric, and
anti-Hermitian; y2 = —1I.
Clearly, every ® transformation can be written as
GiTP;.i(x)Gi_l = (-1 nswiw::c(_x)(ei)kj, (4.17)

where o, is a product of CJG phases and 0, is the
matrix product of C, P, and T in the same order as
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C, 7, and G occur in 0,:

0,=1, 28 = even,
01 = 02 = 06 = —03 = ‘—04 = —05 = iy5,
28 = odd. (4.18)
The phase factors w; are
* *
Wy = Wy = W3 = Nphclr,
0y =) = oy =npmeng.  (419)

If we write np = exp (igp), etc., and o; = exp (ip,),
then two numbers (and their negatives) describe the
general case

94 =9p+ 9o+ ¢r,

¥ = ¢p — P~ Pr- (4.20)
The square of CJG results in
OO = (@)p. (4.21)

For SC multiplets the w? are completely fixed by
Egs. (3.20) to be (—1)2/+25 independent of i

OfpO;t = (~ 1Sy,

03 = (—DFerr, (4.22)

The lack of any dependence on order can be surmised
by inspection of Eq. (4.13).

Equation (4.22) generalizes the usual result (see
Ref. 12, for example) that ©2 yields (—1)28 when
applied to sets of Hermitian fields which define a local
field theory. The case of selfconjugate isofermions
(21 = odd) is not equivalent to a local linear com-
bination of Hermitian fields (see I, or the next section).
We see that ®2 provides a simple way to test a self
conjugate field theory for locality. The authors of
Refs. 6-8 dispose of selfconjugate isofermions by
showing incompatibility with a “normal” @ trans-
formation. On the surface it appears that the “global”
test of the field using ®2 might be more general than
the local-causal properties of the field rheory. How-
ever, it must be recognized that locality (rather, weak
local commutativity) enters the discussion of ® in a
critical way. Both aspects of the problem are interest-
ing and should be studied. Besides providing a new
type of nonlocal field theory for study, the SC iso-
fermions might even exist. Although the latter possi-
bility seems remote, one should not forget the history
of “dubious” objects such as the two-component
neutrino.

Now we turn to the PC field. The phase w, is quite
general, and Eq. (4.21) indicates that the operators
02 are gauge transformations

@2 = exp Rig,(N ~ N)], (4.23)
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where
PLr= —@s= —@3 = Py,

Y= —Ps= —Ps = ¥p

[cf. Egs. (4.19)-(4.20)]. It is of some interest that the
product of two discrete ® operations is equivalent to
a continuous gauge transformation whose phase
depends on the discrete phases ¢¢, ¢p, and @p. Only
by making a special phase choice, or a physical
assumption, can we make this phase definite. We
stress this point because it is not always realized that
the common choice* @2 = (—1)F+ for all particles
relies upon a special phase convention.

The following remarks may clarify somewhat the
nature of this convention and its relation to physical
criteria. In particular, we have in mind the discussion
of fermion parity by Yang and Tiomno.?® These
authors required that two reflections be equivalent to
a rotation by 0 or 27, If this geometrical requirement
is imposed on the parity operator, we obtain the
additional constraint that %3} be unity. We want to
show the following: If one w, is chosen to be real,
then w, = w, for all i, provided 5} = 1. With these
assumptions, the transformation ©O2p0;? = (wf)%p
becomes independent of i, that is, of the permutation
of the order of C, ¥, and G. For each spin w? can be
only =+1, and the conventional choice (—1)* is
especially useful since it mirrors the (phase-inde-
pendent) constituent transformation

B2 = (—1)2Sy,

The proof is easy; we give one specimen by assuming
that w? = (—1)25. Equation (4.19) then shows that
0% = 0} = o} and further that (ngn%)?* = (—1)*S%3%,.
The latter gives w} = (—1)*Sy%. When 7} is unity,
w? = (—1)%% for all i. Inspection shows that the
result is independent of which initial w? is chosen to be
(_ 1)2S_

It is very interesting that a converse theorem holds.
If we require invariance of O2yp®: 2 under C, F, B
permutations, then we can deduce the Yang-Tiomno
equation 5}, = 1. If w? is independent of i, Egs. (4.19)
show that all @} are real. Secondly, w? = (wf)? implies
the results

77%’ =1,
(memp)* = 1, (4.24)
0= 41,

Again w; = (—1)% is a useful though special choice,
and one can take 02 to be (—1)**. Since the parity of

28 C. N. Yang and J. Tiomno, Phys. Rev. 79, 495 (1950).
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a single fermion is generally regarded as unmeasur-
able, the permutation invariance may be without
physical significance.
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APPENDIX A: RARITA-SCHWINGER WAVE-
FUNCTIONS FOR HIGH SPIN

In order to give a complete discussion of the dis-
crete symmetries we have to be able to relate the
wavefunctions y,(p, 4) to other wavefunctions with
spin or momentum reversed. We use a real metric
with goo=1= —g;; (i=1,2,3) and y matrices

t
{7u’yv}=2guv’ YoVuVo = Yo>
I O k 0 O'k)
= s = s Al
(0 _1) 4 (—ok o) @Y

where g, are the usual Pauli spin matrices.

The spin state of a wavefunction usually refers to a
fixed direction (the famous z axis) or to the direction
of momentum (helicity basis). Although we generally
use the latter description, it is useful to review both
for the spin-} case. Let y, (s = 1) be the usual real
two-component spinor quantized along the z axis
(0,2 = 2Sy,). [We write x,(£) whenever a chance for
confusion with helicity spinors occurs.] Then the
Dirac wavefunction u(p, s) for a particle of momentum
p and “spin” s is

u(p, ) = (

Yo

cosh $wy, )’ (A2)

o+ psinh oy,

where the parameter  is related to energy and mo-
mentum by E = mcosh o, p = msinh o. The anti-
particle wavefunction is defined by

¢ - p sinh %wx__s)
cosh fwy_, '
(A3)

where the phase of the charge conjugation matrix
C, = iy,y, has been chosen in a natural way [v(p, %) —
col. (0, x_&) when p — 0].

Inspection reveals the inversion formulas®

o(p, 5) = Coit"(p, 5) = (—1)"”8(

u(p, s) = Pu(—p, ),
v(p, §) = —Pv(—p, s,
where P is the matrix y,. To invert both p and s, we
use the time-reversal matrix T = y;); (chosen real)
and the formula
X—s = (—1)%_{—8’-02%3

(A4)

(A3)
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to obtain
w*(p, 5) = (= DH*Tw(—p, —s),

where w stands for either u or v.

To discuss the analogous properties of Dirac
helicity spinors, it is useful to summarize the corre-
sponding properties of the two-component helicity
spinors. The latter are defined by arotation in the usual
way, by rotation of a state with helicity A in the Z
direction. Let p and the rotation axis 7 be given by

(A6)

P = (sin 6 cox ¢, sin 0 sin ¢, cos 0),

A = (—sin ¢, cos ¢, 0). (A7)
The state y,(p) is then given by
%1(P) = exp (—ifi * 60/2)x,(2). (A8)

The state x,(—p) is conventionally reached by the
rotation described by the angles (= — 0, ¢ + =) to
avoid any confusion due to the double-valuedness of
SU(2) transformations.

The following three formulas are useful (only two
are independent):

2(B) = (=) (—p),
2:(P) = (=D Fioyyx,(p),
la(p) = —e““”iazxf(——ﬁ)-

(A9)

The helicity spinor u(p, 4) is given by
u(p, A) = exp (—ifi- 66/u(p = p,, s = 1)

cosh joz,(p) )

= (5 (A10)
24 sinh 3wy, (P)

The antiparticle helicity spinor is

o(p, ) = Cyi(p, ) = (— D (—2’1 sinh %wx_z(ﬁ)).

cosh }wy_x(h)
(A11)
(24 is the same as (—1)3-* for spin }.)
The formulas corresponding to Egs. (A4) and (A6)
are
u(p, 3) = (— 1) *e*4pu(—p, —1),
o(p, ) = —(— 1} FeHHPo(—p, — 1),
u*(p, ) = e***Tu(—p, ),

v*(p, A) = ™ To(—p, A). (A12)

These results are somewhat more complicated than the
“old-fashioned” ones, (A4) and (A6), but are more
useful because of the physical significance of the
helicity states.

The vector helicity wavefunctions e*(p, ) are
obtained by rotation of the wavefunctions polarized



LOCAL FIELD

along the z axis:

(p,, £1) = F(0, 1, £i, 0)/2,
e’(p,, 0) = (p, 0,0, E)/m.

For arbitrary direction, one obtains by rotation

(A13)

e'(p, £1)
= F(0,1 — (1 — cos 6)e**® cos ¢,
+ i(14 i(1 — cos B)e*™ sin ¢), —sin Oe=*%),
e*(p, 0) = (p, E sin 0 cos ¢, E sin 0 sin ¢, E cos 6)/m.
(Al4)

The polarization vectors e, obey the orthogonality-
completeness relations

p-e(p,)) =0,
eh(p, Ne(p, X)) = —d,,,
; eu(p’ }')et(ps Z’) = —guv + pupv/mz'

(A15)

A short calculation leads to the relations

eu(P’ A= (—l)l—le%w("guu)eu(_l” -2,
eup, ) = g, e,(—p, D),
e’;(p, }*) = (_1)leﬂ(_p> _1)-

[A quicker way to derive these results is to identify
e,(2p, 22) with 5(p, A)y,u(p, ) and then to use Egs.
(A11) to reach (A16).]

The Rarita-Schwinger helicity wavefunctions for
higher spin are easily found by combining spin-4 and
spin-1 helicity wavefunctions using ordinary Clebsch—
Gordan coefficients.?~?® For meson wavefunctions
we have the recursion formula relating spin S and
spin S 4 1:

(D5 )

_—_h% C(sls + 15 A dA)e; ..., (P, ey, (D, L)
(A17)

For fermions, we have the spinor-tensor (§ = k + })

(A16)

8+1

el‘l“% c

a+1

Bt 'uk+1(p’ %)
=Y C(sls + 1; My, ... (D, ey, . (P, 45),

ALy

U

(A18)
CALRIN ¢ )
= Clﬂl‘:‘—'l' 'fk-l-l(p’ A')
=Azl C(sls + 15 4AA)05, .. (P, Aey, (P, A5).
v (A19)

27 P. Auvil and J. J. Brehm, Phys. Rev. 140, B135 (1965); 145,
1152 (1966).

28 D. Brudnoy, Phys. Rev. 145, 1229 (1966).

2% P. Carruthers, Phys. Rev. 152, 1345 (1966).
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For spin 3, the ordinary Dirac spinors u(p, 4) or
v(p, A) appear on the right-hand side of Eq. (A18) or
(A19).

For notational reasons we write x,(p, 4) for either
the meson wavefunction e ..., (p, 4) or the fermion
wavefunction u, ..., (P, 4) and g, for the generalized
conjugate wavefunction e#*.. =~ for mesons, and
C#sT.,, = v, ..., for fermions. The vector p stands
for the set of 4-vector indices u;, in which y,, is totally
symmetric and divergenceless. [p#iy,(p, 1) vanishes;
for fermions y*iy,(p, 2) also vanishes.] More details
on the subsidiary conditions can be found in the work
of Fronsdal and Behrends.3®:3!

The orthogonality conditions are easily found by

use of the recursion formulas:

e (P, De(p, X) = (=1)'8,5,

2P, Dut(p, X) = (~ 1)y,

5P, o(p, 2) = —(= 146,
Symmetry relations involving the change of sign of p

or A follow easily from the recursion relations, using
induction and Eqs. (A12) and (A16) for spin }:

ef;(P’ }“) = (_l)s_le%}"bn(_guu)ei(_p’ —l),
e¥(p, ) = e #1(g,)el(—p, A), (A21)

u:;(pi }') = (—l)s—leZil(ﬁH(_guu)Pu;(_pa —A)a
u (p, 4) = e*1(g,,)Tui(—p, A), (A22)

vi(p, H) = —(=1)" e HMII(—g, )Pvi(—p, —2),
v (p, 2) = e¥*™T1(g, ) Tvi(—p, A). (A23)

Again P and T are the real matrices v, and y3y;,
respectively. The products I1(+g,,) run over S or
S — } factors g, ..

All the preceding inversion formulas are sum-
marized by

23D, A) = (=1 *MM(— g, )Py (—p, —A),
22 (P, A) = e T(g, )Ty (—p, A,
Z':f(P, }“) = CIZZT(p’ l)’

provided we replace all matrices by unity for mesons.

In order to write the field commutation relations in
a neat form, it is useful to have projection operators,
expressed in terms of the helicity wavefunctions. Here
we mainly emphasize points not covered or stressed
by Fronsdal and Behrends.30:3! The reader is referred
to the latter papers for more information, and some
explicit formulas,

(A20)

(A24)

3¢ C. Fronsdal [Nuovo Cimento Suppl. 9, 416 (1958)] discusses
these points in detail.
31 R. E. Behrends and C. Fronsdal, Phys. Rev. 106, 345 (1957).
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For spin } we have the well-known projection
operators
- m+p:
Adp) = 3 ulp, Di(p, 2) = L,
i 2m

A(p) = =3 olp, Dilp, ) = =L
(A25)

For spin 1, we define a second-rank tensor projection
operator:

Mio(®) = =2 &P MeXp, A)

= guv - pupv/mz’
For spin-S mesons, Eqgs. (A26) generalize fo

M:w(p) = (_ l)s ).z ef;.(p’ l)ef,*(p, Z’),
M (p)M3(p) = M, . (A27)

Fronsdal and Behrends have given an explicit for-
mula® for M%,(p). For our purposes we only need to
note that it is a real tensor constructed from an
appropriate number of g,, and p, factors.

From Egs. (A2l) we find the symmetry relations

Mf:.v(p) = II(—guu)H(—gvv)Msy.v(—p)7
M) = (g, ) (g, )My (—p).  (A28)
Since the number of u, equals the number of v;, the

minus signs cancel in the first of (A28), proving the
reality of M} :

(A26)

M3,(p) = My(p). (A29)

In addition, the first equation indicates that, when
p changes sign, M%, transforms as an ordinary vector
in each of its indices, thereby excluding pseudotensors
from the construction of M3, (p).

For baryons of spin S, we write the projection oper-
ators as

TLlp) = (=1 S uip, DD, 2),
52,0(0) = =(=17 3 0i(p, D3P, 2. (A30)
In addition to the obvious relations
(D)D) = T1(P)s
S‘iuv(p)ﬂ‘:‘?%(p) = 0:

(p-y F mip) =9p)p y F m),
and the subsidiary conditions deriving from the
wavefunctions, we have the symmetry relations
(P =70, T = yayy)

P@ip.v(p)P_l = H(_guu)n(_gvv)ﬁ‘:huv(_p)’

TS5 T = I(g,)T1(8,,)5%.(—P). (A32)

(A31)

P. CARRUTHERS

Again, the left-hand sides of (A32) are equal. We
also note the relations (y; = y%p1y*®)

iysu(p, 2) = (= 1)*u(p, —2),
iyso(p, &) = (=D u(p, =), (A33)
iys3 L (P)iyvs) " = 95,,(p).
The operators J,,, are to be constructed from the
metric tensor y, and p, . The first equation of (A32)
excludes pseudoquantities like y5, and the second

makes the coefficients of the independent tensors real.
One can then write the projection operators in the form

ﬂ,;:p.v(p) = Ap.v(p)Ai(P) = Ai(p)Ap.v(p)’ (A34)

where the A, (p) are given in Eq. (A25). The quantities
A, (p) are then determined by the subsidiary con-
ditions.

APPENDIX B. SPIN-} PARTICLE OPERATORS

The Dirac field can be expanded in terms of wave-
functions and operators referring to a fixed axis or in
terms of helicity wavefunctions and operators. We
have the relations

2 a(p, su(p, s) = 2 a(p, Nu(p, 2),

2 b*(p: S)U(p’ S) = ; b*(p’ }.)U(p, l)’ (Bl)

where the wavefunctions were given in Eqs. (A2) and
(A3), and (A10) and (All). From the orthogonality
relations we find

a(p, 3) = 2 M;,a(p, s),

b*(p, 2) = 3 Rib*(p, 5), (B2)
where a little calculation gives
M,, = a(p, Hu(p, 5) = (P9,
M, = y(2)e™ U (2), (B3)

R, = (=1'70(p, Do(p, ) = (=1L (Dr-o2)

R}, = (D), 22D = M3, (B4)
We have used the second of Egs. (A9) to establish
that R = M, i.e., that the particle and antiparticle
helicity operators are related in exactly the same way
to the fixed axis operators. The matrix M, is given by

7} .. . B
cos - e ™ sin -
2

M = eiﬁ-w/z = (BS)
COs —

—e*sin 9
2 2



LOCAL FIELD THEORY. II.

Thus the transformations (B2) are, not surprisingly,
unitary and unimodular.

Using the notation +, — for (4,5) = +% or —3
and introducing subscripts £ and s to distinguish
helicity from z-axis operators, we have

. 0
ar(p, +) = cosgas@, ) + e sin al(p, =),

o 6
ah(p’ _) = _ez¢ sin g as(pa +) + Cosias(pﬁ —)
(B6)
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Corresponding expressions hold for the antiparticle
operators. For —p, we obtain the appropriate
relations by the substitutions 0 -7 — 0, ¢ — 7 + ¢.
These are useful in discussing the parity transforma-
tion. Using (B6), we can easily derive the C, T, and G
transformations of the helicity operators from those
of the z axis operators a(p, s) and b(p, 5). Of course,
an equivalent result can be obtained by requiring that
the field has a well-defined transformation under
these operations, once the inversion properties (A12)
are known.
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Using a variation technique, two coupled equations are derived whose transition matrix is shown to
describe multiple scattering. The resulting index-of-refraction equation differs from that obtained in
previous theories by our inclusion of the effect of the scatterer on the target and certain constants of

approximation.

1. INTRODUCTION

When a particle or wave comes upon a target
involving many obstacles and is scattered by the
obstacles one after the other, we say multiple scat-
tering has occurred. The importance of a satisfactory
way of dealing with multiple scattering is obvious
since experimentally one encounters scattering which
is multiple, not single. This is the case whether the
target is composed of atoms in a crystal or nucleons in
a nucleus.

Theories have been presented for multiple scattering
by Bothe,! Williams,? Goudsmit and Saunderson,?
Moliere,* Synder and Scott,® Lax,® Watson,” Fano,?
Ter-Mikayelian,® Muhlschegel and Koppe,'* Wein-
berg,"! Gnedin and Dolginov,'? and Kalashnikov and
Ryazanov,® to name only a few. The general proce-

1 W. Bothe, Z. Physik 54, 161 (1929).

2 E. J. Williams, Phys. Rev. 58, 292 (1940).

3 8. Goudsmit and J. L. Saunderson, Phys. Rev. 58, 36 (1940).

4 G. Moliere, Z. Naturforsch. 3a, 78 (1948).

® H. S. Snyder and W. T. Scott, Phys. Rev. 76, 220 (1949).

8 M. Lax, Rev. Mod. Phys. 23, 287 (1951).

7 K. M. Watson, Phys. Rev. 89, 575; 92, 291 (1953).

8 U. Fano, Phys. Rev. 93, 117 (1954).

® M. L. Ter-Mikayelian, Nucl. Phys. 9, 679 (1959).

10 B. Muhlschegel and H. Koppe, Z. Physik 150, 474 (1958).

11'S. Weinberg, Phys. Rev. 133, B232 (1964).

12 Yu. N. Gnedin and A. Z. Dolginov, Zh. Eksp. Teor. Fiz. 45,
1136 (1963) [Sov. Phys.—JETP 18, 784 (1964)].

13 N. P. Kalashnikov and M. I. Ryazanov, Zh. Eksp. Teor. Fiz.
50, 117 (1966) [Sov. Phys.—JETP 23, 79 (1966)].

dure has been to use the Boltzmann transport equation
or a geometrical-optics approach for high energies,
perturbation techniques for low energies, and a self-
consistent field method for energies of neither extreme.
Some of the more recent work in Russia makes use of
the kinetic equation of Migdal.*4

The approach we propose starts from a variation
principle. Assuming high energies and neglecting
exchange terms, we proceed until results are obtained
which agree closely with those of Lax and Watson.

2. STATEMENT OF THE PROBLEM

We expect the Hamiltonian for a particle incident on
a group of N scatterers to be

H = ||| & £*R PR v (1) d (R)SHR’
M P OF RIS R)
x [(p¥2mN?) + (P*2MN) + {G(R — R')/2}

+ {V(r — R)/N}I$(RI$R)p(r), (1)

where y, p, m, and r refer to the incident particle, and
¢, P, M, and R refer to the scatterers. G(R — R') is
the interaction between scatterers, and V(r — R) is the
interaction between the incident particle and the

4 A. B. Migdal and N. M. Polievktov-Nikoladze, Dokl. Akad.
Nauk SSSR 96, 49 (1954).
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target. We take
v =2 bpo),

¢ = % ak¢k(R)’

where «f and g, are the creation and annihilation
operators for the scatters, assumed to be fermions,
and b and b, are for the incident particle, which may
be a fermion or a boson. We have taken

@
€)

fw“"y) Fr=1, f¢+¢ &R = N. @
If we assume the variation
S(H — E)p =0, ©)

where ¢ is a vector spanning the Hilbert space of
both the incident particle and target, we obtain six
equations, one from the variation of each functional.
Each equation, however, may be reduced to one of
the following two equations:

[(p2/2m> +HL+3 a::'akvkrk] vé = Eyd, (6)
{H,, + (NP*2M) + f FR$RIGR — RISR)

N T bibSialdd = 46, ()
where

Hy = f PRERYPY2M)P(R)

+ f IR &R $H(R)$H(R))

x ({(GR — RY}DSRIHR),  (8)
H, = f ey (O 2m) (), ©
Viw = f FRER®V(E — R®R),  (10)
Vew = f PrytOV(E — Ry, ). an

The coupled equations (6) and (7) form the basis
of this approach to multiple scattering. If the initial
wavefunction of the scatterers is known, H; and
Vgx may be calculated (and hence y,) from the
solution of (6). With this value of y, one calculates
H, and V., and hence ¢, from the solution of (7).
This procedure is continued until self-consistent
solutions are obtained.

Letting
(12)

= +
v=72ataVey
K’k

A. D. LEVINE AND C. F. HAYES

and
H, = (p*]2m) + H_,

from Eq. (6) we have
Hyod = Eyyd,

where the total energy is equal to the sum of the
initial energy of the particle E, and the initial energy
of the target E:

(13)

E = EL + E,, . (14)
We define & from
(R*k?|2m) = E,, (15)
and since, in general, we know
Hyd = Erd, (16)
we further define g from
Hp = {E — (Fq*[2m)}p. (17)

Note that k and ¢ are equal when the target and scat-

tered particle are infinitely removed from each other.

We choose the same direction for k and q.
Consequently, we have the integral equation

v = pon)b + f Pq(q" — g7 £ i pog(®)

x f Yt ) 2m) ). (18)

Adding and subtracting Hy to the denominator,
we represent Eq. (18) by

P PO = 9@ + (E — H, + i) w@yp' P[0
(19)

3. THE TRANSITION MATRIX AND INDEX
OF REFRACTION

The transition matrix is

Ty = (byo; vd). (20)
We choose diagonal elements
Ty = Zk: AT (21)
where
ik = (DYoo xaxVix¥iP)- (22)

We denote 1, as the solution of (6) when only one
energy level of scatterers are present:

[(p*/2m) + Hy + agaxVexlyxd = Eyd. (23)
We now define a transition matrix
tuk = (Pyox; TxaxVix¥ixP)- (24)

Using the technique of Watson,” it is easy to show
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that
Tk = 2 b, + 2
K Ki#K

+ 2

K #Ky -+ #K,,

-1 .
bk, ® ek,
2

o, ® hak, T % ks (25)

where

o= E ~ Hy + ie. (26)

Therefore, we see T is indeed the transition matrix for
multiple scattering. The first sum in Eq. (25) is obvi-
ously scattering from each level by itself. The second
term depicts the scattering-off of one level followed
by a second scattering from another level. The next
term depicts triple scattering. This continues until all
possible combinations are accounted for. Since
K, # K, # K;- -+, we see no level can scatter the
particle again without being scattered in the mean-
time by arother level. It was for this reason we
stipulated in the beginning that the scatterers be
fermions and, hence, that there only be one scatterer
per energy level.
The Moller operator may be written:

Q=1+a"3 1 Ky, 7
K,
QK) =1+ o 2 1y, QUKs), (28)
Ko#K;

where Q(K,) is the Maller operator for a group of
scatterers with the K, level removed. Therefore we
define C; by

Q(K,) = C,Q (29)

and note that the more scatterers there are, the closer
C, approaches one. If weimpose the impulse approxi-
mation

(30)

tuk = Colyu s
Eq. (28) becomes

Q=1+ «IC,C,T, Q. (31)

Clearly, C; and C, may be estimated through the
usual Neumann expansion. Further, if we renormalize
for a possible shift A,

A, =E—E, (32)
where
Hypop = E'%tb, (33)
(Hy + v)yd = Epd, (34)
we have
vl =2, Py, (35)
£ =2z;9¢ (36)
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As an estimate, we calculate that

Z,=\{1+ [E— (Hy+ A) +i] (v — 4)
+ [E— (Hy + A) + ie]™
X (0= Q)E - (Hy+ 8) + iel™ + - - Iyl

(37
where

A= kZ {vox) D (Yol (38)

A similar expression holds for Z,. Thus, Eq. (32)
becomes

ZHQF = 1 4+ [E— H + ie]'C,C,Z,Z, TEDE, (39)

where

p& = QRy
and

TE = pRQR,

From Eq. (39) Schrodinger’s equation is
[(p*2m) + Hy, — E + C,C,Z2Z, TR)ypRdp = 0.
(40)

(41

Since
q* = k* + 2m[R*)(E;, — Hyp),

we have the index of refraction from

k' = k* + @m|BB)EL — Hy) — 2mC,C,2 Pz, TR,

(42)
Comparing this result with Lax’s,

k't = k? — @mCIHHT,,, (43)

we find his C is analogous to our C;; of course, since
he does not consider the effect of the scattered
particle on the target, he does not have the term
(2m[h*)(E, — Hyp). Comparing with Watson, we see
that he has assumed the equivalent of our “C, and
C; equal to one” for high energies.

CONCLUSION

Starting with a system of N identical fermions
acting as scatterers, we have examined a variational
approach to multiple scattering. Neglecting spin
effects because of an assumed high energy of the
incident particle, two coupled equations were found
which give a transition matrix that describes multiple
scattering. The resulting index-of-refraction equation
parallels those of Lax and Watson. We assume that
the theory may be applied to high-energy scattering of
any system of fermions where the initial wavefunction
of the scatterers is known [as was discussed in con-
nection with Eqs. (6) and (7)]. Clearly the next step
in the extension of this approach is to incorporate
spin and exchange effects.
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It is shown that, if the superconvergence relations appertaining to a two-particle scattering process
are saturated by an infinite tower of resonances of mass m,, where J is the spin, then m, must increase
less quickly than J in all cases. With this observation, it is shown that the complex of all the super-
convergence relations for all the processes a(J;) + a(Jy) — a(Js) + a(J,), where a(J} is the spin-J member
of the same tower of particles, possesses an infinity of solutions for the coupling constants. It is concluded
that the superconvergence relations are incomplete, and need to be supplemented by some new physical
principle, if they are to be of any practical use. A possible exception to this rule is when all but a finite
number of residues are constrained to be positive, with no negative coefficient from the isospin crossing
matrices. In this case, a given solution may be unique if 7, increases not more quickly than J%.

1. INTRODUCTION

The use of superconvergent sum rules for two-
particle scattering amplitudes has been attended by a
certain number of practical successes.! The super-
convergence relations are generally evaluated by
inserting only the resonance contributions, and these
often in the “d function approximation.” The advan-
tage is that simple relations between coupling constants
can be obtained and these sometimes agree with
experiment.? However, there are cases where dis-
agreement has been found® and the reason for this
may be sought at different levels. The simplest possi-
bility is that an insufficient number of states has been
added to the sum rule to “saturate” it; the hope may
be entertained that the disagreement will disappear
if a few more states are included. Indeed, a given
superconvergence relation can always be saved by
adding a few high-mass states whose couplings to the
external particles are unknown experimentally.

On the other hand, for a given superconvergent
system, there exists in general an infinite number of
sum rules; and the addition of higher states should be
such as to be at least approximately consistent with
this infinity of equations. Some interest has been
evinced lately in such infinite systems with, corre-
spondingly, an infinite number of saturating states.*
Interest may center on the algebraic structure of any
solution,? if such exists, or may concentrate rather

* Present address: Rutherford High Energy Laboratory, Didcot,
Berks., England.

1 M. Gell-Mann, Phys. Rev. 125, 1067 (1962).

2 S, Fubini, G. Furlan, and C. Rossetti, Nuovo Cimento 40A,
1171 (1965).

3 M. B. Halpern, Phys. Rev. 160, 1441 (1967).

4 K. Bardakci, M. B. Halpern, and G. Segré, ‘‘Perturbative
Approach to Superconvergence Relations and Current Algebra,”
Berkeley Preprint, 1967; M. Gell-Mann, D. Horn, and J. Weyers,
““Representation of Current Algebra at Infinite Momentum:
Solution of the Case in which Isotopic Spin Factors Out,” Cali-
fornia Institute of Technology Preprint, 1967.

5 K. Bardakci and G. Segré, Phys. Rev. 159, 1263 (1967).

upon finding a particular solution.? In this latter case,
the question of uniqueness is important. It has
recently been shown® that, if the saturating states have
a mass spectrum that increases less rapidly than the
spin, then the superconvergence relations. for spinless
external particles or for pseudoscalar-vector scattering
yield equations between the couplings that have an
infinite number of solutions. This suggests that the
superconvergence relations, at least in the one-
particle J-function approximation, may be empty,
since the class of solutions is very wide.

The hope remained that, when all the superconver-
gence relations corresponding to all possible external
particles are taken into account, there may be a
unique solution, or at least a small number of solu-
tions. The purpose of this paper is to investigate this
complete system of superconvergence relations; the
result is to dash the hope: the infinite set of super-
convergence relations still has an infinity of solutions
for the couplings in most cases.

In greater detail, the model examimed in this
paper is that of an infinite tower of particles char-
acterized by a mass spectrum m; that increases
indefinitely with the spin J. Let ay, a,, a3, a, be the
spin 5y, S;, 83, S, members of this tower. Then the
superconvergence relations for the scattering a; +
ay — a; + a, are considered in the approximation of
saturation by the same infinite tower of resonances.
All the relations, corresponding to all possible
external particles @, a,, a3, a,, are considered
together as one complicated set of simultaneous
quadratic equations for the couplings.

In Sec. 2, the detailed structure of the super-
convergence relations for general external spins is
given. These relations are saturated by the tower of

8 D. Atkinson and M. B. Halpern, ‘‘Construction of Solutions to
Superconvergence Relations,” Berkeley Preprint, 1967.
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resonances—and it is shown that this leads to a set
of equations for the coupling constants, each equation
involving an infinite series which must sum to zero
identically for a continuum of values of the momentum
transfer. However, it is a physical requirement that
the superconvergence relation should not hold for
arbitrarily large (spacelike) momentum transfers, and
this is interpreted as meaning that the infinite series
over coupling constants must diverge for sufficiently
large momentum transfers. However, this can only
happen if the mass spectrum m ; increases less quickly
than J, as is shown in Appendix E. Under these
conditions, it is shown in Sec. 3 that for given
external spins, an infinite number of solutions can be
found for the couplings, in general. The proof relies
on a theorem of Polya, which is given in Appendix A.
In Sec. 4, it is shown that, because of the extreme
nonuniqueness of the solution for given external
spins, it is possible to order the infinite set of sets of
equations, corresponding to all the different external
spins possible, in such a way that one can find solu-
tions of each set of equations which are consistent
with all the other set of equations.

The proof up to this point takes no account of
any constraint of positivity which may occur, since, in
someequations, some couplings occur as their squares,
which must be positive or zero. However, there are
cases where these squares of coupling constants are
multiplied by positive isospin crossing-matrix elements,
and where they always occur in conjunction with
other squares of coupling constants, which are
multiplied by negative crossing-matrix elements, in
such a way that the whole term may be positive or
negative. To these cases the proof applies without
modification. In Sec. 3, it is shown that if there are
sign restrictions on some terms, but in such a way
that there should be an infinite number of positive
and an infinite number of negative terms, then if
there exists one solution of the system, there exists an
infinite number of solutions. In Sec. 6, it is shown that
this weakened theorem can even be extended to the
case where every term is required to be positive, but
ir} this case only if m; increases more quickly than
Jz,

If the members of the tower are imagined to lie on a
Regge trajectory «fr), then the results may be re-
phrased: In order that the superconvergence relation
should not hold for arbitrary momentum transfer,
«(f) must increase more rapidly than tr If a(r)
increases more rapidly than ¢# but less rapidly than ¢,
then it has been shown in all cases that any solution of
the complex of superconvergence relations cannot be
unique. Except in the case of all positive terms, this
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restriction to a trajectory that increases less quickly
than linearly need not be made.

It would appear, then, that attempts at finding
global solutions to superconvergence relations must
be abandoned, unless these can be supplemented by
new physical requirements that pick out one from the
infinity of solutions. However, in this latter case, it
would seem that the brunt of the restriction must fall
on these new requirements, since the superconvergence
relations are permissive to the point of vacuity. Indeed,
one can adopt the view that, in passing from a
crossing-symmetric dispersion relation to a super-
convergence relation, one has completely lost contact
with the physical solution.

A possible exception to these negative considera-
tions is provided if one takes seriously the failure of
the proof in the case that «(t) increases linearly (or
faster) in £, and all the residues in some superconver-
gence relation are constrained to be positive. In this
domain the possibility of a unique solution remains
open. Indeed, the fact that a linear Regge trajectory
is picked out as the slowest rate of increase that is
compatible with the possibility of a unique solution is,
perhaps, of some interest.

2. SUPERCONVERGENCE RELATION FOR
GENERAL SPINS

It is the purpose of this section to set out the
superconvergence relations that exist for a general
scattering a, + a, — a3 + a4, where the particle a,
has spin s,, p =1, 2, 3, 4.7 For definiteness, the
particles may be supposed to lic on some Regge
trajectory, although this is not necessary to the proof.
It will be convenient to consider the ensemble of all
possible two-particles to two-particle scattering within
this Regge family. Let

S, 15 g, Ags Ay, ) = [f(s, 85 2) @D
be a helicity amplitude for the reaction
a+ay—a; + ay, (2.2

where s is the invariant square of the energy, ¢ is the
invariant square of the momentum transfer, and
Ay, p=1,2,3, 4 are the helicities. For a fixed value
of s, the amplitude (2.1) has, in general, certain zeros
and singularities, in the complex ¢ plane, of a purely
kinematical nature, which may be removed by dividing
by the factor

[cos (6,141 - [sin (6,/2)]%*,  (2.3)

?T.L. Trueman and G.C.Wick, Ann Phys. (N.Y.) 26, 322 (1964);
T. L. Trueman, Phys. Rev. Letters 17, 1198 (1966); L. L. Wang,
Phys. Rev. 142, 1187 (1966).



1850

where

li=21_12 and lf=ﬂ.3—}.4,

and where

cos O, =

2st + s* — sM? + (m} — m)(mi — md)

D. ATKINSON

(2.4)

Here m,, is the mass of particlea,,p =1, 2, 3, 4, and

ME:=mi4mi+ mi+ ms. 2.6)

In the unphysical region of reaction (2.2) s ~ 0,
t — oo, one expects the asymptotic behavior

f(s, 15 0) ~ 9, @7

where a(s) is identified as the location of the right-most
singularity in the angular momentum plane associated
with the partial-wave helicity amplitude. Now the
kinematical factor (2.3) has the asymptotic behavior
(1 —> )

flatandie o gla=al /e (2.8)
This may be written #°, where
o = max [|4; — 4|, |43 — A4 (2.9

Collecting these results, one sees that the following
amplitude is free from kinematical singularities:

[cos (BT 1*+41 - [sin (/171441 f(s,1;2), (2.10)

and that it has the asymptotic behavior %' for fixed
s and ¢ — oo. Particular interest attaches to the cases
where

o> a(s)+ 1 2.11)

for the same range of s values including s = 0. By
the Froissart theorem, one has «(0) < 1, and in some
cases, where no particle with the quantum numbers of
the channel (2.2) exists, it may be the case that «(0)
is much less than unity. However, in such a case the
leading singularity may not be a pole, but a many-
particle angular-momentum branch point. Neverthe-
less, in a reaction involving high spins, either in the
initial or in the final states (or both), it will generally
be possible to find some helicity amplitudes for which
the maximum helicity flip o is so large that (2.11) is
satisfied. For such a choice of helicitics, one may
apply the Cauchy theorem to the amplitude (2.10)
in the complex ¢ plane at fixed s:

fdt[COS (0,/2)) 744 - [sin (B/2)] 7441 - £ (s, 85 A),
’ (2.12)

where the contour I' is shown in Fig. 1. The right-hand
cut comes from the 7 channel,

a, + a,—a; + a,, (2.13)

{Is = (my 4+ m)®ls — (my — mp)®lls — (ms + m*lls — (my — mY?PF’

(2.5)

and the branch point ¢, is given by
t, = [lowest two-particle threshold in ¢ channel].

(2.14)
The left-hand cut comes from the u channel,

as + a,—ad, + a,,

and the branch point u, is

(2.15)

uy = M? — 5 — [lowest two-particle threshold in

(2.16)

In some cases it is possible that u, is larger than ¢,, so
that the cuts overlap, but this alters none of the
arguments. In writing Eq. (2.12), it was assumed that
there were no bound states. If these do contribute to a
particular amplitude, the right-hand side of Eq. (2.12)
will be the sum of the residues of all these bound-state
poles. The subsequent proof is scarcely altered, and
all the results apply.

The condition (2.11) implies that the integrand of
(2.12) decreases more rapidly than ¢+ for some
e > 0, so that the contour I' may be deformed to
infinity, and the only remaining contributions are the
integrals of absorptive parts over the ¢ and u cuts. It
will be convenient to concentrate attention first upon
the contribution from the ¢ cut, viz.,

f “dt Im {[cos (8,/2)] 1+
’ X [sin (02T %1 - £(s, t; D} (2.17)

With s ~ 0, the integrand is in an unphysical region
for reaction (2.2), but a physical (or mainly physical)
region for reaction (2.13). Thus it is necessary to use
the helicity crossing matrices to express the s-channel
amplitudes in terms of the f-channel amplitudes. Let

F(s, 15 s pia; pas o) = Fs, ;) (2.18)
be a helicity amplitude for the reaction (2.13). Here ¢
is the invariant energy square, s is the square of the

le

L1

D
b g LN S

u channel].

Fi1G. 1. Contour of
integration for super-
convergence relation.
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momentum transfer, and u,, p =1, 2, 3, 4, are the
helicities. The connection between (2.18) and (2.1) is

[, 50 = B3 K(s, t; A )F(s, t; ). (2.19)
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all possible ¢-channel helicities, u,, fs, t3, e, and K
is the helicity crossing matrix, viz.,

4
K(Sx t; A; ,u) = l—_li- d;:,ﬂ.p(x;))’ (2'20)
o
Here g is the isospin crossing matrix, the sum is over  where
(=D + my = M)t + my — my) + 2mi(mi — mj — mj + m))
Cos xp = e S — . (2.21)
{[S - (mxz + mp) ][S - (mp - mp) ][t - (mp + mp) ][t - (ma) - mm) ]}
with where
m [0 1 0 0][m,] o = max (|4, |ul),
Myl |1 0 0 Oflm, 7 = min (|2}, [ul),
g 0 0 0 1}im, and P%*(x) is the Jacobi polynomial defined by
Al [0 0 1 0]|m, 7
=1 r ar - P;ﬂ(x)=2—Jz(J+“)(-’+ﬁ)
m, 0 01 0j|lm m=0\ m J—m
my _19 0 0 1j|m X (x — D7 ™(x + )™ (2.23)
r:a L0 0 0f)ms The ¢ channel amplitude F(s, ¢; #) can be expanded
| 74 ] [0 1 0 Of]my] in partial waves:

and where d; , is the standard representation of the
rotation group, which can be written

_ 3
) = [ (2 =2 s i
x [sin (y/2)]*~*! - PUo#IAtHlcos ), (2.22)

F(s, t; p) = ;(21 + Ddy]  (0JF 5(t; ), (2.24)
where

B =Yg — Uygs fy = U3 — Wy, (2.25)

where F,;(¢; u) is a partial-wave amplitude, and where

25t + & — tM? + (m} — mY)(m3: — m?)

cos 0, =

For the sake of simplicity, it will be supposed that
there is just one resonance in each partial-wave
amplitude F;(¢; u), namely, the spin-J member of the
same Regge family to which the external particles
belong. (For simplicity, no account will be taken of
the fact that a given Regge family only contributes to
alternate partial waves. This point can be allowed for
very easily.) However, it is easy to extend the treatment
to the case of more than one resonance in each wave.
Moreover, any particular resonance may be suppressed
by letting its coupling to the external particles tend to
zero. The contribution of the graph of Fig. 2 to the
partial-wave helicity amplitude may be written

Y(sz, 5o, D)8y, 83, NC(t; s Di(m% — ), (2.27)

where y(a, b, c) is the coupling at the vertex formed
by the particles of spin a, b, ¢ and where C(¢; u; J)
is a kinematical factor that depends on the helicities,
1 Ha, g, g . Lastly, m is the mass of the resonance,
i.e., the mass of the spin-J particle. This mass. is,

{It = (my + mllt — (my — mP)[t — (my + m*][t — (my — mY*1}F’

(2.26)

strictly speaking, complex, but the “d-function
approximation” consists in writing the imaginary
part of (2.27) as

(g5 Sg» JIY(s1, 83, JIC(u; YOt — m?), (2.28)

where m is now the real mass, and where C(u;J) =
C(m%; u;J). This is the only contribution to the
superconvergence relation that is retained.

In general, of course, there can be more than one
coupling constant at a vertex (a, b, c), say, and these

Y as
(8, 85,9}
J
F1G. 2. Exchange of spin-J particle in
t channel.
Y(8;.8,,7J)
a, 9%

!
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g, agy
\ Y(8y, 84/ J)

FiG. 3. Exchange of spin-J particle in
u channel.

couplings will contribute with different kinematical
factors to the different helicity amplitudes. However,
it is not the case that there are as many couplings as
there are helicity states of the external particles.
Indeed, in some cases there will be no possible
couplings, if only zeroth and first derivatives of the
field operators are allowed in the Lagrangian. In this
paper, it is proposed to show that there exist an
infinite number of solutions to the superconvergence
relations for the nonzero couplings. For thig purpose
it will be sufficient to select a vertex (a, b, ¢) for which
at least one coupling is possible, and to set all the
coupling constants except one to zero. It will be shown
that an infinite number of solutions exists even with
this severe constraint. It is to be expected that there
are even more solutions when this artificial require-
ment is removed.

The ¢ contribution to the superconvergence relation,
Eq. (2.17), reads

B3 QI + 1) 3 [cos (6,/2)] % [sin (8/2)] 1!
J I

X K(s, t; A ) - df, (0,)y(sy, 54, )
X V(SI > 83, J)C(lu; J)It:m_;z . (229)
There is a similar contribution from the u channel

(i.e., the left-hand cut in the complex ¢ plane, at fixed
$), viz.,

7 2 (2J + 1) 3 [cos (8,/)T 4+ [sin (6,/2)] 14
J v

x K(s, us 2; v)dy, , (0,)y(ss, 83, J)
X V(SI H] S4 E J)C(’V, J),u=1nJ2 > (230)

where v;, v,, v3, ¥, are the helicities in the » channel
and 8, is the same function of sand u = M2 — 5 — ¢
as 0, is of s and ¢ [Eq. (2.26)]. Here v is the isospin
crossing matrix from the s to the u channel.

For those combinations of 4,, A5, 43, 4, for which
the superconvergence condition (2.11) holds, the sum
of the two contributions (2.29) and (2.30) is zero.
Notice first that the relation may only hold for some
of the possible isospin states in the s channel, since
«(s) certainly depends on the isospin. Secondly, some

D. ATKINSON

of the relations may be trivial, due to cancellation of
the ¢t and u contributions. This occurs, for instance,
if all four external particles are the same scalar,
isoscalar boson, and in many other cases also. In
other cases, the # and u channels are identical, but add
constructively, as in the s-channel isospin-zero super-
convergence relation for the elastic scattering of
identical scalar, isospinor bosons.

These detailed considerations are not of immediate
concern. It is the present purpose to consider all the
nontrivial superconvergence relations for given exter-
nal particles a,, a,, a5, a,. In general, there will be a
set of relations between the coupling constants

J’(Sz, S4>J)’ 7’(51,6'3,-]), 7(sz,s3sJ)’ 7(51,54,-7),

for all physical J, corresponding to the various
superconvergent combinations of s-channel helicities
and isospin. Some of these couplings may be the same,
if some of the external particles are identical; and
some couplings will certainly be the same, if the
internal particles belong to the same family as the
external particles, for example,

v (835 54, J) = p(J, 54, 52),

and these equalities must be taken into account.

The superconvergence relation, for a given s-
channel isospin I and given helicities 4 may be
written

{5 Asts; 25 g + 3 Bosi 1 v)h}} =0, (231)
wher‘;
Ay(s; A; p) = [cos 6,/2] 14+ [sin /2]~ 1421

x K(s, t; 23 )C(ts DT, 6)limpp> (232)
B(s; A; ) = [cos 0,/2] 14+ [sin §,/2] 14!

x K(s, u; A; v)C(v, J)d;i,vf(Ou)lmez, (2.33)
87 = 2 Brr@ + Dy a0, )y (51,50, ), (2.34)

hy =3y 4+ DpT(sy, 53, Dy (1, 84, J). (2.35)
<

The superconvergence relation is assumed to hold in
some neighborhood of s = 0, so that Eq. (2.31) is
equivalent to an infinite number of equations for the
quantities g% and A .

It is convenient to set to zero separately the -
channel and u-channel contributions, when these are
distinct. Thus

>SS Axss ) =0,
J I

S 3 By(s; A; %) =0.
J v

(2.36)

(2.37)
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This is not necessary, but it will simplify the ensuing
algebra. The fact that it is possible to find solutions
of Egs. (2.36) and (2.37) indicates how very far the
equation (2.31) is from possessing a unique solution.
It will in fact only be necessary to consider Eq. (2.36)
for all possible external spins sy, s3, S5, 53, since this
will then entail all Egs. (2.37).

It is necessary now to convert Eq. (2.36), which is
valid for a continuum of values of s, into a discrete
infinity of equations. This can be done by expanding
>, As(s; 2; ) about a point 5 = 5o, at which it is
analytic, in a Taylor series, say

3 40053 23 ) = 3 Anss = 50 @239

Thus Eq. (2.36) may be written

o

(s — 5" 2 grAn,s(A) = 0.

n=0 J

(2.39)

Since this series converges uniformly for |s — s
small enough, it follows that each coefficient of
(s — s,) must vanish independently, i.e.,

; gIJAn,J(}“) = 0’

forn=0,1,2,---,and all permissible 7, .

It is the purpose of this paper to study the solubility
of Eq. (2.40). This depends upon the asymptotic
behavior of 4,, ;(2) asJ — oo, as will be shown in the
next section, and so it is of interest to calculate this
explicitly. If it is assumed that the mass spectrum
increases indefinitely, i.e.,

(2.40)

(2.41)

2
m% 5 o,
J=o

then, from Eq. (2.32), this limit may be calculated
explicitly to be

A, (4) g E(DU/m "F (),  (2.42)

where E and F are two functions that are given in
Appendix C. The important point is that E, (1) does
not depend on J and F;(1) does not depend on n.
Hence

Jlim [4,,5(D] A, 5(D)]
= [E (M/E, (D] lim [mJ/JJZ("°_"’. (2.43)
J— o
If ny > n, this limit is zero only if

lim [m,/J] = 0.

J=o

(2.44)

This is a key equation, the derivation of which was the
goal of this rather long section.
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3. SOLUTION FOR GIVEN EXTERNAL SPINS

In this section it will be shown how Eq. (2.40)
can be solved for the g%, for any given mass spectrum
my that satisfies (2.41) and (2.44). It will then be
shown that, once the g’s are known, the coupling
constants y(a, b, ¢) can be obtained from Eq. (2.34).
All this applies to the superconvergence relations
appropriate to given external spins sy, S, §3, S;.
In Sec. 4, it is shown that simultaneous solutions for
all external spins can be constructed.

For a given s-channel isospin I and helicity state
1, Eq. (2.40) reads

o

San,NgJ)=0, n=0,1,2,---, (3.1)
where 7=
a(n,J) = 4, ;%) (3.2)
and
g()) = g5, (3.3)

and where, according to Eqgs. (2.43) and (2.44),
lim [a(n, Nfa(n,, )] =0, all n<ny,. (3.4
J— o

In Appendix A, it is shown that, under these condi-
tions supplemented by the observation that a(0, J) # 0
for an infinite number of values of J, an infinite
number of linearly independent, absolutely convergent
solutions g(J) exists. The proof was originally invented
by Pélya® thirty years ago.

It is the case, then, that one can find a solution for
given s channel helicities. The question now is whether
solutions g(J) can be found which simultaneously
satisfy Eq. (2.40) for all permissible values of the
helicities A. The fact that this is possible hinges upon
the observation that, for given spins s, S, S5, S,
there is only a finite number of possible helicity
combinations 4. Suppose that these combinations are
ordered in some way, and set

a(n,J;q) = A, ;(4), (3.5)

where g takes on the values g =1, 2,---, Q, say,
thus exhausting all the permissible ways of combining
the s channel helicities. For any value of ¢, the corre-
sponding condition (3.4) holds. This means that the
equations

0

> a(n, J; ¢)g(J) =0,
J=0 and g¢q

for n=0,1,2,---,

1,2, ,Q’, (3‘6)

can be reordered as

S A, DgJ)=0, ' =0,1,2,-+, (3.7
J=0

8 G. Pdlya, Commentarii Math. Helvetici 11, 234 (1938-9).
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where A(n’, J) is equal to one of the a(n, J, ), in such
a way that each of the distinct equations (3.6) occurs
once, and only once, in (3.7), and such that

Jlim [A(n, )] A(ny, J)} = 0, (3.8)
for all n < ny. It is, strictly speaking, not clear that
one can preserve the Pélya condition (3.8) when
interleaving the different equations (3.6), since one
might find two of Eqs. (3.6) with the same asymptotic
behavior, say

a(m, J; q)fa(ny, J; g2) ——> const  (3.9)
-

or perhaps this ratio might oscillate, with no definite
limit. This point is taken up in Appendix D, where it is
shown that, even if this happens, one can find an
equivalent set of equations (3.7) for which this
“coincidental” asymptotic behavior does not obtain.
It follows then that one can construct an infinite set
of absolutely convergent solutions g(J) to Eq. (3.7),
that is to say, to the complete set (3.6).

It remains to be shown that, given a set of solutions
g% , according to Eq. (2.34), viz., one can always solve
for the individual 3’s:

gﬂ =2/ +1) Z ﬂl,l’yl,(sz 5545 J)VI'(S1 »53,J). (3.10)
<
However, this is very straightforward, for the crossing
matrix satisfies
pr=1
so that (3.10) can be inverted to give
(27 + 1)71’(32 s Sg ,'J)VI’(sl »S3,J) = ; /31',18.17 . (3.12)

(3.11)

It may be that not all values of I yield superconver-
gence relations (this depends on the detailed dynamical
assumptions), but in that case there are more y’s than
g’s, so that Eq. (3.10) can again be solved for the
y’s, this time nonuniquely.

4. SOLUTION COMBINING ALL
EXTERNAL SPINS

It has been shown that, for given external spins
Sy, S5, 83, S4, solutions can be found to the super-
convergence conditions (2.40), where g1 is given by
(2.34). These equations may be written

> ; A, s 15 Wy (sg, 50, Ny (51,85, J) =0, (4.1)
< T

where

Ay gL I3 2) = (20 + DB pA, ,(3). (42)

The problem now is to show that solutions of the
whole set of Egs. (4.1), for all possible external spins,
can be found which are consistent with one another.
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Suppose first that the complete set of sets of equa-
tions be ordered as follows:

(a)

§1=S8,=s53=5,=0, so that (4.1) involves only

¥’ (0, 0, NI
(b) ,
s,=1/52=0=5, involving  »(1,0, J)»*(0,0, J),
$5=0{5,=1, 5,=0 involving [y7(1,0,J)]%;
©
5;=0=s, involving (2,0, 1)»7(0,0, J),
:lig se=1, 5,=0 involving »7(2,0,J)y7(1,0,J),
.=
s;=2, 5,2=0 involving [»7'(2,0,J)]%;
(d) )
s;=0=s, involving »¥(1,1,J)»¥(0,0,J),
s,=1] $:=1, 5,=0 involving »%(1,1,7)y7(1,0,J),
ss=1}s5,=2, 5,=0 involving »7(1,1,7)y7(2,0,J),
s;=1, s,=1 involving [y¥'(1,1,7)}%;
and so on.

By this method, all sets of equations are enumerated.
The difficulty is that, for example, once y7(1,0,J)
has been determined by the first equation (b) above,
it must then be shown to be consistent with the last
equation (b), the second equation (c), and so on, and
similarly for all the other couplings, each of which
occurs an infinite number of times. Moreover, even in
determining p7'(1,0,J) from (b), not every term is
free, since y7'(1,0,0) must agree with (0,0, 1),
determined at stage (a), in the solution for $7'(0, 0, J).

Nevertheless, it can be shown that these strin-
gent cross-consistency conditions can be more than
matched by the extreme indeterminacy of any one
equation, in such a way that in fact there exist an in-
finity of solutions for the entire system. To show this,
one should recall that a given set of equations can,
in general, be solved even if an infinite set of the cou-
plings are set identically equal to zero, so long as an
infinite set are left free.

Let S, represent the infinite set of integers

S =1g,29,2%,2," "}, (4.3)

where g is a prime number. Evidently there exists an
infinite set of disjoint sets S, corresponding to all the
prime numbers ¢. Suppose now that a particular
solution be constructed for ¥7'(0, 0, J), from stage (2)
above, in which every 97'(0, 0, J) is set equal to zero,
except for those values of J belonging to S;. This is
possible because S, is an infinite set. Next, $I'(1,0,J)
is determined from the first equation (b), where
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yI'(O, 0, J) is already known, and thus is part of the
coefficient. Moreover, for a given nonzero »1'(0, 0, J),
the Polya condition for the system reads

lim [An,J(I9 I,, )')yll(09 0’ J)]/
J— o0
[A o (L, I'; A7 (0,0, 1)) = 0 (4.4)
for n < n,y, and the coupling »7(0, 0, J) cancels out,
giving
lim [A, ;(I, I'; D)Any (I, 1'; D] = 0O,

Jo o

(4.5)

which is implied by Eq. (2.44), as has already been
indicated. Hence, an absolutely convergent solution
of (b) can be obtained, for those »7'(1,0,J) which
multiply nonzero 70, 0, J). All the other »7'(1,0,J)
are left arbitrary, and this is the crucial point, for now
the last equation (b) can be solved for y7'(1, 0, J) by
first injecting the known values for J belonging to .S;.
This gives a known inhomogeneous term in the
equations. It is convenient also to set all y7'(1,0,J)
to zero, except when J belongs to S; and S;. Then the
last equation (b) can be solved for the unknown
yI'(1,0,J), for J in S;. The presence of the inhomo-
geneous term does not alter Pdlya’s proof at all; the
presentation in Appendix A is given for a completely
arbitrary inhomogeneous term.

The next steps should be clear. The first equation
(c) serves to determine y7'(2, 0, J) for J belonging to
S;, and the second for J belonging to S;. The last
equation is satisfied by setting (2, 0,J) equal to
zero, except for J belonging to 83, S5, S;7, and thus
determining the coupling for J in S;. Then 7' (1, 1, J)
is determined for Jin S3, S5, .S, , successively, from the
first three equations (d), and then for J in S, from the
last equation, with y7'(1, 1, J) = 0 for all other values
of J. This process can be continued indefinitely.

Three comments may be added. It is the case that,
when one solves a given equation for a coupling con-
stant y2'(s;, 53, J), for J belonging to a given set S,,,
not all these couplings are free, since y7 (s, 55, J) =
v (s1, J, s3), for example, and, for small enough J,
the latter quantity may already have been determined
at an earlier stage. However, it is easy to see that, at
each stage, there is only a finite number of such terms.
These then can be added to the inhomogeneous term,
leaving an infinite number of couplings with which to
solve the equation.

The second point concerns the convergence of the
infinite series constituting the inhomogeneous terms
that are present at the last steps of each of the stages
(b), (), (d),---. In stage (c), for instance, it is
necessary to find a solution »7(2, 0, J) at the first step
that converges so quickly that the corresponding
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inhomogeneous term at the second and third steps
also converge. However, since series solutions can be
constructed that converge arbitrarily quickly, there is
no difficulty in ensuring this. No further convergence
requirements are made on »1'(2, 0, J) after stage (c),
since, at later stages, this coupling is always multiplied
by some new coupling, which can be constructed to
satisfy the later convergence requirements.

The third point is that the purist might object that
an enumeration of the infinite set of infinite sets of
equations has not been given, since it scems that one
must first solve an infinite set of equations at stage (a)
before starting stage (b), and so on. However, this
objection can be overcome by solving first a finite
number of the equations at stage (a), a la Pélya, then
a finite number at stage (b), using only those values of
yl'(O, 0,J) already determined, then some more
equations (a), some more (b), and a first set (c), and so.
This technique involves a slight generalization of the
Polya technique, since the inhomogeneous terms at the
later steps of stages (b), (c), and (d) are never com-
pletely known. This paper will not be burdened by the
details of this generalization, which is straightforward
and is left to the reader.

5. SIGN RESTRICTIONS ON RESIDUES

Up to this point, no account has been taken of any
possible requirement of positivity of squares of
couplings. For instance, if 5; = 5,, and 53 = 54, S0
that the ¢ channel scattering is elastic, then Eq. (2.34)
becomes

gy =(J + 1);51,1'[}/"(51, s, HF. (5.1)

If the particles are isoscalars, f,, = 1, and there is
the strong requirement that all the g% must be positive
(or zero). This would generally not be observed by the
solutions constructed by the Polya method. On the
other hand, if the particles were isospinors and a
superconvergence relation existed only for the I =0
channel, then one would have

g‘.]I =(2J + 1){_%[}’0(51, S35 J)]2 + 3[¥'(s15 53, J)]2}
(5.2)

and there would be no sign restriction for the g%, so
that the analysis of the preceding sections would
apply directly. Similarly, if the particles were iso-
vectors, and the superconvergence relation arose for
the I = 2 channel, one would have

g.zl = (2‘] + 1){%[70(51 b Sa ’ ‘])]2 - ‘}[71(31 ) 53, J)]2

+ %[72(51 L] 53, J)]z}, (5'3)
and again there is no sign restriction.
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If, further, s; = 55 and the initial and final particles
in the ¢ channel are identical, then the Pauli principle
is operative. Thus, in the isospinor example, only odd
partial waves contribute to the state / = 0 and only
even waves to I = 1, if the particles are bosons (the
reverse obtaining for fermions). In this case one would
have

o _ [3Q2J + DIy'(s1, 8, ) for J even,

7 {—%(21 + DO sy, 51, N for J odd,

and here the constraint is that g% must be positive/
negative for J even/odd. Similarly, in the isovector
case (again for bosons), one has

2J + D{EDY G 50, DP

(5.4)

gl = + [Y%(sy» 51, )P} for J even,
—(©2J + DYy, 51, DY for J odd,
(5.5)

and so the same sign restrictions apply.

It can be shown in some of these cases that solutions
exist that satisfy the sign restrictions.® However,
what will be shown in this section is slightly weaker
than an existence theorem, but for practical purposes
it is equivalent. It will be shown that, if an infinite
number of the g% are constrained to be positive (or
zero), and an infinite number negative, as in the
examples (5.4) and (5.5) above, then, if one solution
exists, so do an infinite number of solutions. Thus there
is an infinite number of solutions or there are none
at all. The more difficult case that all the g7, are con-
strained to be positive; as in the isoscalar example,
will be taken up in the next section.

If one solution G% of the system

Jz_oAn,J(}')G.II =0

exists, that satisfies the positivity constraints, then it is
shown in Appendix B that an infinite number of
solutions exists. This proof depends on the assumption
that A4, ,(4) becomes positive-semidefinite for J
sufficiently large. In the present case, this is true, since
the analysis of Appendix C shows that 4, ;(2) has a
definite limiting behavior. Should this limit have the
wrong sign for a given n, the equation (5.6) for that »
can be multiplied throughout by —1. The proof of
Appendix B then applies. It proceeds by showing
first that an intermediate solution g7 exists, satisfying

S 4, (gl =0, .7)
J=o

and such that, for every J, either g7 has the required
sign or, if not, then |g%| < |GL|. Under these circum-
stances, it is easy to see that

Gf=G;+¢g;

(5.6)

(5.8
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is a new solution that satisfies the sign requirements.
There exists an infinite number of such solutions.

Next, it must be shown that the analysis of Sec. 4
carries through, so that if one solution exists when all
the different superconvergence relations are taken into
account, then one can find an infinite number of such
solutions. Let I'(a, b, c) be the given coupling constant,
where the isospin superscript /' has been dropped, and
consider the enumeration of equations given in Sec. 4.
Instead of finding a solution [y(0, 0, J)]? at stage (a)
in which every term is zero unless J is in class S, one
first sets [v(0, 0, )} = —[I'(0, 0, J))? for all J not in
Ss. This constitutes an inhomogeneous term in the
stage (a) equation, which can then be solved for the
remaining [y(0, 0, J)]?, i.e., for Jin S;, by the method
of Appendix B, such that, within S;, [y(0,0,J)]?
either is positive or it is less than the corresponding
[T°(0, 0, /)]2. Then

[1(0, 0, NP = [T'(0, 0, J))* + [¥(0, 0, /)P
is a new solution of the stage (a) equation; moreover,

I'"(,0,J) =0 for Jnotin S,.

(5.9)

The first equation of stage (b) is solved for the
product I'(1,0,/)I"(0,0,J), where 1'(0,0,J) is
known, thus determining IV(1,0,J) for J in Sj.
A solution y(1, 0, J) of stage (b), step 2, is obtained
by setting

[»(, 0, 1))
_ {[F'(I,O,J)P — [[(1,0,7)]2 forJin Ss,

5.10
—[['(1,0,1)]* forJ notin S,, S; (5.10)

as the inhomogeneous term, and solving for

yd,0,/)P,

J in S5, as in Appendix B, such that this quantity
either is positive or is smaller than the corresponding
[['(1, 0, J). Then the following solution satisfies the
positivity requirements. [Since the particles are not
identical in this case, possessing different spins, there
would be no Pauli principle, and so no sign restriction,
since [y(1,0,J)]* would always occur in isospin
combinations like Eqs. (5.2), (5.3). However, there are
cases in which the special construction of this section
would be necessary—for example, stage (d)]:
(ra,o,nNE =1ra,o0,NeE + [»(1,0,/)2 (5.11)
Note that this definition agrees with the solution of
stage (b), step 1, for J in S, and that I'(1,0,J) =0
for Jnot in Sy, S;. Hence stages (a) and (b) have been
completely satisfied, and one can then treat stage (c)
in a similar manner, and so on. This completes the
proof that if one solution of the complete system
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exists, then one can construct an infinite number of
solutions.

6. POSITIVE-DEFINITE RESIDUES

In this section the purpose is to study a system where
all the residues g& are constrained to be positive.
Examples are any of the diagonal terms for isoscalar
scattering, the / = 1 component of isospinor scattering,
the I = 0 component of isovector scattering. In any
given situation, not all of these cases might yield
superconvergence relations, but there are certainly
some high spin amplitudes that should do so.

Suppose, then, that g is to be positive or zero,
and is to satisfy

;An,J(l)gJ =0. (6.1)
It is easy to see that no nontrivial solution is possible
if all the 4, ;(4) are positive. However, when the
external particles have spin, a finite number of the
coefficients are negative.

A proof of nonuniqueness is often possible along
the lines of the previous section. Thus, if one solution
exists

; An’J(l)GJ = 0, (6.2)
one can attempt to find another g, such that |g;] <
|G 4|, and then

Gy=G;+¢g; (6.3)

is a new solution that satisfies the positivity require-
ment. The difference between this case and that of
Sec. 5 is that there is no guarantee that such a solution
gy can be found. The reason lies in a rather subtle
shortcoming of the Polya proof. Although solutions
g7 can be constructed that cause the series

Z IAn,J(l)gJI
J

to converge arbitrarily quickly, it is not the case that
g, considered as a function of J, can be made to
decrease arbitrarily quickly with J. In fact, there is a
limiting behavior for this function. If the given
solution G; tends to zero less quickly than this
“Pélya limit,” then an infinite number of solutions
may be constructed, as in the preceding section. If,
on the other hand, the given solution does not tend to
zero less quickly than this, then it may be unique.
At any rate, the Pélya construction cannot be used to
find new solutions.

What is shown in this section is that, if

lim [J¥m,] =0,

J—oo

(6.4)

6.5)

then, if one solution exists, so do an infinite number
of solutions. If one thinks of the states as lying on a
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Regge trajectory, then condition (6.5) is equivalent to
asserting that the solutions are nonunique if the
trajectory increases less rapidly than linearly in ¢.
If the trajectory increases more rapidly than this and a
solution exists, then it may be unique.

In Appendix E it is shown that, if the mass spectrum

has a power-law dependence
m% ~ J°,

Jo

(6.6)

then, in order that the superconvergence relation
should not hold for arbitrarily large s (which consti-
tutes a physical requirement), one has
a<?2, (6.7)
that is, the Regge trajectory «(f) must increase more
quickly than 3. (This fact was first pointed out by
Grodsky et al®) If condition (6.7) is satisfied, then a
solution G of (6.2) must satisfy
Gy ~ exp [—Kj'™%),

J o

(6.8)

where K is a positive constant. This is also shown in
Appendix E.

In Appendix F it is shown that the fastest rate of
decrease of a Pdlya solution G, when (6.7) is satisfied,
is

gs ~ exp [~BJH],

Jow

(6.9)

where B is a positive constant. Evidently (6.9) is a
faster rate than (6.8) whenever

a>1, (6.10)
i.e., whenever the Regge trajectory increases less

quickly than linearly. Under these circumstances, any
given solution cannot be unique.
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APPENDIX A: POLYA’S THEOREM

In this appendix, it will be shown that the system of
equations

>a(n, Ng(J) =b(n), n=0,1,2,---, (A1)
J=0
has an infinity of linearly independent solutions g(J)
if the coefficients a(n, J) satisfy the condition
lim |a(n, J)/a(ny, J)| = O,

J =0

for ng=1,2,3,---
n<ny, (A2

? I. T. Grodsky, M. Martinis, and M. Swigcki, Phys. Rev. Letters
19, 332 (1967).

and all
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and if the first row a(0, J) contains an infinity of non-
zero elements. Moreover, all the infinite sums in

Eq. (A1) can be made absolutely convergent. That is,
Zola("’ Ng(D| (A3)
exists forn =0, 1, 2, - - - . The sequence of numbers

b(n),n = 0,1, -, can be quite arbitrary.

The proof follows closely that given by Cooke!?;
but it is hoped that the presentation given here will be
more readily comprehensible. The method of proof is
by construction.

A particular solution g(J),/ =0, 1, 2, - - -, is built
up successively by partially satisfying more and more
of Egs. (Al), until eventually all the equations are
completely satisfied. It is a most important observa-
tion that any number, even an infinite number, of the
g(J) can be set equal to zero, on condition that an
infinite number are nonzero.

The zeroth stage in the construction of a typical
solution consists in picking two integers ¢ and J; such
that ¢ < Jy, and a(0, ¢) # 0, a(0, Jp) # 0. Then g(c)
is given any arbitrary value and g(J,) is determined
by the equation

a(0, c)g(c) + a(0, Jo)g(o) = 5(0),  (A4)
ie.,
gWy) = [6(0) — a(0, )g(c))(a(0, Jo).  (AS5)
To avoid triviality, it is required that the term in
square brackets be nonvanishing. Thus, it is conven-
ient to pick g(c) = 0 if b(0) # 0, and g(c) # 0 if
b(0) = 0. Lastly, one defines g(J) = 0 for all J that
satisfy 0 <J < J,, except for J=c¢ and J=J,.
Then it is clear that the n = 0 equation has been
partially satisfied, viz.,
Jo

2. a(0, ))g(J) = b(0).

J=o

The first stage consists in determining a number J;

with J; > J,, and the values of g(J) for J = J, + 1,

Jo+ 2, -+, J;,such that Eq. (A1) is partially satisfied
uptoJ=J,forn=0andn =1, ie,

ga(n, Jg(J) = b(n), for n=0,1.

J=o
This is done without altering the g(J),/ = 0,1,2,- - -,
Jo, that were determined at the zeroth stage. In the
second stage, the first three equations, those for
n =0, 1, 2, are satisfied up to some J = J, (J; > J,),
and so on. Eventually any given equation is satisfied
up to an arbitrarily high order.

The Nth stage will be described in detail. This then
constitutes an inductive construction for the entire

(A6)

(A7)

10 R. G. Cooke, Infinite Matrices and Sequence Spaces (MacMillan
and Co., Ltd., London, 1950).
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sequence {g(J)}. At the (N — 1)th state, a number
Jn—1 has been determined such that

Jn-1

> a(n, J)g(J) = b(n), for n=0,1,---,N — 1.
J=0

(A8)

The Nth stage consists in determining J,y and g(J), for
J=Jdy,+ 1,y + 2, -+, y, such that

JN

Y a(n, N)g(J) = b(n), for n=0,1,--+,N, (A9)
J=o
i.e., such that one more equation is partially satisfied.
It follows, by subtraction of Eq. (A8) from Eq. (A9),
that

JN
> a(n,Ng(J)=0, for n=0,1,---,N—1,

J=Jy-1+1
(A10)
and
JN
Jgoa(N, Dg(J) = b(N). (Al1)

There are here (¥ + 1) equations and, in general, it
would be possible to satisfy them by introducing
(N + 1) new g(J), which would then be determined by
the equations. However, it is convenient to introduce
(¥ + 2) new g(J)—one more than necessary—in order
to expedite the proof of absolute convergence, as will
appear.

It will be shown how to choose (N + 1) numbers,

k09 kl’ kz, T, kN, such that
Ina <ko <k <- - <ky<Jy, (Al2)
and such that
N
zoa(na kp)g(kp) = —a(na JN)g(JN),
p=
for n=0,1,2,---,N—1, (A13)
and
N
3 a(V, kg(k;)
p=

Jy-1

= b(N) — Jzoa(N, Ne() — a(N, Jy)g(Uy). (Al4)
It can be seen that Eq. (Al3) and Eq. (Al4) are
equivalent to Eq. (A10) and Eq. (All), if one defines
g)=0 for Jy., <J<Jy, except for J=k,,
p=0,12,---,N.

The crucial step in the whole proof is to define
g(Jy) so that the right-hand side of Eq. (A14) vanishes.

That is, one sets
Jy-1
g(J) = [a(N, JN)1—1{b(N) = 5 av, J)g(J)}.

(A15)
Thus g(Jy) is defined in terms of the g(J), J =0, 1,
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2, -+ ,Jy., that have already been determined at

earlier stages.
With this definition, Eq. (A13) and Eq. (A14) take
the form

N

3 a(rn. k,)g(,)
Jn—l
= —[a(n, Jy)la(N, JN)]{b(N) =% a1,
for n=0,1,---,N—1, (Al6)
and
N
S a(N, k)g(k,) = 0. (A17)

p=0

This is a system of (N + 1) inhomogeneous equations,
which can be solved for the unknown g(k,), p =
0,1, -, N, on condition that the matrix

a(O’ kN) h
a(l N kN)

_a(o, ko)
a(l, ko)

a0, ky)
a(l, k)
(A18)

IS
fi

a(N, ky) |

has a nonvanishing determinant. The first task is to
show that kg, k;, ', ky can always be chosen so
that this is indeed the case.

The determinant would be zero if one row were a
constant multiple of another. However, this is only a
sufficient, not a necessary, condition for the vanishing
of the determinant. A necessary and sufficient condi-
tion is that a linear relation exist between the rows,
that is,

ca(0, k) + cia(l, k) + - - - + cya(N, k) = 0,
forall p=20,1,---,N, (Al9)

_a(N’ kO)

where not all of the ¢,, n =0, 1, -+ -, N, vanish. It
will be shown that the &, can be chosen so that no
such relation (A19) exists, so that in fact the deter-
minant of A[Eq. (A18)] can be made nonzero.

The only way in which a relation of the form (A19)
could be inescapable would be if a relation of the form

¢a(0,J) + cya(1,J) + -+ + cpa(N,J) =0 (A20)

were to exist for all J > Jy_,, for otherwise one could
choose, say, ky such that (A19) were violated for
p = N. It will be shown that (A20) cannot hold for all
J > Jn_y1, unless ¢y = ¢; = - - = cp = 0. This con-
stitutes the proof that the k, can be chosen such that
det A # 0.

With any J for which a(N, J) # 0, one can write
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Eq. (A20) as

ey = ¢a(0, J)a(N, J)

+ -+ Cyaa(N — 1,)[a(N,J). (A21)
Because of condition (A2), it follows that the right-
hand side of this equation tends to zero as J — co;
therefore, if (A21) is to hold for all J > Jy_,, it is

clear that the only possibility is ¢y = 0. Hence Eq.
(A20) reduces to

coa(0,J) + c;a(1, )+ -+ + Cy_1a(N — 1,1y = 0.

(A22)
In the same way, it may be shown successively that
cne1=0,cy3=0,""",¢c,=0. (A23)

Finally, since it was originally assumed also that the
first row a(0, J) contains an infinity of nonzero mem-
bers, and therefore certainly a nonzero member for
J > Jy_4, it follows that ¢, = 0. This completes the
proof that the &k, can be chosen so that the system
[(A16) and (A17)] is nonsingular (i.e., det 4 # 0).
With a suitable choice of k,, the solution of Eq.
(A16) and Eq. (A17) can accordingly be written

[ gky) a(0, J y)/a(N, J )
g(k,) a(l, Jy)/a(N, Jy)
= -—-14__:l .
glkn_1) a(N — 1, Ja)a(N, I
_ g(ky) _ 0 i
Jy-1
x {b(N) =3 W, De)), (A24)

where the inverse matrix A" exists and is independent
of the value of J, which has not yet been chosen.
Because of the condition (A2), it is possible to make
the column vector in Eq. (A24), and hence the g(k,),
arbitrarily small; and in particular one can, by
making Jy large enough, cause the sum

3 latn, kg(h,)
to be as small as one pleases for any given n. Lastly,
g(Jy) was defined by Eq. (Al5), so that one has
la(n, Jx)g(Iw) o
= la(n, Jy)/a(N, Iy)| - |b(N) — Jgo a(N, J)g(J)
(A25)

and this also can be made arbitrarily small by making
Jy large enough, but only forn =0,1,--- , N — 1.
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In fine, it has been shown that, given any ey > 0,
numbers kg, ki, -, ky,Jy, exist, such that, if
Eq. (A8) holds, then Eq. (A9) is true; moreover,

Jx
2 la(n, Ng(N)| < ey,

J=Jy-1+1

n=01---,N—1,
(A26)

where it should be recalled that g(J) has been set to
zero for Jy s < I < Iy, J# k,,p=0,1,-+- N.

This completes the description of the Nth state in the
construction of a solution. It is only necessary to
choose the sequence {ey}, N=0,1,2,--+, to be
such that the series

N=0
converges, in order to be sure that the sum (A3)

exists for any n, for then

> eV, NgD < Y ey
J=Jx§+1 m=N+1

for N=0,1,2,---. (A28)

It should not be necessary to labor the point that the
construction is nonunique, that there exist, in fact,
an infinity of linearly independent, absolutely con-
vergent solutions.

APPENDIX B: POSITIVITY CONSTRAINTS
In this section it will be shown that the system of
equations (Al) for which condition (A2) holds,
possesses either no solution or an infinite number of
solutions when the following positivity condition is
satisfied by the coefficients:
(i) For any n, there exists a J,, such that

a(n,J) >0, forall J>J,;

and when the following constraint is imposed on the
solutions:

(i) g(o,) >0, g(=,) <0, for p=0,1,2,---,
where {o,}. {7,} are two infinite disjoint sets that
exhaust the set of nonnegative integers.

For suppose that at least one solution {G(J)}
satisfies constraint (ii), so that

=]

z a(n9 ‘I)G(J) = b(n), n = 0, 1’ 2’ PRI
J=0

Then one may proceed to construct a solution of the
system

(B1)

Q0

>an,gl)=0, n=0,1,2,---,

J=0
after the manner of Appendix A, but with b(n) = 0.
At the zeroth stage, c is chosen to be o, and g(c) is
given an arbitrary positive value. If a(0, a,) > 0, then
Jo is chosen to be 7,; but if a(0, ¢,) < 0, J, is chosen

(B2)

D. ATKINSON

to be o, , where & is chosen to be so large that a(0, J,) >
0. Then g(J,) is given by

a(0, c)g(c) + a(0, Jp)g(Jp) = 0 (B3)
so that g(c) and g(Jy) satisfy constraint (ii). As in
Appendix A, one requires

gU)=0, for 0K<JI<J,, J#c (BY

As the Nth stage of the construction, as in Eq.
(Al5), one has
Jy-1
g(J,) = —[a(N, I ¥ a(N, J)g(J). (BS)
J=0
Now Jy can be chosen to be 7, or o,, depending on
whether

Jy-1

JZOG(N » N)g) (B6)
is positive or negative, where d is so large that

a(N’ JN) > 0’ (B7)

which is always possible [condition (i)]. Then g(Jy)
satisfies constraint (ii). [Note that, if expression (B6)
is zero, Jy may be chosen to be 7, or ¢;.]

It can easily be shown that the infinite matrix
a(n,J) does not have finite rank, so that an infinite
number of the G(J) in Eq. (Bl) must be nonzero.
Hence k,,p = 0,1, -+, N,in Egs. (A13) and (A14),
with 5(N) = 0, may be chosen so that

Gk,) #0, for p=20,1,2,---,N.

Then Eq. (A24) shows that Jy may be made so large
that the g(k,) are arbitrarily small, in particular, so
that

(B8)

|g(kp)| < IG(kp)l, p= O’ 1, s, N.

Thus an absolutely convergent solution of Eq. (B2),
g(J), can be constructed, each term of which satisfies
one of the following three conditions:

(B9)

Either
(A g(J))=0, or
(b) g(J) satisfies constraint (ii), or (B10)
©) 1gl <IGWU)I

Then, since Eqgs. (B1) and (B2) imply
2 a(n, NIGJ) + g1 =b(n), n=0,1,2,--,
J=o
(B11)
it follows that
G'()=GU) + gW) (B12)

is another solution of Eq. (Bl) that satisfies the
constraint (ii).

It is obvious, then, that if one solution of (B1)
exists, then so do an infinite number of solutions.
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APPENDIX C: ASYMPTOTIC LIMITS

The problem in this appendix is to convert Eq.
(2.36), viz.,

éog.r S Ay(s;A;m) =0, (C1)

where

Ay(s3 A3 ) = [cos (8,/2)] 4+ [sin (8,/2)] 14!
X Clu, J) - K(s, 15 45 ’u)dl-{;,llf(et)|t=m‘/2 (C2)

and which holds for a continuum of s values in a
neighborhood of s = 0, into an infinite set of discrete
equations of the form

gAn,J(}‘)gJ =0, (&)
and to study the behavior of 4, ;(4) as J — .

Basically, the problem is reduced to an expansion
of 4 ;(s; A; ) about some regular point in the com-
plex s plane; and s = 0 is the obvious candidate for
such a point. The difficulty is that there are some
“kinematical” singularities at s = 0. While these can
be factored out for finite J, it turns out that there are
other singularities in the limit J — oo, which cannot be
so factored. In view of these difficulties, which are of a
purely formal nature, and have no fundamental
significance, the easiest procedure is to expand about
another fixed point s = s,, close to s = 0, at which
Ay(s; Z; p) is analytic. A series expansion

3455 2) = 3 4@ G = 5" ()

can be made which will converge for |s — s,] sufficiently
small. Then Eqs. (Cl) and (C4) imply

25— 50" 2 An,s(Ngs =0, (C5)

n J

and since this must hold identically in s, for |s — s,

small enough, it follows that Eq. (C3) must hold.
The asymptotic behavior lim 4, ;(4) may be most

> 00

casily studied by considering the limit J— oo of the
left-hand side of Eq. (C4), and then by expanding in
this limit, since the convergence is uniform with re-
spect to J.

In the limit J — o, one has m% — oo, and the first
two terms in (C2) become

[cos (0,/2) 144!
X [sin (8,/2)] % 2 ~ p(s; H(mS)™, (C6)
Jo o
where
p(s; &) = (=DH s — (my + mp)®I[s — (my — my)°]
X [s — (my + my)*[s — (my — my)®]/s*}°, (C7)
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with

o = max {4, 4}. (C8)

The third term in (C2), the helicity crossing-
matrix K(s, t; A; u), which is given explicitly in Eq.
(2.20), will be studied next. Now

COS |y
. (=1)%s 4 m% — )
T2 {[s — (m, + m,) s — (m, — )}
p=12234. (C9

Thus g,|,—,> has a definite limit. This must be true
also for the whole crossing matrix, so that one may
write

K(s, my; A0 57> K(s; 40, (C10)

where the J-independent quantity on the right is
defined by this relation.
The fourth term in (C2) may be written

diyﬂf(95)|t=mJ2
_ [(J + M) (J — M)!
(J + N)I({J — N)!
X [sin (8, DI #PYgy et (cos 6], 1,
(C11)

3
:I [cos (6, /2)]Iui+u/|

where
M = max (|ul, |pl),
N = min (|, lul).
Each of these four terms will be considered in turn.

The limiting behavior of the first term may be evaluated
by using Stirling’s formula. This gives

[(J + M)\ (J — M)!T N
J+ N =N Ioe

(C12)

The second and third terms give

[cos (6,/2)1*#![sin (6,/2)]"%#1|,_,, 2
~ (__s)Iui—qu/Z(m?I)—lu-‘—M/I/Z. (C13)

Jo o

The Jacobi polynomial has the expansion

P!;‘i'}ll}flxlﬂi'f'ﬂfl(cos 6t)lt=m_,z

J-M
~ > B, (@)(—s)"(my)™", (Cl4)

Jroo n=0
where
J— M+ p; — pl
Bn,J(.u)=( J_M_n[u,f)
J—M ;
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It is necessary to re-expand (Cl4) about s = s,
which can be done, using

n

()" = (=" 3 ( ",) 5(s — s (C16)
n’'=0\N
to give

P!;‘i_]f}’l’l""“"(cos 6t)|t=m_12

J-M
o 3. Bus(u; s0(s = 50" (C17)
where "=
J-M n’
Bus(us s0) = E_ﬂ(n) wd((—mH) sy (C18)

Thus, in the limit J — o0, one has

Ay(s; A 1)
J"’ pis, A)(—s)!HH12K (55 A5 ) + (mEyo—lwi—nslr2

J-M

x go B, s(1; s0)(s — so)". (C19)

For sufficiently small |s — so|, there is a convergent
series expansion

p(s, A)(—s)HwK (s; 4; ) =§D,(z; w590 — 5o,

(C20)

where it is not necessary to calculate the coefficients
D, ; the essential point is that they are independent of
J. Hence Eq. (C19) becomes

Ay(s; 43 ﬂ) (m ol iC J)Z(s — 5o)’

X Z B, ;(u; s0) Do i(A; s sg).  (C21)

n=r
This limiting form can be inserted into (Cl1) to give
the limiting form of (C3), with the result
A, J(}*) ~ 3 (myy o mmIBC(y, 7

J-op

X3 Byl 59 Dyalli i 59 (C22)
The object now is to show that the expression (C22)
satisfies the Pélya condition, namely,

}im [Ap, (D Ay, s (D] =0, (C23)
for all n < ny. This will be shown to hold if
lim [m;/J} = 0. (C24)
J o
From (C15) one finds that
B, (@) ~ J 0l (n + |u, — D7 (C25)
J=©
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Hence (C18) yields

B, ;(u; so) ol HEn( )( ) RV (e

X [0l (0 + I = p DI m P, (C26)
Because of the inverse factorials, the first term in the

series dominates (since J/m, cannot increase faster
than J), i.e.,

B, (s so) ~ (—1)nJlwssl
J= oo

X [nt(n + lu; ~ p D07 Imy™ (C27)

Again, in (C22) the first term, corresponding to
r = n, dominates, giving for the asymptotic value of
the expansion coefficients

(mJ)_a[J/mJ]%_“( D"[n! (n 4+ pH
X X' C(u, J)Dy(4; u; s0), (C28)

n J(A')

where 4’ = min |u; — g,| for all possible t~channel
helicities, and where 3 means a summation over all
t-channel helicities consistent with |u;, — u ] = ',
The final result follows:
A D] A 5] ~ [yt = R (o 1)°
’ ' Jow n!(n 4+ p')!
(C29)
and, by (C24), this tends to zero as J — oo, for any
n<n,.
APPENDIX D: REORDERING THE EQUATIONS
In Sec. 3, the set of sets of equations

n=0,1,2--, (D)

Z An,J(}“a)g(J) =0,
J=0
whereq = 1,2, -+, O, corresponding to the different
permissible helicity states in the s channel, is re-
ordered as a single set of equations

DA, Ngl)=0, n'=0,1,2,---. (D2
J=0
With a mass spectrum
m?INJa, 0<a<2’ (D3)
Joo

and fixed helicities A, formula (C28) shows that

Jll-l;n |An,J(}'q)/Ano,J()'q)| = 0’ (D4)

for any n < n,. In reordering (D1) in the form (D2),
it is clear that the corresponding condition

lim [A(n’, )]A(ng, J) =0 (D5)
J—w
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can be maintained for any n’ < ny, aside from possible
coincidences in asymptotic behavior of 4, ;(4,) for
different values of ¢. The maximum order of coinci-
dence is Q, the number of distinct, permissible helicity
states. The purpose of this appendix is to show that an
equivalent system of equations (D2) can be defined
for which all the coincidences have been removed,
so that (DS5) holds without exception.

Consider the asymptotic expression (C28) for
A, ;(A). There will be coincident asymptotic behaviors,
e.g.,

Am.J(}u)JT Ang.J(}‘2) (D6)
for two different values of the maximum helicity flip
¢ [defined in Eq. (2.9)], say for ¢ = a4, and ¢ = a,,
only if

ny — Ny = (0, — 0y). (D7)

But this will be possible only if the right-hand side of
(D7) is an integer. For a general value of a, this will
not be so, and so there will not be any coincidences
between different values of o. To be quite certain
about this, it is enough to require a to be irrational.
However, a glance at Eq. (C28) shows that all the
coefficients corresponding to the same value of o will
have degenerate asymptotic behaviors. Suppose that
there are Q' such coefficients which have the behavior

A3 = 42,0 1+ 3K, B |, (D8)

g=12,---,0', where 49 ,(o) is the leading term,
common to all the 4, which have the same value of g,
and which is given in (C28). The higher terms are
obtained by expanding A4;(s; 4; #) [Eq. (2.32)] in
inverse powers of m? . Since this involves expanding
the helicity crossing matrix K(s, #; 4; x) in powers of
1/t with t = m% — oo, it is clear from Eqgs. (2.20)-
(2.23) that coefficients K, (1)) in Eq. (D8) will be
different for each of the four helicities 4,, 1,, 25, 4,.
This means that the Q' sets of equations

;An,J(AG)gJ =0, (D9)

g=1,2,-, @, which have the degenerate behavior
An,J(}‘q) ~ J(Z—a)(n—u’/z)—aa z/ C(/" J)Do(}»; /'“ so)’

J= n

(D10)

can be replaced by Q' linear combinations, one of
which has the asymptotic behavior (D10), i.e., that
of 45 ;(o), one of which behaves like m324% ; (o),
one like m™449 ;(0), and so on, until the last one
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behaves like m33Q VA% ;(0). Let these linear
combinations be labeled An,‘,(lq; 0), q=1,2,"-,
Q’, starting with the one that tends to infinity least
quickly. Then the system

S A, sy 0)g, =0, (D11)
v

g=1,2,---,0Q, is equivalent to (D9), and it
satisfies

| A, 5(Ag; ) Apy, (Ae5 0)| ~ J7100=0le (D12)
J= o
which tends to zero as J — oo for any g < ¢g,. More-
over, if a is irrational, it is guaranteed that there is no
degeneracy of asymptotic behavior between different
values of n or different values of o.

Hence a complete ordering of the system (D1) in the
form (D2), with strict observance of condition (D5),
is possible. Notice that this is so because there is only a
finite number of infinite sets of equations (D1), so that
the recursive redefinitions of degenerate coefficients
involve only a finite number of steps.

It is clear that the restriction that “a,” the exponent
of the mass-spectrum power law, be irrational need
not be taken seriously. This was only necessary to
avoid the possibility of accidental coincidences
between different n and o; since any rational can be
approximated arbitrarily well by an irrational, for
practical purposes this restriction may be neglected.

APPENDIX E: PHYSICAL CONVERGENCE
LIMITATIONS

A typical superconvergence relation, Eq. (2.12),
is supposed to hold only for a limited range of s
values. This means that the infinite sum (2.36), viz.,

2 85 2 Ass;4u) =0, (E1)
J=0  u
must converge for only a limited range also. There
must be an s, such that the infinite J sum in (El)
converges for s < s, and diverges for s > s,. In this
appendix, it will be shown that this simple requirement
implies a powerful restriction on both the mass
spectrum and upon the asymptotic dependence of
the g.

From Appendix C, one has the following asymptotic
expression for the coefficients:

> As(s5 2 )
u
~ p(s, DY(—s)Hmy~—
J=o©
X 3" K(s; A; w)Clu; JYPE b mcturlcog 0| 1m,? -
P
(E2)
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In the large-J limit"

P%¥(cosh u) ~ le7 exp [(o + B + Duj2] x (wJ)?
x [s?nh /DT [cosh (u/)T*+Y, (E3)

so that (E2) reduces to

S Ay(s; s ) ~ 3s7ip(s, DImT ()t

g e x exp [2s/m,]. (E4)

Suppose now that the mass spectrum m increases
faster than J:
lim [J/m;] = 0.

J o

(ES)

Then the exponential term in (E4) reduces to unity,
and the series (E1) becomes, asymptotically,

1s~p(s, ) ; g Am3 Tyt (E6)

Since the s and the J dependences have factored, it is
clear that if this series converges for any s, it converges
for all s, and so there cannot be an s, such that (El)
converges for s < 5, and diverges for s > s5,. Hence
the class of mass spectra (E5) must be rejected on
physical grounds. The same reasoning applies if
Jlmj tends to a finite limit, for then the exponential
factor in (E4) tends to a function only of s, and there
is again factorization between J and s.
Hence, in place of (ES) one must have
lim [m;/J] =0,

J—= o

(E7)

which means that the Regge trajectory «(f) must rise
more rapidly than ¢}. Suppose that the mass spectrum
obeys the power law

m% ~ J°,

J =+

(E8)

with @ < 2. Then (E1) has the asymptotic form
3 ¥s7ip(s, 1) S gra bt exp 25852, (E9)
7

If this series is to converge for s < s, and diverge for
§ > s, then g; must have the asymptotic behavior

gy ~ exp [—2st - S, (E10)

J—o

This formula is of use in Sec. 6.

APPENDIX F: LIMITING BEHAVIOR OF
POLYA SOLUTIONS
It may not be immediately obvious, from the
Pélya proof (Appendix A), that there is a limiting
asymptotic behavior for the solutions g(J) of Eq.
(Al). At the Nth stage in the construction, g(ko),
g(ky), - -+, glky), can certainly be made as smalil as
one pleases for fixed kq, k;, * - + , ky simply by making

L Bateman Manuscript Project, Higher Transcendental Functions,
A. Erdelyi, Ed. (McGraw-Hill Book Co., New York, 1953).
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Jy large enough. Moreover, if a(n, J) - o0 as J — oo,
as in the cases of interest in this paper, then g(Jy)
defined by (Al5) can be made indefinitely small
simply by making Jy large enough. However, this
does not mean necessarily that g(Jn) decreases
arbitrarily quickly as a _function of Jy .

Consider Eq. (Al5) in the homogeneous case
b(n) = 0:

Jr—1
gUy) = —[a(N, JpI™ X a(N, Ng(). (F1)

J=0
The asymptotic behavior will be governed by g(Jy),
N — co. From Eq. (2.42), and the power-law mass
spectrum

m?, ~ Ja, 0 < a < 2: (F2)
J> 0
one has
a(N, J) ~ JE N, (F3)

J- o

In order to solve (F1) asymptotically, it is now neces-
sary to know how Jy depends on N. It is clear that the
more quickly Jy increases with N, the less quickly ¥
increases with Jy, and so the less quickly g(Jy)
decreases as a function of Jy . Hence, to obtain the
most rapid possible decrease of g(Jy) with Jy, one
must choose Jy, to increase as slowly as possible with
N. Now the smallest possible Jy, consistent with
the formal Pélya construction, is N2+ 3N + 2, so
the following class of Jy dependences will yield the
minimal g(Jy):

J

v = K2N2, (F4)

where K is a constant satisfying K% > §. With this
expression the term in (F1) correspondingtoJ = J, =
K?®n? has the asymptotic behavior

N[y Vg (j,).

2"“ﬁ:|
K

satisfies Eq. (F1) asymptotically, for then the largest
term of the form (F5) occurs for n = N — 1, when
one has

(F5)
The ansatz

g(J) ~ exp [— (F6)
J-

@

exp {(2 — a)N log (1 - ]%1) Rl GV 1)}
~ exp {— 2= aJ}l’v}, (F7)
N-w

which is consistent. Thus the most rapidly decreasing
solution that one can construct by the Pélya method
has the behavior (F6). It is not difficult to show that
the full proof of Sec. 4 remains valid for a J depend-
ence as in Eq. (F4), with K sufficiently large, although
the disjoint sets S, need to be chosen more carefully
than those defined by Eq. (4.3).
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This paper considers the one- and two-dimensional Green’s functions associated with electromagnetic
radiation in a moving medium. The medium is assumed to be lossless, to have constant permittivity and
permeability, and to move with constant velocity with respect to a given inertial coordinate system. For
each source (line source or plane source) both the time-dependent and the harmonic Green’s functions
are found. The results are obtained by means of special transformations which convert the equations to be
solved into standard forms. The significance of the results, in terms of one- and two-dimensional

Cerenkov radiation, is discussed.

1. INTRODUCTION

Electromagnetic radiation from a point source in a
simple moving medium has been discussed in several
recent papers. Tai', Lee and Papas,? in independent
works, discussed the fields radiated by a harmonic
point source in a moving medium, and Compton® has
given the time-dependent Green’s function for such a
medium. The Fourier transform relation between the
time-dependent and harmonic solutions has also been
discussed in a short note by Tai.

In this paper, we solve for the one- and two-dimen-
sional Green’s functions for electromagnetic waves in a
moving simple medium. That is, we will find the
Green’s functions associated with radiation from an
infinite line source and from an infinite plane source.
For each source, both the time-dependent and time-
harmonic Green’s functions will be found. A knowl-
edge of these functions will allow us to discuss various
interesting problems (e.g., two-dimensional Cerenkov
radiation) and will complete our catalog of Green’s
functions for simple moving media.

In the previous paper by the author,® a Fourier
integral method was used to construct the solution
for the three-dimensional Green’s function. As was
remarked in that paper [see Eq. (37) of Ref. 3],
however, the solution can also be found by an alter-
nate method making use of an affine transformation
of coordinates that converts the differential equation
to be solved into the standard time-dependent wave
equation. It turns out that this method is the simpler
of the two, and a second purpose of this paper will be

* Present address: Department of Electrical Engineering, Ohio
State University, 1320 Kinnear Road, Columbus, Ohio 43212. The
work reported in this paper was performed while the author was in
tenure as a National Science Foundation Postdoctoral Fellow.

L C. T. Tai, IEEE Trans., AP-13, 322 (1965).

2K. S. H. Lee and C. H. Papas, J. Math. Phys. 5, 1668 (1964).

3 R. T. Compton, Jr., J. Math. Phys. 7, 2145 (1966).
4 C. T. Tai, J. Math. Phys. 8, 646 (1967).

to illustrate this procedure in detail. Tai,! in solving
for the three-dimensional harmonic Green’s function,
makes use of a special transformation with which he is
able to cast his differential equation into a two-
dimensional Klein-Gordon equation, whose solution
is known. As will be apparent below, the transforma-
tion used by Tai and the affine transformation suitable
for solving the time-dependent equation are closely
related in the frequency and time domains. For the
one- and two-dimensional Green’s functions studied
here, the use of an affine transformation in the time
domain and a transformation similar to Tai’s in the
frequency domain will allow us to find the solutions
quickly, with no integrals to evaluate.

2. FORMULATION OF THE PROBLEM

We consider a lossless medium with constant
permittivity € and permeability u (both measured in a
reference frame attached to the medium) that moves
with constant velocity v = vZ with respect to a given
inertial reference frame. [For a detailed derivation of
Eqgs. (1)-(10) of this section, the reader is referred to
Eqgs. (1)-(37) of Ref. 3.] The electromagnetic fields, as
measured in the given frame, satisfy the Maxwell-
Minkowski equations

DoxE=—2(a-H), (i)
0

DoxH=5;(ea-E)+J, (1b)
Dy:(ea-E)y=p +-J; (1¢)

Dy « (pa - H) =0, (1d)

where D, is the differential operator
D,=V_-92, @
ot
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a is the dyadic with components,

a 00
a=|0 a 0], (3a)
0 0 1
and where
a=(1—p9/(1 — n*6?, (3b)
Q = [(n* — 1)Blc(1 — n*pY)] 2, (3c)
B = vle, (3d)
and
n = (uefpoeo)t. (3¢)

€ and u, are the permittivity and permeability of
free space, and ¢ = (eyuo)~? is the velocity of light in
free space. E, H, B, D, p, and J are the Maxwell
fields and sources in the usual notation, and all
quantities are measured in rationalized MKS units.
We assume also that n > 1.

Equations (1) can be solved by defining a vector
potential function A, and a scalar potential function
¥ such that

H=21a.D,x (@A), (4a)
u
E=—o! ._a%, — DY, (4b)

(a~! denotes the inverse of a.) If the potentials are
chosen to satisfy the gauge relation
D, - A= —eua* 2, )
ot
then it is found that they satisfy the following wave
equations:

2
(D, * D)Ay — €ua % = —ual, (6a)
2 .
@, DY¥ — qua s = —LER-T (g
ot ae
where
1 7] 0 19 Q0
D _— - . D = ¢ —_— v _ Zl-— — —— -
¢ am o xax+yay+z<aaz aat)
O]

In the previous work,® we solved Egs. (6) by defining
the time-dependent Green’s function G as the solution
to
0°G , , :
(D, - DYG — eua P =4r—r)(it—1), (8)
where 8(r — r')o(¢t — t’) is a delta-function source
occurring at r =1r’, t = t’. [G is the solution to Eq.
(8) that satisfies the causality condition.] The solutions

COMPTON, JR.

for A; and ¥ are then given by
Ar, 1) = —ua f f f f I, )G, ¢ | ¥, ) dr’ dr', (9a)

W(r, 1) = :—: f f f f o, ) + R - X', 1)]
X G(r,t| v, ¢) dr’ dt', (9b)

and the fields may be found from Eqs. (4) plus the
constitutive relations

D=eca-E+4+ Q2 xH,
B=ygya-H— S x E.

(10a)
(10b)

In this paper we will study the Green’s functions
appropriate for solving Eqs. (6) when the source
terms are one- and two-dimensional. That is, we

study the equation

- 0°G
(D, - Dy)G — €ua a? = source term, (8)
where the “source term” is a one- or two-dimensional
delta function, having either impulsive or harmonic
time dependence.

It will simplify matters if, before we begin, we
rotate the coordinate system so the velocity v is at an
arbitrary direction with respect to the coordinate axes.
We may then let the line source or plane source lie on
the coordinate axes. Eq. (8'), when written out in
scalar form, is

(242412 _q00
ox*  9y*  aodz? a 010z
2 A2 2
+ o 8%2 — eua %2) G = source term. (11)
We first relabel the coordinate axes so that
y=w z=u (12)
Eq. (11) for G is then
PP 17,08
(ax"’ ow?  aou’ a otdu
Q2 92 0?
: a_t2 — eua a_tz) G = source term. (13)

Now we consider a second coordinate system xyz,
where the y and z axes are rotated by an angle ¢ with
respect to the w and u axes, as shown in Fig. 1. From
the chain rule of differentiation, it is readily found
that

g—f=cos¢g—f+sin¢g—f, (14a)
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w \y
R

Fic. 1. xyz and xwu coordinate systems.

9°’G s , 0°G . 0°G . 5 , 0°G

— = — 42 n’ ¢ —,

ot cos® ¢ P + 2sin ¢ cos ¢ 220y + sin® ¢ o
(14b)

0°G s , 0°G . 0°G . 3 ,0°G

— = — 2 n¢—,

P cos® ¢ 3 sin ¢ cos ¢ 5707 + sin® ¢ Py
(14c)

and hence the differential equation for G in terms of
the xyz axes is
0°G

P

2
(cos2 ¢+ Lin? ¢)a—(2—;
a dy
2
- 2(1 - é) sin ¢cos¢ai-TGz

2
+ (sin2 é + 1 os? qS)a—g
a 0z

Q. P _,Q_ &G
-2 — — 2= FY
4 Sin ¢ atay a Cos ¢ ataz
Q9% 2°G
+ — 5 T ma g = source term. (15)

This equation will simplify considerably for the types
of sources discussed below.

3. TWO-DIMENSIONAL TIME-DEPENDENT
GREEN’S FUNCTION
For this Green’s function we assume an infinite
line source parallel to the z axis, with an impulsive
time dependence. That is,

source term = d(x — x)o(y — y)o(r —t'). (16)
The solution for G then has no z dependence, and
Eq. (15) simplifies to the following:

0°G 0°G 0°G %G

Y L plr_ 9V 425

ox? t ¢ dyot ot?

oy?
=0(x — x)o(y — y)o(t — 1), (17)
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where
b = cos?* ¢ + (1/a) sin® ¢, (18a)
¢ = 2(Q sin $)/a, (18b)
d = eua — (Q%/a). (18¢)

As mentioned above, we may solve this equation by
making an affine transformation of variables to
eliminate the mixed derivative and then comparing
the resulting differential equation with the standard
equation for the two-dimensional Green’s function.
Specifically, suppose we define new variables #; and y,

by
y=y1—At1} or {
t=t1

1=y + At

t1=t,

(19)

where A is a constant, as of yet unspecified. Then, by
the chain rule, we find that

26 9%

oe _2oo. 20
oy* Oy (202)
G G #G 3G

°Y _ 42%Y 4oy 2% (ob
ot? o0y* + dy,0t, + o (200)
PG %G 9%

— 496 . 20

ey ok | oy, (20c)

In terms of x, y,, and #,, the differential equation (17)
becomes

0°G oG
Y L (b —cd —dar)Z=
ox? +( ¢ )6yf

9%G %G

— 2Ad —d —

(24 s a4 o

= (x — x)o(y, — Aty — y)o(t — 1)
= 8(x — x)0(y, — A" — y)8(t — ). (21)

We see that we may eliminate the mixed derivative by
choosing the constant 4 such that

¢ Q ) (n®* — Dfc .
A= eyl —e,ua2sm é =—_ﬂ2 . sin ¢.
(22).
The coeflicient of 02G/dy? then becomes
b 4= b+ <
—cAd—dA?=b+ <
‘ T
1 O?sin® ¢ .
= cos® ¢ + ;l:l + m:’ sin® ¢
_ ni(1 — B
B COS2 ¢ -+ [—n—;—;—-—T] sm2 ¢ (23)
Also, from Eq. (18c), we find
d=[(»* — g3/l — p7), (24)
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and hence Eq. (21) becomes
76 196 119G
ox®  KFoyr Pyt ond

= 0(x — x)o(y, — At — y)o(t; — 1), (25)

where we let

;IE = cos® ¢ + [M] sin® ¢

n2_ﬂ2

_ n*(1 — g% +2(n2 —2 1)p%cos® ¢ . (263)
n"—g
i _ n2 — ﬁz
=TT (26b)

Because we assume n > 1 and because § <1, %
and y? are always positive, and we may define

Yo=ky; (k> 0), (27a)
th=yty (y>0), (27b)
and then Eq. (25) becomes
°G , G 173G
ax* ey o

= kyd(x — xV0(yo — kAt — ¥ )o(t, — pt'). (28)

We want the solution to Eq. (17) which satisfies the
causality condition, viz., it is zero before ¢ =1¢".
It is not difficult to check that this boundary condition
carries over to the same causality condition for Eq.
(28), namely, G must be zero for ¢, < pt’. Hence
Eq. (28) for G and the boundary condition satisfied
by G are formally identical with the problem of the
two-dimensional free-space Green’s function® and we
may write down the solution to Eq. (28) immediately:

- ——éy—i__——— , P<ecr,
G = 2/t — P2 29)
0, P> cr,
where
T = to -_ yt’, (303)

P = [(x — x')* + (y, — xdt’— xy'}IL. (30b)

By substituting back for #,, y,, x, ¥, and 4 by means
of Egs. (19), (22), (26), and (27), this result is found

to be
- gle-or-[FE(T
G= (t—1)> [Ll“f—ﬁé’:lz]’:_;' (31

5 P, M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Co., Inc., New York, 1953), p. 842.
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where
Ry = ‘(x - x')?
2 _ 3
+ Kz[y -y - ———(nn2 _I;IZC sin ¢(t — t')] 2: >
(32a)
vy = (ue) = (c/n). (32b)

v is the phase velocity of a wave in the medium, as
measured from a reference frame attached to the
medium.

The interpretation of Eq. (31) is similar to that of
the three-dimensional time-dependent Green’s func-
tion.® The field is nonzero only inside an elliptical
cylinder parallel to the z axis, with center at the point

2
x=x, y=y + (_n_z___l_)fic sin ¢(t — t'). (33)
n"—f
The outer limit of the elliptical cylinder in the xy
plane is defined by
2
R, = [—1:’3—]”.,(: — 7).
1 — (B/n)?
By manipulating Egs. (32) and (34), one canshow that,
if the velocity of the medium is small, the elliptical
cylinder propagates away from the source point in all
directions in the xy plane, as shown in Fig. 2. If the
velocity is very high, the cylinder propagates away
from the source on one side only, remaining at all
times inside and tangent to a wedge-shaped region
defined by half-angle 6,, where
i
| o

1 - g
(n* — 1)B%sin® §
as shown in Fig. 3. In this case the source point
(x', y') is outside the cylinder, and we note that a
source at (x’, ') can never produce any fields outside
the wedge-shaped region.
The critical velocity between these two cases is

(34)

cos Oy = [1

given by
v 1
== : , 36)
p ¢ l:(n2 — 1)sin® ¢ + l:l (
FIELD NONZERO ONLY
IN SHADED REGION
y
SOURCE POINT-

FIG. 2. Low velocity case: § < f,.
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FIELD NONZERO ONLY
% IN SHADED REGION

(x',y") /'\?o Y

AN

SOURCE POINT

Fic. 3. High velocity case: 8 > f,.

and when v > v, we have the case of two-dimensional
Cerenkov radiation.

4. TWO-DIMENSIONAL HARMONIC GREEN’S
FUNCTION

For this Green’s function we assume an infinite line
source parallel to the z axis, the same as above, but
now with harmonic time dependence. In Eq. (15), we
put
y ) e:wt

where  is the radian frequency. The solution for G
again has no z dependence, and by writing

source term = 6(x ~ x")o(y — (37

G = ge’, (38)

we find from Eq. (15) that g satisfies

g, %% og :
5;2+ ba 2 ]wc5—+w2dg—6(x—x)6(y ).
(39

To solve for g, we make the transformation
g = goeay’ (403)

where « is a constant to be specified. [This « has
nothing to do with the dyadic « defined in Eq. (3a).]
Then

_a_g ago au + ocg eaw (40b)
dy dy

2 2
T¢ = 78 e + 2u 98, e + a’gee®,  (40c)

ay? gyt dy
and Eq. (39) becomes

aag; + baag; + (2ba —jwc)%g;“
+ (ba® ~— joca + wid)g,

= € (x — x)o(y — »")
= e(x — Xy — ). (41)

Hence, we may eliminate the first derivative by
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choosing

_ joQsin ¢
" acos® ¢ + sin® ¢
jo(n® — 1)Bsin ¢

= . (42
c(1 — B* cos® ¢ + c(1 — n?p%)sin® ¢ “42)
The coefficient of g, in Eq. (41) becomes
ba® — joce + w’d
N2
= old — (joo)
4b
o Q? 20 sin® ¢
= wlua — -
a a*[cos® ¢ + (1]a) sin® ¢]
2 1 — 2 2 _
- o[ R =D  a w)
1 — n®8% + B%n® — 1) cos® ¢

and Eq. (41) is

aag(,+ b%gg + Kigo =
The above transformation is analogous to the one
used by Tail in the three-dimensional case, and is
closely related to the affine transformation in Eq. (19)
for the time-dependent case.

Before solving this equation, we must examine the
signs of the coefficients b and k2. From Eqs. (3b) and
(18a) we find

b=

3(x — x)o(y — y). (44)

1 — Bi(n® — V)sin® ¢ + 1]

1 - B

, (45)
so b is positive for

B<B.= [ —1)sin?¢ + 1]* (46)
and negative for § > 8,. Similarly, from Eq. (43), we

have
ke = C‘)__2|:"2(1 - 182) + /32('12
VUL 1 — B = Dsin? ¢ + 1]

so k3 also changes sign at 8 = §,, being positive for
B < B.and negative for § > §,. It is obvious from the
discussion of the time-dependent Green’s function
above that we would expect the behavior of the
harmeonic solution to change completely at the critical
velocity v, = ¢f,. Hence it is not surprising that the
coefficients b and k2 change sign at this velocity.

Knowing the signs of b and k¥, we can now discuss
the solution of Eq. (44). We have:

— 1) cos® qSil’ @

Case I: 8 < f,. Then b > 0, k¥ > 0, and if we let
vo=bty (bt >0), (48)
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we have

@) azgo s, _ 1 oy ’ Y

s+t T Hieo = g = (= ).
(49)

From the form of the time-dependent Green’s function
for B < ., it is clear that waves propagate away from
the source in all directions, and hence the boundary
condition for Eq. (49) is that g, must represent
outward-going waves at infinity. Therefore the
problem of solving Eq. (49) is identical with the
problem of the ordinary two-dimensional harmonic
Green’s function; from the known solution® we have
immediately

j —ay’ r7(2)
go=—T¢€ ' Hy (kp), 50a
() 4(b%) o \(Kqp (50a)
where
p=1[(x— %)+ (yo— y/bHyR,  (500)
and where H{¥ is the Hankel function of the second
kind. Finally, substituting back for y, and b, and

using Eq. (40a) to find g, we have

g= L H{(kp), (S1a)
4[cos® ¢ + (1/a) sin® St
where
==+ 2 - ')2]*
P a cos® ¢ + sin® ¢ Yoo

(51b)
where a is given in Eq.(42) and k, in Eq. (43) (k, > 0).

Case II: 8 > f,. Then b < 0, k2 < 0. If we define

ki=—ki (k> 0) (52a)
and

ki = —(1/b) (ks> 0), (52b)

then Eq. (44) is

= é(x — x)o(y — y),
| (53)

which is a one-dimensional Klein-Gordon equation.
The boundary condition for g, may be obtained from
our previous remarks about the time-dependent
Green’s function. It is clear from Fig. 3 that the fields
produced by a harmonic source at (x, ') are nonzero
only inside the wedge-shaped region of half-angle 6,.

8 Reference 5, p. 811. We have the opposite time convention from
that of Morse and Feshbach.
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FiG. 4. g = 0 contours in xy plane.

Since
. 29\
tan 00 -— gl__._co_sio)_
cos 6,
1—p 3
B [n2ﬂ2 — 1 — B%(n® — 1) cos® ¢:|

= ky, 54

&o is zero everywhere except in the region |x — x'| <
ks(y — y'). The solution of Eq. (53) subject to this
boundary condition is mathematically identical to
the problem of solving an ordinary one-dimensional
Klein~Gordon equation

3—2’2’ - clga;—;f — 7'y = 0(x — x)(t — 1), (55)
subject to the causality condition, namely,
p=0 for |x—X|>ct—1) (56)
Since Eq. (55) has the solution’
p = —(c/2Jo{nle(t — '} — (x — x'\1}}
X uf(t —t) — |x — x'|[c}, (57)

where J, is the Bessel function of zero order and
u(£) is a unit step function at £ = 0, we find

g0 = — ™V (ko/2)Jo{kolKA(y — ¥)* — (x — x)1}
X uly — y' — |x — x|k}, (358)

or finally, from Eq. (40a),

g = — 3 kJofkolki(y — ) — (x — )1}

X uly — ¥y — |x — x'I[ks].  (59)

It is interesting to note that this Green’s function,
unlike the harmonic Green’s function for the three-
dimensional case,! is finite everywhere in the xy plane,
even on the wedge surface at angle 0,. It is, of course,
discontinuous at the wedge, so the fields, which are
obtained from derivatives of g, have singularities there.

7 This result is easily derived using the method shown in Ref. 5,
pp. 854-857. The integral which must be evaluated to find o in Eq.
(57) is equal to one-half of the integral for A(R, ) given in Eq.
(7.3.37) of Morse and Feshbach.
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Furthermore, g is zero whenever

kolk2y — VP — (x — XV =x,, n=1,2-"",
(60)

where x,, n = 1,2, -, are the zeros of the Bessel
function
Jo(x,) = 0. (61)

That is, g is zero on a family of hyperbolas in the
xy plane, as shown in Fig. 4.

5. ONE-DIMENSIONAL TIME-DEPENDENT
GREEN’S FUNCTION

For this case we assume a source term in Eq. (15)
of the form

source term = 8(y — y')o(t — t'), (62)

i.e., an infinite plane source parallel to the xz plane.
(There is no need to rotate the velocity vector of the
medium into a more arbitrary direction than that
shown in Fig. 1. For any velocity of the medium and
orientation of the source plane, coordinate axes may
always be chosen so the source plane is parallel to the
xz plane and the velocity vector lies in the yz plane.)
For such a source term, the solution for G has no
x or z dependence, so Eq. (15) simplifies to

76, ¥ _ 76
0y* oyot o
where b, ¢, and d are defined in Egs. (18). To solve
Eq. (63), we may use the same affine transformation as
was used above to solve Eq. (17). Repeating the steps

of Egs. (19)-(26), we find that the Green’s function
must satisfy

= 6(y — y)o(t — t), (63)

la2G 11326
———— == — At — vY6(t, — t).
2 f (;2 26{% (Y1 Y)(1 )

(64)
Since, as before, «* and y? are always positive, we may
solve this equation by comparison with the standard
one-dimensional time-dependent Green’s function

equation. Again making the substitution of Eq. (27),
we find

76
oys

1 %G ' '
— c_ —— = kyd(y, — kAt — ky)o(t, — t),

(65)

subject to the causality boundary condition, and
hence?®

KyC ’ ’ ’
G = —%u[c(to—)’t)— 1Yo ~ xdt’ — xy'[], (66)

8 Reference 5, p. 843.
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FIG. 5. Low-velocity case: § < f,.

where u(§) is a unit step function. Substituting back
for y,, t,, and 4, finally gives

G = —ﬂ’fu[ﬁ(t—t')
2

[ (n2 - l)ﬂc

n® — g

y—=Jy

sin $(t — 1) l] 67

The meaning of this result is easy to see. The
Green’s function consists of a square pulse of ampli-
tude — (xyc/2) centered at the point

= '+(nz_—lm

Ve=1y g sin ¢(t — t), (68)

and extending over the region

912—2:—1)—2’3—6sin $t— 1) =L - 1)
n“— g K
<b-=V

< (1”—1{_—1;5—” sin gt — 1) + L (t — £). (69)

Outside this region, G is zero. As time progresses,
the edges of the pulse propagate away from the
center of the pulse. If the velocity of the medium is
low, the pulse edges travel away from the source plane
on both sides, as shown in Fig. 5. On the other hand,
if the velocity of the medium is high enough, the pulse
lies entirely on one side of the source plane, as shown
in Fig. 6. The transition velocity between these two
cases is found by setting the left-hand side of Eq. (69)

( X" Y' ) H
|/ 6 NONZERO ONLY
SQURCE__ |//%/ {N SHADED REGION
Z

F1G. 6. High-velocity case: 8 > f,.
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to zero. This gives
B = [(n* — D)sin® ¢ + 113,

which is the same as in Eq. (46). For g < f, we have
the result shown in Fig. 5, and for § > f, we have the
case in Fig. 6. The case § > §, might be called one-
dimensional Cerenkov radiation.

(70)

6. ONE-DIMENSIONAL HARMONIC GREEN’S
FUNCTION

For this Green’s function we choose an infinite

plane source the same as in the previous section except
with harmonic time dependence:

source term = 8(y — y’)e’". (7D

G again has no x or z dependence, and making the
substitution of Eq. (38), we find from Eq. (15) that g
satisfies

d’g 0g

b8 — jwe2E 4 w®dg = 6(y — ).

oy* oy
We solve this equation with the same transformation
as in Egs. (40)—(43). Thus we find g, satisfies

(72)

b—22 + kigy = € (y — ¥). (73)

a 2
Since both b and k% change sign at § = §,, as discussed
below Eq. (44), we again have two cases:

Case 1. < pB,. Then b >0 and k2> 0, and
making the substitution of Eq. (48) gives

L e '
Ko = 50 = 33)

From the time-dependent Green’s function in Eq. (67)
and the fact that for the case f < f, the wave fronts
propagate away from the source plane in both
directions, it is clear that the boundary condition for
Eq. (74) is that g, represent outward-going waves at
Yo — £ 0o0. Hence the solution is

0 0% +
a)’o

(74)

—ay’

" 2jky(bh)

exp (_jk1 Yo

) oo

or, after substituting for y, and using Eq. (40a) for g,

we have
a{y—y’)

2jky(b?)

k )
exp (—Jb—;ly -y I)- (76)

Case II: § > f.. Then b < 0, k? < 0, and we may
again make the substitutions of Eq. (52). Equation

R. T. COMPTON, JR.

(73) then becomes (k3 > 0, k, > 0):

1 a oy’ ’
?+mo——ew@—y) (77)
or, with
V2 = kyy, (78)
82 ,
a ? + kzgo —kye™ 0(yy — ksy'), 9
Va2

the same type of equation obtained in Case I. For this
equation, however, we must be careful to note that
the boundary condition is different than for Case L
From the behavior of the time-dependent Green’s
function for 8 > f,, it is clear that the boundary
condition for Eq. (79) is

(fory > y'), (80a)

since a source at y = )’ cannot excite any fields to the
left of the source plane (see Fig. 6). Since 0%g,/dy2
has a delta-function singularity at y, = kgy’, g, itself
is continuous at y, = k3)’, and hence it is also
required that

8 =0,

g =0, for y, <ky

at y, = kgy'. (80b)

The solution for Eq. (79) subject to Eqs. (80) is

8 = {“’ ki:u sin ky(ys — ksy'), ya > kay', (81)
0, Y2 < ksy',
or, from Eqs. (40a), (52), and (78),
&)
g_{ (bkz)é f(y—Y), y>vs (82)

y<y.

Here we again find that g is finite everywhere, and
also has zeros at

Kby — n=0,1,2,---, (83)

i.e., on planes spaced equidistant from the source
plane.

y') = nm,

CONCLUSION

The one- and two-dimensional Green’s functions
have been found and are given in Eqgs. (31), (51), (59),
(67), (76), and (82). As in the three-dimensional case,
it is found that the transition between ordinary
radiation and Cerenkov radiation occurs when the
velocity is high enough that the time-dependent
Green’s function lies entirely on one side of the source.
In that case, a harmonic source produces wavefronts
which interfere, thus causing the harmonic Green’s
function to have a standing-wave behavior. Below the
Cerenkov velocity, the harmonic Green’s function
exhibits the usual traveling-wave behavior.
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Several problems in linear transport theory have been solved involving more than one dimension. We
have considered the diffusion-length problem in a slab system and have studied how the flux in the trans-
verse direction varies as a function of distance from the source. The solution is found to consist of an
asymptotic term, composed of a finite number of harmonics, plus a transient which is nonseparable in the
x and z coordinates. When the slab is sufficiently thin only the transient term survives and the concept of a
diffusion length loses its value. A method for overcoming this difficulty is presented. In another problem,
the thickness of the slab is allowed to become semi-infinite and the effect of decay in the z direction on the
emergent angular distribution and surface flux are assessed. By approximating the flux in the y and z
directions by a function of the form exp {iB,y + iB,z} and solving the resulting one-dimensional problem
in the x direction exactly, it has been possible to obtain a statement of the critical conditions in a bare
rectangular parallelepiped system. The application of this method to the diffusion length problem in a
system with a rectangular cross section is discussed. Finally, by comparison with the exact solution for
the slab, we estimate the accuracy of a reduced Boltzmann equation deduced by the author in a previous

publication.

1. INTRODUCTION

In the field of one-dimensional, one-speed linear
transport theory, nearly every conceivable problem
has been or can be solved exactly. The Wiener—-Hopf
technique,!* the oldest method for dealing with these
problems, has been employed in the past, although
more recently the method of singular eigenfunctions
devised by Case® has assumed importance. We will
not list the many papers dealing with applications of
Case’s technique, but simply refer the interested
reader to the publications of the past five years
appearing in Annals of Physics (New York) and Journal
of Mathematical Physics.

Once we leave the one-dimensional problem, and
consider simultaneously the effect of particle-density
variation in another direction, the problem becomes
exceedingly complex. Progress has been made, how-
ever, by attempting to reduce the three-dimensional
transport equation to a pseudo-one-dimensional
one.* This reduction may be achieved if the spatial
variation in two of the three orthogonal directions is
approximated by a known function; for example, by
the asymptotic flux exp {if -r} or exp {—»z}. The
Boltzmann equation may then be reduced to one in a
single space coordinate, the effect of the other direc-
tions entering via a single parameter, e.g., a transverse
buckling or a spatial-decay constant.

In a previous publication,* we have considered this
problem quite generally, including the effect of
energy transfer. As an example we obtained an

! G. Placzek and W. Seidel, Phys. Rev. 72, 550 (1947).

?S. Frankel and S. Goldberg, Atomic Energy Commission
Document 2056 (1945).

3 K. M. Case, Ann. Phys. (N.Y.) 9, 305 (1967).

4 M. M. R. Williams, Nukleonik 9, 305 (1967).

exact solution for the one-speed Milne problem in a
finite prism, the transverse leakage being allowed for
by a buckling. This problem has also recently been
solved by Kaper® who used the equation derived in
Ref. 4 but employed the techniques of the theory of
generalized analytic functions. Mitsis® has solved
critical problems in infinite cylinders and spheres, and
some problems in two dimensions have also been
considered by Smith™® in connection with certain
radiative-transfer situations.

Progress has also been made in the general energy-
dependent problem (and as a special case the one-speed
problem) of the diffusion-length experiment.® It has
been demonstrated that a diffusion-length, ie., a
discrete eigenvalue, ceases to exist when the transverse
dimensions of the system are sufficiently small.

Apart from one or two special problems of point
sources,'0-1! the discussion given above appears to
summarize the progress to date on solutions of the
transport equation in more than one dimension. In
this paper, we propose to extend the work described
above to include criticality and diffusion-length
problems in rectangular parallelepipeds. The criticality
problem is solved approximately by assuming an
asymptotic exp {if - r} variation in two of the orthog-
onal directions and treating the other one exactly

5 H. Kaper, ‘“‘Elementary Solutions of the Reduced Three-
Dimensional Transport Equation.” Submitted to J. Math. Phys.
(to be published).

8 G. Mitsis, ANL 6787, 1963.

7 M. G. Smith, Proc. Cambridge Phil. Soc. 60, 909 (1964).

8 M. G. Smith and G. E. Hunt, Proc. Cambridge Phil. Soc. 63,
209 (1967).

® M. M. R. Williams.'Symposium on Neutron Thermalization and
Reactor Spectra)’ Ann Arbor, Mich. (1967), paper SM 96/3.

10 J. P. Elliott, Proc. Roy. Soc. (London) A228, 424 (1955).

11 R, C. Erdmann, J. Math. Phys. 8, 1040 (1967).
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(this will also include the pulsed-neutron problem).
The diffusion-length problem will contain no approxi-
mations for the case of a slab with exponential decay
parallel to its surfaces, but to obtain tractable expres-
sions we shall have to make one or two reasonable
assumptions. Our method of attack is based upon a
replication property discussed by Case!® of the
integral form of the neutron-transport equation which
reduces the problem to the solution of certain singular
integral equations.

2. THE BASIC EQUATION AND PROBLEMS
UNDER DISCUSSION

The neutron density p(r) in a non-re-entrant body
is described by the following integral equation?3:
exp {—jr —

— ’ lJ'} ’ /

where distance is measured in units of total mean
free path / and ¢ = [[ls, I, being the scattering mean
free path. S(r) is a source.

Consider now Eq. (1) when the body is infinite, in,
say, the z direction, and of arbitrary shape in the x and
y directions. Let the source S(r) be of the form

S(r) = Q(x, y)i(2)

and take the infinite-medium Fourier transform of (1).
Then,®

x [¢¥(E, k) + 2], (2
where § is a vector in the x—y plane and
W(E, k) = f_m ¢ *o(r) dz. 3)

Ky(x) is a modified Bessel function.

We consider Eq. (2) in two specific geometries:
(A) for a slab of width 2a, infinite in the y direction
(i.e., no spatial variation in the y direction); (B) a
rectangular parellepiped of width 2a in the x direction,
and in which the flux shape in the other two directions
is approximated by the form exp {iB,y + iB,z}.

In Case (A), we can integrate Eq. (2) over y(— o,
©0) to obtain

W(x, k)
1 frexp {=(x — X)L+ 2Kk dv
T2 f_adx J:) a+ vzkz)* v

x [e¥(x', k) + Q(x))]. (4)

12 K. M. Case, Developments in Transport Theory, E. Inénu and
P. Zweifel, Eds. (Academic Press Inc., New York 1967).

13 B. Davison, Neutron Transport Theory (Oxford University
Press, London, 1957).
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In Case (B), which we consider only from the point
of view of criticality, the equation becomes homo-
geneous but otherwise it is identical to Eq. (4) with
k* = B? + B? = %, B? and B? being the bucklings
in the y and z directions, respectively; i.e.,

B, = /[2(6 + yo)l,
B, = /R + ),

)
©)

where 2b and 2c are the widths of the system in the
y and z direction, respectively. y, and z, are the
corresponding extrapolated end points, about which
we shall have more to say later.

We also consider briefly the diffusion-length problem
in which the flux distribution is treated exactly in the x
direction and approximated by the function exp {iB,y}
in the y direction.

3. REPLICATION PROPERTY OF EQUATION (4)

From the symmetry of the problem it would seem
profitable to seek solutions of Eq. (4) as a super-
position of terms of the type

cosh {f a+ ﬁ?kz)é}. %)

Operating on this function with the integral
operator defined by Eq. (4), we see that

¢ f " f exp {~|x — x'| (1 + »%3)¥v} dv
2J« Jo (1 + 23t v

x cosh {"T a+ ﬁzkz)*}
v

= cosh (g x)cfl___d_"__
¥ 0 V¥(o®)® — &B[7%)

1
_ 79 ety coen (E)
2 Jo va Y
g ey
+ , (8
l:ac/v + &F  afv— &/i} ®

where « = (1 + %} and & = (1 + %2,

Thus, the action of the operator reproduces the
original function, plus a distribution of it over »
between (0, 1).

If we take the spatial variation of the source in the
x direction to be a constant, i.e., @(x) = Qq, then we
can look for a general solution to Eq. (4) in the form

W(x, k) = S + a, cosh {i a+ vgkz)*}
Yo

+ L *4(3) cosh {’—: 1+ wzk")*} dr. (9)
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Inserting this expression into (4) and collecting
coefficients of cosh (x«/v), cosh (xe/v,), and the
constant term, we find

_ _Oy1/k)tan' k

= , 10
1 —(c/k)tan™" k (10)
1 dv
A =1 _— =
(7o) cfo 1Jz((xz /v2 _ OC(Z) /vg)
Lody
=1- 2f , 11
44 0 72 — 2 (1)

which defines v, and finally the integral equation

for $(v):
AG)O) + f »() ia(?- - °i,)_ dv

v v

1 n—1
+ _C'J‘ ’(/)(’V')i(g‘ + 0(-_) e»2az’/v’ dv’
2 Jo va\y v

i Lo (5 = 30)J oo () + Zann (42)]
+ [QO/(l + vzkz)(l - —;tan_l k):' —0, (12)

where ¢(v) = e*/vy(v).
Let us now define a new variable

_ o+ iyt
(1 + »*k3?

or v = wg(w)

(13)

in terms of which Eq. (12) becomes

Awg)®(w) + c f‘ o' g )D(w") do’
2 Jo o —w

e fl 'g(w)P(@) exp {—2a(l + K)o’}
2 Jo o+

do’

__cagw, [exp {a(l + kz)i/wo}
20 + kz)[

exp {—a(l + k?)*/wo}]

Wy +

- [Qo/u + k2)(1 - itan’l k)]

In Eq. (14) we have defined

A(wg)=1—§flm, (15)

-1 w—

Wy — @

-+

(14)

g(®) = {1 + (1 — o?)}?,
(w) = g(w)ylogw)), (16)
and

dv = (1 + k¥g¥(w) dw.
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We also note that k (the Fourier-transform variable)
is, in general, a complex number, thus w also is com-
plex. In the case under consideration, W¥(x, k) is
analytic in the k plane when it is cut from i to ico
and —ito —ico, apart from some poles at k = +ik,
(n=0,1,---,N), where k,<1. For |k|<1,
therefore, w is entirely real and varies from zero to »
as k,, varies from unity to zero. In our analysis we
assume that w is real and deal with the analytic
continuation to complex w (or k) later.

Equation (14) is a standard singular integral
equation which we write as

1_ . ’ ’
Ado)yw) + 5 [ LRI e, 1)

o — o
where @y =g® and A, = Afg. y' represents the
inhomogeneous term on the right-hand side of (14).
4. SOLUTION OF THE INTEGRAL EQUATION

Following the method used by Case,? the solution
of (17) may be written down directly as

Qy(w) = Ao(0)go(¢, w)y'(w)
1 J‘l Y(@)y'(@) do’

b

B X (0)[Ag(w) + }emie] 0w — o
\ (18)
together with the side condition
1

[ rw@ao=o (19)

The following notation is employed:
gile, ) = {Ad() + I}, Q0)

_ ewX(w)

vw) = Ay®) — temio”’ @1
X(@) = (1 - o) exp {T@)},  (22)
P(w) = _1— 1n wa') do’ ’ 23)

2wiJo o —w

Ay(®) — }emio”

X~ (w) is the value of X(w) as we approach the cut
(0, 1) from below.
It may readily be shown that

1 - Ag(w)golc, w)
X (w)[Ag(w) + temio] X(w)

(25)
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and hence that Eq. (18) reduces to
(1 + kHP(w)g(w)
= —}cgo(c, )X (—w)[1 — (c/k) tan™" k](w5 — @?)

X [aowo{wx (:%1, exp (a(l + k)Hwp)

X( wo)

+ 222 ey (—a(l + Ko, )}
Wy +
o [ 0 X(—0)D(w')
+(1+k)ﬁ e Ao

x exp {—2a(1 + kz)’}/w’} dw’:l, (26)

with @ = »(1 + k2}/(1 + »*k*)t. Equation (19) simp-
lifies to
Qo
1 —(c/k)tan™ k
+ Jeagwol—X(wo) exp {a(l + kH¥w,}
+ X(—ap) exp {—a(l + k}fwy}]

+ el + K f Dy ) X(— o)
—2a(1 + kz)*} p

wl

X exp { (27)

Substituting for w, (27) becomes
Qo
1 — (c/k) tan™' k
cal(l + 2 T — 31 — o}
[1 — (c/k) tan™ k]’-f[ 20% — 1) ]
x cosh {(@ + xp)(1 + 2k®)}/w,}

YO+ R) o
+ & f 90 T X

x exp {—2a(l + v} dv, (27
where we have defined x, as
— X(w6)/ X (— wp) = exp {2xo(1 + K2/} (28)

In arriving at Eq. (27) we have used the relation

X(0)X(—w) = [1 — fewg(w) log {%}]

X [(1 - itan“1 k)(wﬁ - wz)]_l

and the limit of this as @ — w,, i.e.,

X (o)X (—wo)
_ (1 + v2k>*? |:1 — 931 — c)]
[1 — (c/k) tan™ kPp2(1 + kB 202 —1) |
(29)
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Equation (9) together with Egs. (26) and (27)
constitute the Fourier transform of the neutron
density in the z direction.

5. INVERSION OF THE TRANSFORM
The complete spatial distribution p(x, z) is given by

p(%, 7) = = f C W dk. (30)

Inserting Eq. (9), we note the appearance of poles
at theroots of 1 — (¢/k) tan™ k = 0, i.e., k = +ifv,,

where
1 — }evy log (1}0 + 1) =0.
1"0 -

It is readily verified, however, that y(»,) = 0, and
also that

lim (S + a(k) cosh (x(1 + 2k} = 0,

k= £ifvg

hence the residue is zero, as we expect, since v, is the
diffusion length of the infinite-medium problem and
not of the finite medium one considered here.

Direct inversion of W(x, k) is difficult because it is
not possible to obtain explicit expressions for a, or
p(¥). We resort, therefore, to an approximate method
and neglect the terms involving (»), which are small
because of the term exp {—2a(l + +*%?)}/»}. Such a
procedure is not as accurate as in the one-dimensional
critical problem. This is due to the-fact that k is
imaginary, i.e., it is a Fourier-transform variable
that runs along the imaginary axis; thus & = 47 [k].
We see that ¥'(x, k) has a finite number of poles
k= xik,(n=0,1,---, N), where k,, < 1. Thus, as
k,— 1, the approximation becomes less accurate, but
still valid because the small v values in the integrand
remain effective. For |k| > 1, the integral, which
becomes multivalued, must be split as follows:

-exp {—2a(l — »? [k|?)E v} dv

&7
J
1
e
[l

For |k| near unity, the second term is expected to
be small and both may still be neglected. For larger
values of [k|, where the second term may become
appreciable, the contribution to the transient part of
p(x, z) is small anyway. On these nonrigorous, but
plausible, arguments we neglect y(») entirely. This
means, of course, that we cannot obtain information
near the surfaces x = 4a, but this defect will be
remedied in due course.

- exp {—2ai(? [k|* — 1)}/v} dv.
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Fi16. 1. Singularities in the & plane and inversion contour.,

We find now that g, is given by (27) with p(») =
and hence

_ Q0 [ e (Uk)tan"k 1
plx, ) = 2 f—ooe {1 — (c/kytan™t k(1 + vEk®)
1493 TP 202—1 7}
[ — (c[k) tan™ k} [ — %1 — C)]

cosh {(x/»e)(1 +”o"2)&} }dk (31)

cosh {[(@ + xg/r)L + 22kH)

We are interested in p(x, z) for z > 0, hence we
look for singularities in the upper half of the & plane.
The integrand in Eq. (31) is single-valued in the upper
half-plane if a cut is introduced from i to ico. In
addition, there are some simple poles given by the
roots of the equation

cosh {[(a + xg)/wl(l + Ik} = 0.

The general picture of these singularities is shown in
Fig. 1. The roots of Eq. (32) are given by

(32)

[(a + xfwl(l + 3Bkt = i(n + Hm.  (33)
Setting k = ik, , we find
= 1vj + B}, (34)
where
B, = 3(2n + Dmla + x,(ik,)] (35)

xo(ik,) is the extrapolated end point associated with
the transverse buckling B2 of the nth mode; it is
defined by Eq. (28) and may be written out explicitly
as

X, (k) = Yo To [7’0(1 + kZ)% + (1 + ’V?;kz)%]
0 201 + v§k2)i (1 + kz)% — 1+ ?’gkz)%
- v (7 9(y) dv
a0
with
9») = tan™* { cmrvf2 }
1 — $evlog [(1 + »)/(1 — »)]

From the numerical point of view it is more convenient
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to integrate (36a) by parts to get

Yo o1 4+ K+ (1 + 22k}
xo(k) = T3 108 o3 2ol
4(1 + »3k vl + k% — (1 + k™)
7 (! Do) dv (36b)
o (1 + 908 —
where
Do(v) = tan™" [2 _ iIog (1 + y)}
lmey @ 1~y
Hence .
2,2 _
xXoliky) = ——— :" T tan™* {—-——-———(%k" 12)%;
2(vok, — 1) ro(l — kn)

” fl Bo(v) dv
7 do (1 — v2k2)02 — 4%

It has been shown?® that discrete decay constants of
the diffusion length problem must be less than unity.
Furthermore, Eqs. (34) and (37) constitute a relation-
ship between k, and 2a, and therefore it may be
confirmed from these equations that, for a given a,
we find a finite number (¥) of roots &, less than unity.
As a decreases, the number N decreases, until finally
only a single discrete root &, remains. On decreasing @
still further, even this root disappears, which is in
agreement with the theorem proved in Ref. 9.

The exact value a¥ at which the Nth decay constant
disappears is given by (34) and (37) with k,, = 1. Thus

(37

ay = (N + Dm0i — = x),  (38)
where
'Vo 1 '19' O(V) d v
——t—s 39
M)4U—&+ La PR — 2 @

As an example, Fig. 2 shows 245 as a function of
« = y5L It is clear that at small values of absorption,
the “critical thickness” for the existence of a diffusion
length is about one mean free path; with increasing
absorption, a; increases accordingly.

1

01 05 1.0
F1G. 2. Slab width at which the fundamental mode disappears.
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It should be remembered that Eq. (34) is only
approximate since we have neglected (v). The
question arises then: What is the effect on aj of this
approximation? To assess this error we have found
values of af directly from the homogeneous part of the
integral equation (4). An eigenvalue problem for k,
results and is solved by a variational technique. It is
found that Eq. (38) is extremely accurate and therefore
we can have some confidence in our results.

Associated with the poles &, are the residues. These
may be obtained directly from (31); thus denoting the
contribution to p(x, z) from the residues by pae,(x, 2)
we find

Qo 208 —1) TN _ exp(—ku2)
Pasy(x» Z) = —l: 2 :] 2 2}
clLl —vi(1 —¢)d »=0B, D (1 + Bv)
% cos (B,x) - (40)
e () -1
-— log -1
2k, 1-—k,
where
D, = [By. + (n + H=B;]
and
. _l__ dxy(k)
= Tak
From Eq. (36) we find
_ %%
Xn = a2z
2(1 — K2)(2kE — 1)
I R {(vﬁkf, - 1)*}
232 — 1)} vl — K3}
2 1 2,!9, d
EPJ\ /‘2 Oz(l;) 2/" = (41)
mJo (1 — ko) (vo — u°)

We note that for a < af, p,(x, 2) = 0.

The contribution to p(x, z) from the integration
around the contour is miore difficult. However, by
considering the closed contour C in Fig. 1, and
allowing R — oo, we find that

P(xa Z) = Pasy(x’ Z) + Ptrana(x9 2)7 (42)
where
{00
I A TS

Xid
C, and C; represent symbolically the values of the
integrand in Eq. (31) along C; and C;. Several of the
terms in Eq. (31) take on different values at each
side of the cut. For example, setting k = is, we find
along G4

c, 4 c 1 im
— =t k=1—=tanh |~ —
1 kan s '(s)+2s

=1—cX + 2, (44)
2s
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(1 + 2k = it — DY,
xo{k) = x,(5) — ixy(s),

cosh {-——-——(“ X (1 4 vgkz)%}

Yo

(45)
(46)

2.2 1y}
=cos{(1‘ﬁ—~—~1—)~
Yo

=P +iQ,

(a + x;, — ix2)}

47
where

P = cos A cosh B,
Q = sin 4 sinh B,

a=1 3t — Da + xy),

Yo
B =102 — iy,
Vo
Along C; these functions take on their complex
conjugate values.

Inserting (44)-(47) into (43), and using considerable
algebra, we obtain
Pt =2 [ &

fransi 21 s (1 = ¢X)? + (n2cY4sH)
x [1 + I(s) cos {(v3s* — D¥x/we}], (48)

e—sz

where

1) = 2_[*___—._1__.]*

eml 1 — (1 — )
{QOITEY — 1 4 X — PO[T()! + 1 — T}

% (42352 — DHPYs) + QX)) |
(49
and
T(s) = (1 — cX)? + mic?ds?.
More explicitly
P(s) = cos {—1- (v3s® — D¥a + xl)}
Yo
x cosh {(yﬁsz -t 3‘2}
Yo
Q(s) = sin {—‘— 02t — D + xl)}
Yo
x sinh {(v3s2 — i "f}
0
P? 4+ Q% = cos® {-!- (vis® — D¥a + xl)}
Yo
+ sinh {(v?,s2 — i ’f} (50)
0

We note that py.,. reduces to the well-known
infinite-medium result when g — 0.
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The rather complicated expressions arising in Eq.
(49) are due mainly to the square-root term in Eq. (31),
and also because x,(k) is discontinuous across the
cut. Let us now demonstrate how x,(s) and x,(s) are
to be obtained in terms of real integrals.

Along C; we find that

Yo
2i(ns* — 1)

e(s* — DY + (fs* — D)
< og 3= D! ]

xo(k) =

(L
+—f o) du
T Jo

X [0 — )1+ 9)}(s — Ywte™ 2 (51)

Simplifying the first term, and splitting up the
integral term into # Z 1/s, we obtain

xo(k)

™ % f”s o) dp
A — D mdo (f — pd(1 — Sty

i{ Yoo [(Vﬁsz — DY (st — 1)%]
408 — 1) L0t — DY — p (s = D

% f Do(ye) dp |
1
7 Jus (vg — p)(s"p® — 1)

= x;(8) — ixy(s).

(52)

We note that x,(s) increases uniformly from zero at
s =1, goes through a maximum, and eventually
tends to zero as s — 0. x;(s) on the other hand is
equal to x,(i) at s = 1, then it goes through a maxi-
mum in the neighborhood of s = 1, eventually tending
to zero as s — co. Table I lists some values of x,(s)
for two values of «. In Fig. 3 we have plotted x,(ik,)
from k, = 0.91 to 1.0. x,(ik,) appears to be an extrem-
ely weak function of k, below 0.9. In the same figure
we also give x,(s) for s = 1.0 to 2.0.

TasLE 1. Values of x,(s) for x = 0.1, 0.5.

s k=0.1 k=05
1.0 0 0
1.01 0.0310 0.0423
1.03 0.0658 0.0893
1.05 0.0932 0.1259
1.08 0.1278 0.1709
1.1 0.1478 0.1964
1.2 0.2256 0.2909
1.5 0.3477 0.4218
1.8 0.3975 0.4653
2.0 0.4126 0.4753
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Fi1G. 3. Extrapolated endpoint as a function of buckling and
absorption. x,(s) is the continuation for k¢ > 1.

6. SURFACE DISTRIBUTIONS

The expression for p(x, z) given by Eq. (31) is an
asymptotic one, in the sense that it neglects the effects
of transients induced by the surfaces x = +a. For
example, p(+a, z) is not given at all accurately by
Eq. (31). We can, however, remedy this and obtain
an expression for p(4a,z), which is accurate to
Ofexp (—2a)}, directly from the integral equation
(26).

Let us consider Eq. (9) rewritten in terms of the
w variable

Q,(1/k) tan"k

Yi(x, k) =
1 — (c/k)tan™* k
+ a(k) cosh {x(1 + k}/we} + (1 + k?)
1
x | exp (=at1 + B 0)0gwg)
0
x cosh {5 (1 + k2)%} do. (53)
w
Thus the surface distribution at x = —a is given by
—1
W(—a,k) = Qo(1/k) tan™ k

1 — (c/k) tan' k
+ ao(k) cosh {a(1 + k¥}/w,}

+ 3L+ R f Dyw)g(@)

X [1 + exp(—2a(l + k) /w)]dow. (54)

Neglecting the terms Ofexp (—2a---)} in (54) and
(26) and substituting g from (26) into (54), we
obtain

Qo(1/k) tan™' k
1 — (c/k)tan' k
+ ay(k) cosh {a(1 + k?}/w,)
— 3a,[T(wy) exp {a(l + k¥ oy}
4+ T(—wg)exp{—a(l + k¥ we}l, (55)

Y(—a,k) =
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where
_ c (! wo dw
Tlow = X0 f (0 — W)X (@)[Ag(0) + Fiemo]
(56)
Using the integral,*
% (—w) (‘ i _ t dt .
2 Jo (1 + o)X (OH[A() + %imct]
= X(—o)(1 + w) -1, (57)
we readily find that
1
T(wy) =1 — X(wo)[X—(O—) - w{'. (58)

Then, with q, from (27), we obtain the very
simple result

WY(—a, k) = &

[tanh {1+ 8%a + x)r) 1]
: :

{1 — (c/k) tan~ k}
(59)

Observe that the zeros of the denominator at +i/»,
are exactly cancelled by those in the numerator.

We do not invert the transform (59) completely but
simply give the asymptotic part, viz.,
_Q_O N (_)n
¢ = D,(1 + v}BY*

c 1+ k 4

x exp (—k,z){— log |—2} — 1172, (60
We also note that for £ = 0 and @ — o, Eq. (59)

reduces to the well-known half-space constant-
source value of

¥(~ o) = (@)l — o)t - 1].
This completes our mathematical analysis of the
diffusion-length problem in a slab.

7. PHYSICAL CONSIDERATIONS

It is of some interest to consider Eq. (42) from a
physical point of view. If, for example, our problem
represented some experimental situation to measure
the diffusion length v,, we would make measurements
at distances from the source such that p;,,, was
negligible. Then, allowing the higher spatial harmonics
in p,., to decay, our final density distribution would
be of the form

p(x, 2) ~ -Q—"[

pasy(—a, z) =

202 —1) 7}
1 — 251 — C)}
exp (—kyz) cos (Byx)

¢ 1+ k L
By(1 + vng)%Do{Z—k_o log (1_——-—k::) — 1}
(61)

14 A. Leonard and T. W. Mulliken, ‘“Solutions to the Criticality
problem for Spheres and Slabs,” Rand Corp. Report RM-3256-PR,
1962,

c
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where
and
By = w/[2(a + x4(iky))].

Experimentally, we would measure k,, guess a
value of xy(ik,) and hence obtain »y. It should be
noted, however, that x,(ik,) is itself a function of kg
and so a little iterating is necessary. This technique is
a fairly standard one for diffusion-length measure-
ments. What happens, however, when a < aj?
In this case p,,, = 0 and p(x, 2) = pyyys(x, 2). The
question remains as to how », is to be extracted from
this nonexponential function.

A possible way out of this dilemma stems from the
observation that, for a < gy, I(s) » 1 and also, for a
not very much less than aff, I(s) has a sharp peak near
s = 1. This sharp peak arises from the fact that we can
find a root s = s, of P(s) = 0, and at the same time
Q(s,) is small. Thus, in the neighborhood of s,, I(s)
can be approximated by the following expression:

(62)

1(s) = 9*(s) ¥(0)/[(s — 50)* + ¥*(s0)],  (63)
where $*(s,) is a constant and we have expanded
P(s) = a*(8o)(s — 50)*
and set
v(50) = Q(s0)/2(s0)-
8o is the root of
cos {[(03s* — D)¥/rel(a + xy(s)} = 0
or
so = 1/v + B, (64)
where
By = (2N + D)= (65)

T 2a + x,(s0)

We are interested in the smallest Sy, viz., f,.
It is clear, therefore, that for s,~ I, but slightly
greater than it, we can write

Ptrans(x5 Z) =~ ﬁf(so)?(so)

XJ"” exp (—sz) cos {(v3s® — Dx/v,} ds
1 (s — 50 + yg(so)

y

(66)
where 87 = 9*[2s, - I(s,).

If y is sufficiently small, the Lorentzian function
can be approximated by a delta function d(s — 5;)
and
(67)

Prrans(X, Z) = const €% cos (fyx).

Equation (67) is similar in form to the asymptotic
solution given by Eq. (61). The main difference is that
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B, has replaced the conventional buckling B,. Again,
the only difference between B, and B, is x,(s,) and
xo(ik,), respectively. From Fig. 3 we note that x,(so)
is the apparent continuation of x,(ik,) for values of
ko > 1 (whether it is the analytic continuation is not
yet clear). It would appear then that, even if the
dimensions of the system are too small to sustain an
asymptotic solution, the neutron density maintains a
pseudo-asymptotic character but with a modified
transverse buckling. Of course, this approximation
cannot be carried too far and breaks down if y is not
sufficiently small. In that case, the flux distribution
does not fall off exponentially from the source, but
progressively changes in shape in the x direction as z
increases.

It is worth noting that these remarks about the
pseudo-asymptotic nature of the transient term also
apply for energy-dependent problems where the value
of 2a¥ may be significant, e.g., of the order of one
meter.® The concept of a pseudo-asymptotic distri-
bution is also discussed by Corngold and Durgun!®
in connection with the pulsed-neutron experiment.

8. ANGULAR DISTRIBUTIONS

The angular distribution in our slab system may be
obtained from the original integro-differential form
of the Boltzmann equation, i.e.,

[n 2 ia- nz)’}{cos 02 +sin0 i} + 1} fr,R)
Ox dy dz

= (1/4m)[cp(r) + S(r)], (68)

where p(r) = [ dQf(r, &), f(r, &) being the angular
flux defined more explicitly as

f(l‘, 9) =f(x!y’ Z, 1, ®)

The angular coordinates © and # = cos & are shown
in Fig. 4.

Remembering that there is no variation in the y
direction and taking the Fourier transform in the
z direction, Eq. (68) becomes

[’7‘8‘ + 1 + ik(1 — 7®? sin O]F(x, k, 7, ©)

ox
= (1/47)(c¥(x, k) + Qo). (69)
where

Flx, ko ='[:e_“‘zf(x, z,--)dz. (70)

Equation (69) may be integrated with respect to x,

15 N. Corngold and K. Durgun, Nucl. Sci. Eng. 29, 354 (1967).
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F1G6. 4. Angular coordinates of the neutron motion.

when we find

.f(xa k; 7]’ ®)
- L[ dx’'
477’)’] —a
xexp{—gﬁ;lﬁ)[l+ikﬂ-—n3%ﬁn®q
7
X [cllj'(x/’ k) + QO]’ 77 > 0! all ®9 (71)
and
f(xﬂ k’ 17’ ®)
1 [ =
= — — | dx'exp {u [T+ ik(1 — nz)%sin @]}
47777 z n
X [¥(x', k) + Qol, <0, all®. (72)

Setting ¢¥'(x, k) + O, = ®(x, k), we see from the
definition of the Fourier transform that

fx, 2,3, 0)
= L dx’

477"] —a
x — x")

% e—-—(m—z’)/'l(l)[x” z — ( (l — ’)72)% sin 9],

>0 all® (73)

and a similar expression for 9 < 0. ®(x, z) is the
Fourier inverse of (T)(x, k). We see therefore that the
angular distribution may be expressed directly in
terms of p(x, z), which we have already obtained.

The angular distribution at the surface x =a
comes from Eq. (73) and is

f(a, z,m, )

a
—_ __1__ e”(”_z”"q)lix, 7z —
47717 —a

(@ —x)
7

a- 172)% sin @] dx,
7>0, all@. (74)

The angular distribution within the prism may be
obtained if Eq. (42) is substituted into (73). Evaluating
the integral involving Q,, we find

f(x,2,7m,0) =f(x,2, 1, 0) + fulx, z, 5, ®), (75
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where f, is the contribution from the uncollided
neutrons coming directly from the source, viz.,

f{x, z,m, ©)

- 9 : ex
47(1 — n*)? sin O

z
p{ (1 — n»} sin G)}’
0<z<@ D _tsne,
7

=0, otherwise. (76)

The limit on f; is a mathematical statement of the
physical fact that uncollided neutrons, leaving the
source plane at position x and angular coordinates
(¥, ), will not be found for

z> (a 4+ x)(1 — n)¥ sin Of.

This value of z is just the distance from the source
plane at which the neutron emerges from the body.

far is the contribution from multiply-scattered
neutrons. Its form is rather complicated but a concise
expression can be obtained if we write

N
p(x, z) = > A,e**cos B,x
=0

+ J‘wA(s)e“”[l + I(s) cos f(s)x] ds (T7)

in an obvious notation. Then we find, for > 0
and all O, that

Su(x, z,7, ©)

c Y A,F.n 0,x)exp(—k,z)

4 %0 [1 — k(1 — ) sin OF + B2
(" A(s)e™

41rJ1 [1—s(1— 772)’} sin @]

X [1 — exp (— (E?){l — s(1 —p»tsin @})] ds

< f‘” A(S)I(s)F (n, O, x) exp (—sz) ds . (8)
dn i [1 — s — p»¥ sin OF + 262

where

F,(n, ©,x)

=[1—k,(1 - 1;2)i sin ®] cos B,x + 5B, sin B, x
— [(1 — k(1 — )} sin ©) cos B,a — 5B, sin B,a]

X exp { - (ﬁ———+x) I =k, —g)sin 0], (79)
”

For F, we simply replace k, by s and B, by g(s)in (79).
When there are no discrete roots the term involving
the summation is absent. It may then be verified that
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the angular distribution, as described by the integral
term in (78), exhibits a marked anisotropy along the
Z axis.

When the fundamental term n = 0 exists, and is
well established, the angular distribution will be of the
following asymptotic form:

Ae*Fy(n, O,
fM(x’ z, s ®) ~ f_ of 2 (;(17 x2) 2p2’
4 [ — ky(1 — %°)* sin OF + 5°B;
(80)

9. THE HALF-SPACE PROBLEM

If the origin of coordinates is shifted so that x = 0
and x = 2q are now the surfaces of our slab, we may
obtain the half-space results very easily. The situation
is then of a half-space with spatial decay parallel to its
free surface.

The form of the flux in this problem is as follows:

W(x, k) = S + by exp (—xa,/v,)
+J; &(v) exp (—xwfv) dv. (81)

Use of the replication property then leads to the
following singular integral equation for ¢(»):

1,7 ’ ’

Do) Ag(w) + ¢ f M
2Je o —w
Qo

T (1 + KDL — (c/k) tan™* k]

bocwo

T+ k2w — )

(82)

where g3¢(wg) = ©,.
This equation may be solved exactly, the result

being

Qo 1

bo = — (83)
1 — (¢/k) tan™ k cagX(wy)
and
(1 + k3Oy(w) = —1Qgo(c, )X (—w)(w, + ®).
(34)

Hence we have

Qu(1/k) tan* k

Y(x, k) = —
[1 — (c/k)tan™" k]
y {1 4k oxp{=x + K)o}
tan— k cwoX(we)

~ 10, f gole, @)X (—w)(wo + )

x exp {—x(1 + k) /w}dw. (85)
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Similarly we can obtain the surface flux

(0, k) = %’[{1

and the emergent angular distribution

. 3
—I;tan“k} —1], (86)

7, k, 1, ©)
) —1
4m [1 — (c/k) tan™ k]

—1 1
X 2} ki’
[ + n(1 + K°)°] X[—(n/E)(A + k°)*]

where £ = 1 + ik(1 — 7%)? sin ©.

Clearly, as x — oo, ¥'(x, k) goes over to the well-
known infinite-medium result'® given by the first
term in Eq. (85). For x near the surface, this simple
expression is modified by leakage. We demonstrate
the effect by performing the inversion of ¥(0, k)
which we write in the form

=1 i e

1
X i 1} dk, (88)

where k = 4 ifv, are the roots of
1 — (c/k)tan~1 k.

v, 18, of course, the conventional diffusion length.

The quantity in the square brackets in the integrand
of Eq. (88) has no poles or zeros for —1 < Im (k) <
1, but, due to the arc tangent, it has branch points at
k = 4i. The function may be made single-valued,
however, by introducing two cuts in the k plane
extending from i to ico and —ito —ico. Let us denote
the function by F(k) and its inverse by f(z). The other
factorin (88), i.e., (k* + vo—z)—i has the Fourier inverse
Ky(z[v,), where Ky(x) is a modified Bessel function.
From the convolution theorem, therefore, we may
write (88) for z = 0, as

p(0,2) = % f (j—')[f(lz+z'1)+f(|z—z'mdz',

p(0, z) =

(39)
where
f(z)= 1 f e**F(k) dk. (90)
271' —00
Performing the integration leads to
1@ = e as o)
1
where
2 I\
Iy(s) = ‘L(sz — —2) (1 — X + THiTE (92
™ vy
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Insertion of (91) into (89) leads to

p(0, z) = ﬂf Io(s )m
x log {svo + (s — 1)%;

svp — (s* — 1)

77-f
b=

1

No simple expression can be obtained for (93).
We note, however, that the second term dominates
after about one mean free path from the source and
decays at least as fast as exp (—z/vy). It is interesting
to note also that, although the total flux far from the
free surface (i.e., large x) behaves asymptotically for
large z as exp (—z/v,), the corresponding surface flux
does not. Thus the ratio p(x, z)/p(0, z) does not
become independent of z as z-— co. It must be
concluded, therefore, that the nature of the source
affects the surface flux (and angular distribution) of
the half-space for all z. This is not the case in the finite
slab for which the ratio discussed above becomes
constant provided k, exists.

I(s) ds
1s(s® — ™)
93)

exp (—yz/vy)
o* — 1t

10. CRITICAL PROBLEM

As we discussed in Sec. 2, the present method can
be used to obtain approximate criticality conditions
in rectangular systems. The critical problem for a
rectangular parallelepiped of sides a, b, ¢ and in which
the distribution in the y and z directions can be written
exp (iB,y + iB,z) is described by the following eigen-
value problem:

W(x, f) = Efadx’
exp {—Ix — ¥| (L + '8 o} dv
x| s 2, B)
94
where % = B2 + B%. o9

Equation (94) may be solved directly by the method
described in Sec. 4. Indeed, the solution of Eq. (14) is
simply carried over with k% = 2 and Q, = 0. Then
the flux distribution is given by

Y(x, B) = a, cos {x (%2 - ﬂz)%}

0

+J:¢(v) cosh {x(1 + v2ﬂ2)§/v} dv, (95)

where we have taken vy, = i|v,| because ¢ > 1 for
criticality.
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At the same time, the criticality condition is given
by

cagl — 93Dt [ale — 1) — 17}
[1 — (¢/B) tan™ ﬁﬁ[ 21 + %) ]
X €OS {(a + Xo) (vl?, - /32)%}
f e )(”1(?,2’? X(—o)

x exp {—2a(l + v*p) '} dv' =0, (96)

with an analogous expression for y(») obtained from
Eq. (26).

In the end-point approximation,
condition is simply

cos {(a + Xo) (;1?, - ‘82)%} =

2a = |vy| m(1 — 92BHF — 2x4(if).

Recalling the definitions of B, and B,,we sec that
Eq. (97) constitutes a relationship between the
dimensions of the system and its nuclear properties.
The greatest uncertainty in (97) lies in the extrapolated
end points y, and z,. Even this can be removed,
however, if we assume a cubic system a =5 =,
for then x, = y, = z,. It is also interesting to note
that the correct extrapolated end-point to use in the
definition of B, is that corresponding to B? + B2,
ie., x,[i(B2+ Bz)%] Similarly, y, is defined as
xo[i(B2 + Bz)%] and z, as x,[i(B2 + B2)?}. Thus Eq.
(97), together with the definitions of B,, B,, and B,
constitute four equations for »,, B,, B,, and B,, given
a, b, and c.

For systems greater than about 2 mean free paths,
Eq. (97) gives a very accurate description of the
criticality condition. Corrections to this formula may
be obtained from (96).

The angular distribution both within the body and
on its surface may be obtained very easily from the
methods described in Ref. 4.

the criticality

or
o7

11. EXTENSION OF DIFFUSION-LENGTH
PROBLEM TO RECTANGULAR CROSS
SECTION

Earlier we considered the diffusion-length problem
in a slab, infinite in the y direction. Now, although it
is not yet possible to solve the complete two-dimen-
sional x—y problem, we can approach this by Fourier
transforming Eq. (2) in the y direction and associating
the square of the Fourier-transform variable with the
buckling BZ. This gives a first approximation of the
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effect of leakage in the y direction, whilst the distri-
bution in the x direction is treated exactly. We shall
not carry through the analysis of this problem but
simply state the equation to be solved. In fact this is
Jjust identical to Eq. (4) with the exception that k2
is replaced by k® 4 BZ.

12. LIMITATIONS OF THE REDUCED BOLTZ-
MANN EQUATION
Our analysis for the slab problem, which may be
taken as essentially exact, enables us to assess the
accuracy of the reduced Boltzmann equation suggested
by the author in Ref. 4. Making the exp (iB,x)
assumption in Eq. (4) leads then to

Qol1/2(k* + B} tan™ {(k* + BY?)

1 — [c/2(k* + BY}Jtan™ {(k* + BAYY

which is to be compared with the exact expression (31).
The singularities of W(k) consist of branch cuts

extending from i(1 + B2} to ico and —i(1 + B2}
to —ico, and also two poles defined by the roots of

¥(k) = (98)

————tan™ {(k* + BDE) = 0. (99

Calling these poles ;];z‘ko, we see that

k2= = + B.. (100)
v
Evaluating the Fourier inverse leads to
vg — 1)e™% cos Bx
P(x, Z)= QO(O - 2)% - x
cv(1 + vB2)*[L — wy(1 — )]
9]
+ f e **I(s, B,) ds cos B,x, (101)
a+B5t

where I(s, B,) is rather lengthy and will not be given.

Comparing Eq. (101) with Eqs. (40) and (48)
highlights the approximations involved in the asymp-
totic assumption; these are: (1) no harmonics are
predicted; (2) transient term has lower limit (1 + B2)},
not unity; (3) transient term is separable in z and x;
(4) the amplitude of the pole contribution is incorrect;
(5) no limit on the transverse dimensions for the
existence of k, are available, although such a bound
may be obtained by imposing the condition of non-
negativeness of the angular distribution, and leads to
ko > 1.

These failures would seem to limit the use of the
reduced Boltzmann equation considerably. However,
such a view would be pessimistic for it is found that,
provided #3B? is not too near unity, the expression
(101) gives an adequate representation of the neutron
density and, in particular, the angular distribution
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within the body. Moreover, the diffusion-length
problem is a severe test of the reduced equation which
may be shown to be much more acceptable for
criticality and half-space problems, and certainly
better than the infinite-medium approximations used
hitherto.

13. SUMMARY

In this paper we have developed methods for
dealing with the transport equation in more than one
dimension. It has been demonstrated that important
effects can arise due to a coupling between the different
space dimensions. These effects would be missed in
any asymptotic approximation.

An accurate formulation of the critical conditions
in a rectangular parallelepiped has been derived
which should provide a useful benchmark problem
against which to compare approximate techniques.

The methods discussed above can be used in other
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branches of physics in which a linear transport
equation arises, and, in particular, radiative-transfer
and rarefied-gas dynamic problems.

Cylindrical geometries may also be treated and
these are the subject of a subsequent paper.

Finally, it should be mentioned that the problems
discussed in this report may all be derived via the
Wiener-Hopf technique. We have used the present
method since it is more readily generalizable to more
complicated geometries.

Note added in proof: Since submitting this paper for
publication, the author has become aware of the work
of Bareiss and Abu-Shumays (Argonne National
Laboratory Report 7328). Whilst this work does not
deal explicitly with the problems discussed above, it
does throw considerable light on the structure of the
eigenvalue spectrum of the three-dimensional Boltz-
mann equation.
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An integral equation is derived which describes the diffusion of neutrons from a plane source perpen-
dicular to the axis of an infinite circular cylinder. The equation is solved by a Fourier transform in the
axial direction and by the subsequent solution of a singular integral equation for the radial distribution;
this is accomplished as a result ofa certain replication property possessed by the original integral equation.
We have inverted the Fourier transform to obtain the simultaneous r — z variation of the neutron
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may be obtained. By approximating the density along the axis of the prism with the asymptotic distribu-
tion, it has been possible to assess the effect of axial leakage on the cylindrical critical problem. A critical
equation is derived and the appropriate extrapolated endpoints to be used in this are defined.

1. INTRODUCTION

In a previous publication! (hereafter referred to as
I) we have studied the diffusion of neutrons from a
plane source in an infinite slab, the source plane being
perpendicular to the faces of the slab. In addition,
we studied the critical problem in a rectangular
parallelepiped when the density in two of the orthog-
onal directions was approximated by the asymptotic
distribution.

The present paper extends the conclusions reached

! M. M. R. Williams, preceding paper, J. Math. Phys. 9, 1873
(1968).

in I to circular cylindrical geometry. We shall therefore
calculate the neutron density and angular distribution
arising from a plane source situated in an infinite
circular cylinder, the source plane being perpendicular
to the axis of the cylinder. We shall also consider the
critical problem of a finite cylinder in which the den-
sity in the axial direction is approximated by the
asymptotic distribution.

2. THE INTEGRAL EQUATION

In I, an integral equation describing the neutron
density in a system of arbitrary, but non-re-entrant,
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shape was given. When applied to cylindrical geom-
etry, this equation reduces to the following form:
R 1
Y(r, k)= J r'dr’f G(r, r’;k)%’ [¥' (', k) + Q(r)),
[ ] ¥y
M

K, (f a+ k%ﬁ)*) Iy (—"— a+ k%z)%),
v ¥y

r<r,

KO(L a+ k%ﬂ)*) 10(5 a+ k%z)*),
v v

r>r

@

In Eq. (1), ¥(r, k) is the infinite-medium Fourier

transform of the density p(r, 2), ie.,

Y(r, k) =fw e~ *p(r, 2) dz.

Ky (x) and I,(x) are the familiar Bessel functions,

The main body of this paper is concerned with
solving Eq. (1) and then inverting Y'(r, k) to find
plr, 2).

3. REPLICATION PROPERTY OF EQ. ()

From the symmetry of the problem, it would seem
profitable to seek solutions to Eq. (1) in the following
form:

Y k) =S + Aolo(§ a+ ﬁ2k2)*)
¥

where

G(r, 1 k) =

€))

+ L 1¢(v)1.,(£ a1+ v’kﬁ)*) dv. (4)

Therefore let us consider the action of the integral
operator on the right-hand side of Eq. (1) on a
function of the type

10(3’; a+ k%‘»*)*).
¥
We find that

f r erG(r,r k)~10('(1+v2k2)*)

-4 3T

_ d:[‘z _ i]"lzo(i a)@(R, %), (5)

o Y LY v

where « = (1 + k) and & = (1 + A2}, Also

DR, v, 7) = }_l:é_i Ko(g “)]1('5 &)
¥ v 7

L)) o

k4 v v

M. M, R. WILLIAMS

Therefore we see that the action of the operator on
Ig(- - ) reproduces the function, and adds a distri-
bution of it over v between (0, 1). This behavior con-
firms the correctness of our assumed solution (4).

Inserting Eq. (4) into Eq. (1) with Q(r) = Q,, and
using (5), leads, after equating coefficients of terms in
Iy(raf#), I{ra/v), and the constant, to

S=Q.,l—t-tan‘1 k/ (1 -—-itan‘1 k) N
and
-3 i v
A(v)-—-l—cvﬁ’ﬁz_vg:o
1dv az az -1
=1-cL Eb"ﬂ , 8)

which defines # = »,, the infinite-medium diffusion
length,

Finally, the integral equation for ¢(») becomes
AGYO) + ¢ f {- -~ —] S YB(R, 9, v')

2 2
: Ao[“—— - 5‘-’] O(R, 3, %)

2

y ¥ 9l
- % Rl 2 3 Ki(Rajv). (9)
1 —<tan 'k A+ %)
k

We now define a new function y(») by
v T+ AT A+ ) = 40) 0
v

and rearrange Eq. (9) so that we may write

1 d U] 12— —1 ,
A0 + f 1% = 25] v

[ 4 v ¥y

Ra! Ra! va' [Ret

<=2 G C) =7 ()
F4 v Yo ¥y
2 24 —1
) 2 )
v Ly Vg, Vo Vgt \ ¥ Yo

@ 1 an

1 —Stantk (1 + 9%
k

In arriving at Eq. (11) we have used the relation
x[Io(x)Ky(x) + Ko(x)1(x)] = 1
and have defined
q(x) = Ko(x)[K;(x) ~ 1 + O(x7")
and , for x— oo,
P(x) = xL()K(x) ~ 1 + O(x7)
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If we rearrange the square bracket under the
integral sign in Eq. (11) to the form

%(1+%)+[ —pq+ (pq—l)]
52(1+ )+W(v,v R),

where p’ and ¢’ are in an obvious notation, then Eq.
(11) may be written as

Ao +£ [ 4 e ] Ty = 1, (12)
where
,

, YayvTe®  o/*]7? , ,
N = cf —2[—2 — _;E} W(», v'; R)p(»')
Y v

: : (13)
27,2
l—itan“lk (1 +27%

Equation (12) is now identical in form to one
already solved in I, with the exception of #’, which
constitutes a new, nonsingular source term.

It should be noted that the function W(»,v'; R)
has the following property:

W(,+'; R)~ O(R™)

as R — oo. Thus, although Eq. (12) goes over to the
correct infinite medium equation as R — o, it does
so more slowly than in the slab problem, and conse-
quently the “end-point approximation” will be less
accurate. This behavior has also been noted by
Kiesewetter in connection with the simpler problem
of criticality in an infinite cylinder.?

4. SOLUTION OF EQ. (12)

The solution of Eq. (12) follows the same lines as
in I. Thus the change to the new variable

o =v(1 + kYA + 22kt
reduces Eq. (12) to

Ad@)po(@) + f“’—"’ﬂ“—)i“i —y

w

(14)

? Helmut Kiesewetter, “Solutions of the Neutron Transport
Equation for a Slab, a Sphere and a Cylinder in the Sense of Wiener
and Hopf,” private communication, 1966.
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with
P Wy, o R)tpo(w’)w’2 dw'

(U

"lo—c

cAyw?

R(1 + k¥
T 0¥ el — o) {I( @, )

+2 q(R(‘ . k2)*) I, (R(l + kz)*)}

Wy (@7

Qo
(1 + k2)(1 - itan“l k)

+

where
g o)ylwg(w)] = po(w),
Ag(w) = Alwg(w)l/g(w),
glo) = {1 + k(1 — o},

and
Wy(w, '; R) = Wwg(w), 'g(w’); R].
Neglecting the term containing W, the solution of
Eq. (14) may be written down immediately® as

(1 + K)yo(w)

- —-cAOwOX(—w)(I - itan_l k) (02 — oY)

y [ I, (R(l + kZ)*) % { X(wy)

Wy

+ X(“wo)}
wy + w
i (R(l + kﬁ*) le(w')w'q(R(l + K)o do
"\ o o (0 — w)wi— ) }

(16)

2lwyg —

with
1—Stan 'k
k

<[

il (R(l + kz)*)

Wy

wey(w) dow

2 2
W — W

f P)ogR(A + k)Y w) do
[}

Wi — w?

} . (7

Unfortunately, the integrals involving ¢ in Eqs. (16)
and (17) do not seem to be reducible any further. It is
clear, however, that in the spirit of our previous
approximations, we may consistently set g = 1.

3 G. Mitsis, Argonne National Laboratory preprint 6787, 1963.
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Equations (16) and (17) then simplify considerably to
(1 + K*)po(e)
= — Ay X(—w) (1 - itan_1 k) (mg — )

x [M {It0) + L)}
—w

Wy

X(=wo) _
+2 ) h(t@}], (18)

™,

where 7, = R(1 + k*?}/w, and

Ag= — —2 2 X wiIte) — L)

1 —Stantk ¢
k
— X(wo){1o(ty) + LN (19)

In terms of the original variable »,, (19) can also be
written

4= — 205 — 1) T

Q 2]
1 — Eiant kc(l — 251 — vX(1 — ¢)
k
x [(Io(ty) — I1(t,)) exp {—xo(l + "’(2)1‘2)2/"’0}
+ Uo(te) + Ii(19)) exp {xo(1 + v5k®)* [vo}]7,
(20)
with t, = R(1 + v2k2)t/v,.
It may be verified that, for large R, Eqs. (18) and
(19) go over to slablike values as obtained in I.

5. INVERSION IN THE £ PLANE

From Eq. (4) and after neglecting the surface
transients, we may write

1
Qo % tan™ k .
Y(r, k) = + A, (— (1 + vgkz)%).
_fc. 1 Yo
1 P tan— k (1)

It may be verified that the apparent pole in Eq.
(21) due to the zeros of 1 — (¢/k) tan—! k does not in
fact exist owing to exact cancellation from the second
term. The singularities of Eq. (21) in the k plane arise
therefore from the roots of the equation

[o(te) — Li(t)] exp {—xo(1 + K>3/}
+ [o(to) + L(to)] exp {xo(1 + K»Dn} =0 (22)

and from the branch points at k = +7.
Let us consider the pole contribution arising from

the zeros of (22). If we designate the roots of (22) by

k = +ik,, and define a quantity B, as

ky = B} + (1)), (23)
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then B, will be given by the roots of the following
equation:

Jo(BR) cos (Bx,) — Jy(BR) sin (Bx,) = 0, (24)

where x,(k) is evaluated at k2 = —k?2 . For large BR,
where we may use the asymptotic expansions of the
Bessel functions, Eq. (24) becomes

cos {B(R + xo) — 4w} =0
or
B, = (n+ D7/(R + x,). (25)

The case of n=0 gives B, = 2.356/(R + x,),
which is close to the familiar diffusion-theory result of
2.405/(R + x,). As n increases, Eq. (25) becomes
more accurate.

It should be added that only values of B, such that
k, <1 are acceptable solutions of Eq. (24). This
restriction limits the number of roots to a finite value
N. As R decreases, N also decreases, until for a certain
critical R (Ry say) no roots can be found. In such a
situation there will be no asymptotic, r — z separable,
solution and the density will decay nonexponentially
from the source. The physical consequences of this
behavior and a possible method for dealing with it
have been discussed in I.

For the sake of example we shall write down the
asymptotic part of p(r,z) which arises from the
residues of V'(r, k) at k = ik, (z > 0). We find

_ 20 208-1 7}
g m(r,z)_%[l_vg(l_c)}
y Jo(Byr)

26)
> 10
e B,,Dn{L log (—1 + k") - 1}

where

) d

iD, = dk [o(te) — Ii(te)) exp {—xo(1 + ngz)%/v"}

+ Uolto) + 1i(t0)) exp {xo1 + vk o} lecir,

The explicit form of D, will not be given due to its
great length. It is straightforward to obtain, provided
it is recalled that x,(k) is a function of k.

Pasy (7, Z) is seen to be similar in form to the classic
diffusion-theory expression, but now the amplitudes
of the modes are given exactly and the transverse
buckling B,, is uniquely defined in terms of the known
extrapolated endpoint.

The transient contribution to p(r, z) has the general
form

o(r, 2) = L “K©{1 + BO$)oroist — DEpo)}e ds

(27
and is not separable in r and z.
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A more accurate description of the density in the
neighborhood of the boundary may be obtained if Eq.
(18) is inserted into the last term of Eq. (4), and the
surface transient is then inverted in the k plane. It
is readily observed, however, that this term becomes
negligible very rapidly as we move away from the
boundary.

6. THE ANGULAR DISTRIBUTION
The Fourier transform in k& space of the angular
distribution at position (r, z) in the cylinder may be
reconstructed from the well-known integral formula?®:

Sk, 0, $)
1 solr,0,0) . R
- E , e—s(1+1kcns 9)[C‘F({r“ + S2 sin2 0
— 2sr sin 0 cos ¢>}%, k) + Qo] ds, (28)
where

Sp = {rcos ¢ + [R® — r2sin2 ¢J¥)/sin 0, (29)

and we have accounted for the variation in the z
direction by the factor (1 + ik cos 6).

The angular coordinates (f, ¢) are defined in
Ref. 3.

Defining ®(r, z) = cp(r, z) + Q,, we may formally
write the angular distribution at the point (r, z) as

1 so(r,0,¢)
f(r,z,0,¢) =— f e O({r* + s*sin®
47 Jo
— 2sr sin 0 cos ¢>}%, z — scos ) ds. (30)

We shall not, however, pursue the algebraic problem
that results when Eqs. (26) and (27) are inserted into
30).
0 7. THE CRITICAL PROBLEM

The results obtained in Sec. 4 can be taken over
directly to solve the problem of a critical cylinder of
finite length H. Making the assumption that the flux
distribution in the z direction may be approximated
by the asymptotic distribution exp (iB,z), where
B, = n/(H + 2Z,), we find that the solution of the
critical problem is given by Eq. (14) with Q, = 0.
Then A5 = 0 gives the critical condition, and, with
the approximations discussed earlier, this is given
explicitly by Eq. (24). The lowest root of (24),
By, = B,, corresponds to the radial geometric buckling.
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From Eqgs. (22) and (23), therefore, and remembering
that in a critical problem v, = i ||, we may write

(31)

The appropriate extrapolated end-points to use in
(31) raises an interesting point. For example, from
Eq. (24), B2 depends upon x,(iB,), i.e., upon the
buckling in the other orthogonal direction. We con-
clude, therefore, that z, will be defined as x4(iB,). To
find »,, B,, and B, it is necessary to solve Eqs. (24)
and (31), and the one relating B, to z,, simultaneously.

Additional evidence for the validity of Eq. (31)
may be obtained from the results of I. For example,
we obtained the critical equation for a slab with a
distribution exp {iB,y + iB,z}in the y and z directions.
Thus we obtained

1/"’(2) = Bi + /329

where 2 = B2 + B2, We could equally well assume,
however, that the slab has a cylindrical boundary and
write 2 = B2, with B, given by Eq. (24). In this way
we arrive back at Eq. (31) with the same definitions of
B, and B,.

The corresponding angular distribution may be ob-
tained quite readily from Eq. (28) with Q, = 0.

1/v2 = B2 + B

8. SUMMARY AND DISCUSSION

The use of a replication property and an infinite-
medium Fourier transform have enabled us to solve
a simple two-dimensional transport-theory problem.
Although we have concentrated on circular cylinders
in this paper, the method may be used for any non-
re-entrant, cross-sectional shape whose boundary
coincides with one of the coordinate surfaces for which
the Helmholtz equation is separable.* However, it has
not yet been possible to deal exactly with rectangular
cross sections, although an approximate method was
discussed in I.

The present technique is also applicable to time-
dependent problems, e.g., initial-value and wave-
propagation problems, if the time variable is eliminated
by a Laplace transform. Subsequent inversion of the
solution p(r, z;s) will yield p(r, z; t); we shall con-
sider such problems in a future publication.

* K. M. Case, Developments in Transport Theory, E. Inénu and
P. Zweifel, Eds. (Academic Press Inc., New York, 1967).
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The analytic properties of the Jost function in the coupling constant g, derived in an earlier article for
a restricted class of potentials, are rederived generally for potentials V' (), for which | ¥(r)| can be bounded
by a monotonically decreasing potential P(r), such that § dr | P(r)|¥ < . In particular, potentials with
nonlinear exponential tails are studied as a function of the energy and coupling constant. Earlier results
of Sartori on the energy dependence of the Jost function, derived only for special cases of such potentials
in the Born approximation, are demonstrated to be true generally for large classes of such potentials.

1. INTRODUCTION

In the earlier article! (to be referred to as I) the
analytic properties in g were studied for the Jost
function based on the Schrédinger equation

& . W+ -
[drﬁ« : +gV(r)]u;(r)~o, (1)

describing the scattering states for «* > 0 in a po-
tential —gV(r) as well as the bound states of energy
x? (A*2m = 1) for «* < 0, when the potential is
attractive. In particular, the large-g behavior gave a
new expression for the number of bound states which
was related to the large-g behavior of the scattering
phase shifts. That analysis is derived from the con-
ditions

M) V(M is B, ie., [ dr V() < oo,

(i) |V(r)[} is expressible as an absolutely convergent
Laplace transform, i.e., one can write

U = VeIt = f “dro@eT, (@)

where
f do |o(w)] < 0.
0

Condition (ii) limits one to potentials which damp for
large r no faster than a linear exponential in the sense

that
fm — Lin V()| < . 3)

row r

If the limit in Eq. (3) has a finite nonzero value, the
potential will be said to possess a “linear exponential
tail”” (Le.t.). This type of potential with the exception
of the square well is most frequently considered in

* Present address: U.S. Naval Ordinance Laboratory, Silver
Spring, Maryland.

1 W, M. Frank, J. Math. Phys. 8, 466 (1967). The following errors
in this article should be noted: The right sides of Egs. (11), (14),
(51), and (53) require an additional factor of 2; the ¢ in Eq. (51)
should be barred; the sign of ikr in the expression for h{*)(kr)
following Eq. (51) should be +; and the right side of Eq. (61)
should have a plus sign.

standard potential theory. Equation (2) could not
represent potentials which have a nonlinear exponen-
tial tail (n.L.e.t.) such as a Gaussian or square well.
It does include potentials with power tails (p.t.), i.e.,
potentials such that

lim 1—1-— In V()] < . @

rooill 1

It is of interest to broaden the scope of potential
theory to include n.le.t. potentials for the sake of
mathematical generality, as well as for the sake of
understanding better the transition from often used
model potentials, which vanish identically beyond a
certain range, and the more realistic l.e.t. types. The
Jost function of an l.e.t. potential has singularities in
the k = E? plane, which are absent in the n.Le.t. case
if

—In [F(r)} ~ r?, &)

for large r with p > 1. The case 0 < p < 11is generally
expressible in the form of Eq. (2), as is demonstrated
subsequently. The k dependence of Jost functions for
n.le.t. potentials with p > 1, has been considered in
the first Born approximation by Sartori® for a very
artificial form of n.Le.t. potential.

In this article the results of Paper I are extended
to a general L} potential. We find the exponential
order? in g of the Jost function to be } for all k, and
the same estimate as before applies to the number of
bound states. In Sec. III the analytical behavior of the
Jost function in g and k is studied for n.l.e.t. potentials
expressible in the general form

et = L “dao(@) exp[—(ar,  (6)

with p > 1. We shall restrict ourselves to the condition
B>0. B=0 leads to p.t. potentials which are

® L. Sartori, J. Math. Phys. 4, 1408 (1963).

® A function f(z) analytic in the finite z plane is said to have
exponential order p if p is the greatest lJower bound of numbers a,
such that | f(2)] < exp Kz |z|* for some Kq. If f(z) has exponential
order «, its type 7 is defined by = = lim sup |z]—* |In f(z)].
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generally expressible by Eq. (2). The results of
Sartori are established in this general case.

In a subsequent article the WKB method is applied
to establish the same large-coupling behavior of the
Jost function, and to derive an asymptotic expansion
about the point at infinity as well. The strong-coupling
limit of scattering phase shifts is discussed there.

II. L POTENTIALS

The results derived apply to all potentials V(r), for
which there exists a ¥(r) such that

0L P(r+a)< V() foralla>0, (7a)
[Vl < P, (7b)
f “arve)t < . (7¢)
It follows from Egs. (7b) and (7c) that
fo “ar Vol < . @®)

If Eq. (8) is obeyed we say that V(r) is L}, while if,
in addition, the conditions of Eqs. (7) hold we say
that V(r) is L3.

It will be shown that the Jost function* A,(g, —«)
for Eq. (1) is an entire function of g with exponential
order } for any fixed « which is not a singular point of
Ay(g, —«). As derived in I [see Egs. (13)-(18) and
(52)-(54)] and rederived in Appendix A, the modulus
of A(g, —«) = A(g) can be bounded by the series
(for real «, or « in the lower half-plane):

A1 < 3 el [ "ar
xfndr2 - ~frﬂ_ldrn(7‘1 —rg) e (rp—r — ¥
0 0
X LY |V(r1) e V(rn)l

=gl owdsl-~-fdsn51- &,

n=0

X |VEIV(Epr+ &) V(E + -+ + &)

=2 lgI" L., ©)
where the variables &, = r, — r;, (j=1,--+,n — 1)

and &, = r, have been introduced. From Egs. (7) we
find

Lnﬁfwdfl"'fwdfnfl"'fn
0 0
X | PEIV (s + &) P&+ -+ + &)

2\® oo ® /2 /2
] Jo 0 0 0
X|PE) V(4 - + &) (10)

4 The Jost function for radial momentum k is identical with the
Fredholm determinant A(g, —k) for the scattering integral equation;
see R. Jost and A. Pais, Phys. Rev. 82, 840 (1951), Appendix.
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We introduce the new variables {, , - - -, {,, defined by

1
—1 = —= &, cos ¢,
Cox—1 \/2 x Pr

i .
C2k=ﬁ§k51n(pk (k=1,--,n). (1n

From the inequalities

Lo + Lo < \/i (Cgk—l + Cgk)% =&, (12a)
and

V(i + -+ &)
=P¥E+ + EQPHE 4+ &)
< V%(ZZk—-l + o+ €2n) V*(Czk +- 4+ 521;) (12b)

which follow from the monotonicity condition of Eq.
(7a), we derive

L, < (%) f “at, - f "4l ML)

X Pl + L) PHG+ - + L), (13)

Introducing the variables x,, - - -, x,, defined by

G=xp— Xpr1, Lon =Xy (k=1,---,2n 1),
(14)
we find
L, < (ﬁ)f dxlf la’xz- . f 2"_ldxz,,
7} Jo 0 0
X V%(xl) e V%(xzn)
n © 2n
= ﬁ) _i._l: dx V%(x)}
C\m/(2m)tLJe
i2n
= s 15
(2n)! (1s)

where
.2 (" =1
T = —% dx V (X)
o 0

This upper bound on the coefficients of the power-
series expansion establishes the exponential order
of Ay(g, «) to be at most 4. The argument presented at
the end of Sec. I in I shows the exponential order to be
no less than § and therefore exactly 4. It follows that the
upper limit on the number of bound states to be of the
form of Eq. (40) of I with 7 replacing . It was shown
in I that the type® for a class of purely repulsive lLe.t.
potentials is exactly

T=f dr |V(r)2. (16)
0

This result for the general case of purely repulsive
L} potentials is deduced by WKB methods in a
subsequent article. A not too rigorous argument was
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also presented in I to the effect that the attractive
phase shift also has a leading gi-type behavior for
large g. This result is also spelled out more rigorously
for the general case in the subsequent article.

III. N.L.E.T. POTENTIALS

We show first that a large class of n.l.e.t. potentials
for which Eq. (5) is true with 0 < p < 1 are represent-
able by Eq. (2). Thus if o(«) behaves like

an

for « near zero, one can readily establish from a
steepest-descent-type estimate that, for large r,

o) ~ ™" exp (—cfo?),

V)t = fﬂ do o(o)e™"
~ const X p im0 /e ) exp [—Br"/“’“’], (18)

so that with ¢ = p/(1 — p) the large-r behavior
satisfies Eq. (5). It is clear that the Jost function
A(g, —k) will be analytic in & in a cut k plane with a
cut in the upper half-plane extending to k& = 0.

For the case p > 1, we deal with potentials which
allow the representation

U = V)| = L " da (o) exp [—(ar)’].  (6)

We focus explicitly on S waves, though the same
results for real energies apply to all / waves (see
Appendix C). Though not completely general, Eq.
(6) represents a wide class of n.lLe.t. potentials, and
more general cases can also be treated by the methods
to be presented. We assume g > 0. We verify that the
Jost function as a function of g is entire with
exponential order }, while as a function of k it is
entire with exponential order p/(p — 1) as found by
Sartori for the Born term.

We begin with the expression for the Jost function®
(see I or Appendix A):

Alg, —K) = ig f ", - f " dE e - FE)

X V(EI)V(El + &) V(A4 + 5”)

g"L,,

n=0

where
exp (—iké) (sin k&)
k

Hy&) = 19)

5 We have expressed the potential as —g¥(r), so that positive
V(r) corresponds to an attractive potential. For this reason g"
appears in place of (—g)” in the Fredholm power series.
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for S waves, and is defined in Appendix C for general
!/ waves. We consider complex k& = ko + ik, then
A5 < V2 ¢ exp (ky + [k4l)
= /2 Eexp [2k,0(k)E].  (20)

(The constant V/2 is superfluous when &; < 0, but is
retained for uniformity.) By reproducing the steps of
Egs. (9)-(14) in the same notation we find

IL,| < (Lff) f “ag, - f "o exp Kl + + + L]

X U(Lan)U(L2py + low) " UG+ + Lon)s

(21)

where « = 8%k,0(k,), U(r) = |Vi(r)] and we have
used the inequality

& = \/E (Lo + Cgk)} < \/5 (Corr + Lan).

Introduction of the representation of Eq. (6) leads
from Eq. (21) to

32& »
Ll < (—ﬂ—) f doyo(ay) f dotg 0 (g, ) K (g, - , 03,

(22)
where

Kx(al >t

‘s a2n)
EJ‘; dZ]_ t J‘; dc2n exp [K(Zl + Tt + §2n) - 0(;’” x2’n

— o a(lon1 + L)’ — MG+ + Lon)"]-

(23)

At this point we utilize the following simple con-
sequences of the Holder inequality® (p > 1):

Slal > n—[g w}p, (24)

to obtain

Ko, o) <[t [ "a,
0
x exp {«({y + -+ + &y,) — @)l + (g + 45),
+ (g 4+ “2n)§2n]p}’ (25)
which, after the introduction of the variables (g = 1/p),
Uy = (2")q_1(°‘1 + )l (k=1,--,2n),
(26)

¢ The Holder inequality which appears in any book on functional
analysis has the form for discrete sums (1/p + t/qg = 1):

> ab;
]
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results in
Kk(al s T

) a‘2n)
(zn)Zn(l—q)

A C A 7 RERE (N
ot

£

d e d ”
'+0C2n)ﬁ) . J;‘ e

+ Ugy )
w o+ o,
—(U1+U2+"'+u2n)p]
(2n)2n(1——q)
_“1(“14‘“2)"'(0‘1 + ot a,)

where «,, = (2n)'~%. We first consider the case k; < 0
so that «, = « = 0. In Appendix B we show that

I2n(Kn)s (27)

1,(0) = f duy -+ - f ditgy xp — (g 4+ * + )"

_ 1T(2n/p)
“p Teny
Combining Egs. (22), (27), and (28) we find that

(28)

3 n{l—q
L.l < 1(&) (2n)*"" L (2n/p)
p\ 7 I'(2n)
xfdocla(ocl) " 'Jda2n6(a2n)
1

. ay(og + o) (g + 100+ oyy)
_ (3_2%) @ T U
p @2m)*
as shown in I, where
U, Efwdoca(oc)_
0

o

w

(30)

The bound on the power-series coefficients L, deter-
mines” A,(g, —k) to have an exponential order of at
most . Relying on the argument in I that the expo-
nential order cannot be less than }, we conclude that
A(g, —k) has an exponential order of exactly } for
an entire function of g.

The convergence of A(g, —k) for k in the lower
half-plane also entails the analyticity in k of A(g, —k)
in the lower half-plane. It is a familiar result® that the
Jost function in this half &k plane behaves like
1 4+ O(|k|™) for large |k]. Such a result can be derived
by using an alternative bound to Eq. (20)

1
k]

7 See, e.g., E. C. Titchmarsh, The Theory of Functions (Oxford
University Press, London, 1939), 2nd ed., Sec. 8.3.

8 See, e.g., R. G. Newton, J. Math. Phys. 1, 319 (1960), Eq.
(4.16").

|Hy( &)l < (31)
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Utilizing the expression Eq. (A5) of Appendix A for
A(g, —k) we find from Eq. (31) that

A, — k)] < exp H ; ( [[ar |V(x)|], (32)

confirming the stated estimate. The bound in Eq.
(32) grows like a Tinear exponential in g, which in
view of earlier results must be an overestimate for
large g. The origin of the discrepancy lies in the choice
of the differing estimates of |H,(£)| in Egs. (20) and
(31). The underlying significance of the differing choice
of estimates is discussed subsequently.

We now consider the behavior of Ay(g, —k) for k
in the upper half-plane. Once again the large-ig|
behavior is correctly determined from the bound of
Eq. (20) while the large-|k| behavior is derived from the
bound in Eq. (31). We first consider the large-g
behavior, which involves a study of the integral
I, (k) of Eq. (27).

I, (x,) EL du, - J; du,,

xexp[,cn<y_1+...+__u¢_)
O(1+"'O(2n

<51
—(u+ -+ uzn)p]

<J dul c 'f duzn
0 0

X exp [%(ul + - uy,) — (o + uz,,)”]

-ff)

where «; > f# has been used. In Appendix B the
integral Jp,(«,/f) is estimated by the steepest-descent
method and shown to behave for large n like

(33)

Ky

Jon (—/3—) ~ K(Im k)_%n_%”"”[B(Im S
(C [Im k[ o
X €Xx m k|?/*— n
° ) T'(2n) (34

with B, C, and K denoting constants. In conjunction
with Eqgs. (22) and (27) one finally finds an upper
bound for |L,| of the form

|L,} < [B(Im k)0
X exp (C |Im klp/(p—l))]Zn

n2n

' T2n) (33)

This type of large-n behavior determines” A(g, —k) to
represent an entire function of g of exponential order
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at most 4. The lower bound $ for the exponential order
in g for k in the upper half-plane can be achieved
through employment of the inequality

1 — 1

£ — - (,=Imk),
2lk| (ky )

|75 > (36)
together with a lower bound for ¥(r) in the form of a
square-well potential S(r) such that |V(r)| = S(r)
everywhere. The resulting lower bound on L, is
readily related to the coefficients of the power-
series expansion for the Jost function of S(r) at the
complex energy k' = i Im k. The latter Jost function
is explicitly verified® to have an exponential order
of 1.

The k dependence of the bound in Eq. (35) corre-
sponds to an entire function of k of infinite expo-
nential order. This is a gross overestimate originating
in the crudeness of the bound in Eq. (33). A more
accurate bound for the k behavior can be achieved by
choosing for | V(r)] a representation of the form

V() = f dot p(or) exp (—or”), (37)
as well as the bound
IH(®) < -L exp (2Ks). (38)

Ikl

This bound will be bad for |k| = 0, and we rely on
other arguments'® for the basic fact that A(g, —k) is
analytic in the neighborhood of k = 0 if for some
a > 0, V(r)e* — 0 with diverging r. Substitution into
the expression Eq. (A5) for L, leads to

1 P T g Gt Vir)-- -
|L,| s(|k|)"f dry f dr e M |\ V(r) - V()|
——— e — 2 Im kr w n—l
(2|k|)”(n_])vf dr e TV W ()]
(39)
where
w(r) =L dr V(). (40)
Then

1A, =1 < 1+ 7 dr ey (]
1]
<1+ ye’V‘f dr e |V (r)|
(1]
=1+ yeyv‘fda p(@) f dr =" (4])
0

where |y| = |g/k| and V, = {2 dr |V(r)|. The behavior

® Reference 8, Sec. 10.
10 Reference 8, Sec. 3.
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of the integral °
f dr o=’ (42)
0
for large k, may be determined through the use of a
steepest-descent estimation technique or by expansion
of a power series in k; . Both of these methods which
are explicitly presented in Sartori’s article, show
A(g, —k) to correspond to a function of k of ex-
ponential order of at most p/(p — 1). In the case of
the power-series expansion, one must note that the
coefficients of the power-series expansion determined
the exponential order through standard theorems.”
The representation, Eq. (37), can in fact be dispensed
with in favor of an asymptotic statement of the form
[V(r)l ~exp — [Br(1 + O(")]. (43)
That p/(p — 1) is the true exponential order in k
for potentials with the representation, Eq. (6), can be
verified if the potential can be bounded pointwise
from below by a nonnegative potential U(r) of the

form
U(r) = ar™ exp (—pr?). (44)

Explicit calculation of the first Born term in the Jost-
function expansion along the lines of the calculation
by Sartori gives a contribution which has exponential
order p/(p — 1), and the result is established.

IV. DISCUSSION

We noted that different inequalities on the modulus
of the Green’s function used to estimate the large-
lgl and large-|k| behavior of the Jost function were
used. These led to the general result that the best
possible estimates on the behavior of the Jost function
in one variable provided poor estimates in the other
variable. This situation was necessitated by the need
for bounds that would make for feasible estimations.
One can qualitatively understand why doing one’s’
best for large values of one variable would tend to
denigrate the estimates for large values of the other
variable. The modulus of the Jost function is a re-
ciprocal measure of the penetrability of the repulsive
potential. Strong coupling tends to decrease the
penetrability, while high energy tends to increase it.
Thus the correct large-g dependence of the Jost
function requires realistic appraisal of the Green’s
function for small r which is expressed by the in-

equality (for real k):
elinkd| g

|H(&)| =
while the large-k dependence is better expressed
through

|Hy(®) < i
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The present results have been derived for S waves
only, but we show in Appendix C that the inequalities
of Eq. (20) (for Imk < 0) and Eq. (31) remain
essentially valid for higher partial waves.

Note Added in Proof: I am indebted to Dr. D. J.
Land for showing that the factor (4/7)" on the right-
hand side of Eq. (15) is superfluous. A similar type
result was communicated to the author recently by
Dr. K. Chadan.

A more general result for the lower half £ plane can
be obtained in place of Eq. (32) in terms of an ex-
pression involving

exp [Ig | J:dx %}

APPENDIX A: THE JOST-FUNCTION SERIES

The radial partial wave of Eq. (1) can be transformed
into the integral equations!?

) = krikr) + gl [ Lier)h{ir)
— Jju(kr' )P (kD)IV (P )uy(r')
= krj(kr) + gJ:dr’@l(r, rs RV ulr), (A1)
for the scattering case with « = k2, and
) = igur [ dr'r UiGiar PG
— Juipr Y i)V (FYu(r')
=g J; Tdr'Q,(r, )V (rHu(r'), (A2)

for the bound-problem case with «? = —u? The
functions j,(kr), A\Y'(kr) are the spherical Bessel
functions obeying

3i0) =0, ji(kr) ~ sin (kr — Im[2)

o kr
) e+i(kr—lﬂ/2)
' (kr) ~ _kr— . (A3)

and the corresponding quantities in Eq. (A3) are the
appropriate analytic continuations to imaginary k.
The Jost function, as is well known, is identical with
the Fredholm determinant,? which has a well-known
power-series expansion. For Eq. (Al) this power
series has the form*

Adg, k) = §O(~g)"£n, (A4)
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where

L, = kf drlf 1dr2 . f "-ldrnrlh(“(krl)
0 0 0

X 8(ry, rg; k) *  * S(rps, Ta3 K)
X rnjl(krn)V(rl) e V(rn)

=f dry-- f hldrnﬁl(rl, ro) o Hy(r,,0)
0 0

X V(R - V), (AS5)
where
- L B (kr) .
Afrs) = kr Fﬂ((—ki Lk ks) — ju(ks)h? (k).
(A6)

[The suppressed energy variable is k, while in Eqs.
(20), (31), and (36) it is —k.] From the inequality

|H(rs)] < |r — 5] (A7)

proven in Appendix C we obtain the bound

L <[y [ drr = ) = )
X1 |V(r) - V(r,)l. (A8)
Through the introduction of the variables
En=1ry, &=r—rn, (j=L-,n-1)
we find an alternative expression for the right-hand
side of Eq. (A8)

IL,| sfwdsl---f”df,,fl g,
0 0

X VEIV(Ena + &)V + - + &)
(A9)
Equations (A8) and (A9) correspond to the right-hand
side of Eq. (9).
For the bound-state case one finds analogously

Adg, p) = Zog"Lm (A10)
with
L, = i‘uf dry - f "_ldrnrlhg“”(i/zrl)
0 0

X gl(rl s Tas lu) e gl(rn—l’ Ty lu)rn]l(l:urn)

=j dry - f "—ldr,,
1] 0

X Hyry, rp) - Hrp_y, rp)H(r,,0), (All)
with
Hy(rs) = [ipr*hi (ipr) By (ius)]

X [j,Gpr)hiP (ius) — jiius)hi (iur)l, (A12)
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for which one again has an inequality (see Appen-
dix C):

[Hy(rs)l < Ir — sl (A13)
leading again to the bound, Eq. (9).

APPENDIX B: EVALUATION OF SOME
INTEGRALS

We consider first the integral I,, defined by
I, EJ;wdul . -Lwdun exp —(u, + - + u,Y’. (BI)
We set u; = v? and find
I, = Z”Lwdvl- . ~J;wdvnvl v, exp —(02 + 02

4\" /2 /2 © ©
(—) f d(pl t .J d(Pnf drlvl s f drnvn
m 0 [ 0 0

x exp —(v2 + -+ + v3”. (B2)

We introduce the Cartesian variables y;,- - -, v,
defined by
Vop—1 = Up, COS @y,
Yo =0,8ing, (k=1,---,n), (B3)

which leads to

4\" [ *
1,,=(')f dyl"'f dysnexp =i+ + y2a)s

7] Jo 0
(B4)

which in 2n-dimensional spherical coordinates can be
written

In = Q2n (i) f dy y2n—1e_y27’ = l'(ﬂ") anF (2) H
7] Jo 2p\m P

(BS)

where Q,, is the total spherical angle in 21 dimensions
and

2n
=3
i=1
From the known expression €Q,, = 2#"/T'(n), we find
that

4 L'(n/p)

1
1, =- , B6
"= 2% T (B6)

as expressed in Eq. (28).
In Eq. (33) we encounter an integral of the form

J (o) Efmdul .- f du,
) 0
X exp[o(u1+'--+un)—(u1+-“+un)“’],

where ¢ is to be a large parameter. The transforma-

(B7)

M. FRANK

tions applied to evaluate /, result in
Tol0) = Q,, (ﬁ) f dy y**~* exp (0y® — y*)
T 0

=0, (7—‘:)" V(). (B8)

A steepest-descents type of estimate may be applied
to V(o). Setting

h(y) = —y* 4+ oy2 + 2n— D Iny, (BY)
we find that the saddle point y, for which 4’(y,) = 0,
obeys the equation

2p __
Yo =

m—1
S S (B10)
) p 2p

With

n ‘1‘ Kuiz = 8%k1 n(l_l/m = Hn“_””)
i B

one finds for large n that

g =aq

Yo~ Ant*[1 + O(1/n)], (B11)
where
am =8 404 2 (B12)
p p
so that for large 0 (i.e., large k;):
f\L/(2p—2)
A(B) ~ (;) (B13)

Then, for large 6,
h(ye) = o(1 — 1/p)ys + (2n — 1)(In y, — 1/2p)

plp—1) g/
pp/(p—l)

1 jpg— 1np i]n, (B14)
p—1 p—1 2p

Nlnlnn+
p

+

and
—1
wow =4[ = pyo = 2]
Yo
~ 4(1 — p)onpt—» (B15)
and the steepest-descent estimate combined with
factors in Eq. (B8) leads to the result in Eq. (34).

APPENDIX C: HIGHER PARTIAL WAVES
The inequalities of Egs. (20) and (31) will be
established for general partial waves for Im k < 0.
The Im k > 0 case with higher partial waves will not
be dealt with presently. In I the inequality!!
\A(rs)] = lkr®ThiP(ks) ju(kr)
— B (k) jy(ks)I (k)R (ks)|
<lr—sl, (&)
(r > s) was quoted but not proven. We now prove it.
We define
u (r) = krh{P(kr).

11 Reference 7, line following Eq. (53).

(C2)
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Since u, (r) solves

2
[d_ + k2 — (_I;*'l)] u,(r) =0, (C3)
dr? r?
so does
ulr) = u, ) [ . (C4)
u(r)
Clearly u,(0) = 0, while, for large r,
uo(r)Nl [e—i(kr—ln/Z) + Ceik’r] + 0(1) (CS)
2ik r
with C some constant, since for large r:
u, (r) ~ e R L 0(1r)]. (C6)
This determines that
ug(ry = rj,(kr) (ChH

whence
(A (ks) ji(kr) — h‘“(kr)jl(ks)]

C8
o0 S (©
Then
- o7 dr
A0 < 1, —E—. ()
()]

Since, as we shall show |u (r)]? is a monotonically
decreasing function of the radial argument we readily
conclude that
|Hy(rs)l <
We offer a physical proof that
fu (r)|? = k2r2 |hD (kr)|?
is a monotonically decreasing function of r. Consider
a particle of momentum %k moving in one dimension in

the direction of the positive x axis through the
potential barrier

U(x) = 0(x — a)

|r — s|.

l+1
-(x%) (C10)
(see Fig. 1) with a some arbitrary nonnegative value
of x. [0(x) denotes the step function which is unity for
positive x.] The wavefunction of the particle in the
region of this barrier is of the form

p(x) = B x b (kx). (C11)
Clearly from physical considerations the probability
density p = |p(x)?| will be monotonically decreasing
in the direction of increasing x, first due to reflection
and second due to the increase in local velocity with

increasing x, since current density is conserved. In
fact if I > /'

ey (n)® < [rhp? (k) (C12)
since the corresponding repulsive barrier is weaker.
The parallel inequality [Eq. (16)] of I
IH(rs)| = Lur[hy " ips) jiCiper) — (i) ji(ips)]
X b ()b (us)) < 1, (C13)
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Jir)
I o
LS
o o >

FiG. 1. A stream of monoenergetic particles with momentum to
k travels from x = — o to x = + oo, encountering the repulsive
potential barrier in reglon 11, U(x) = 6(x — a)l{({ + 1)/A%. Reflection
by the barrier in region LI causes the probability density to decrease
with increasing x.

can be proven by similar methods. In a parallel

notation, let
v, (r) = iurh{ P (ipr), (C14)
which obeys

2,
[dr2 #

5o(r) = v.(r) f o

is another solution of the same equation to be identi-
fied as

e =0, (@)
-

then

(C16)

vo(r) = irji(iur), (C17)

so that

H,(rs)| < 104(7)] j (C18)

[0, ("

The function v, (r) is identical with
3
) = B (TN, (1)
w

where K, (r) is the Bessel function of imaginary
argument, which damps exponentially for large
positive values of its argument. In terms of the integral
representation??

K (P = I‘(_:%—)(E) f " gt e — 1y

ty—n w
- _m2" 1 f du e™(u® — z
I'n 4+ Hz" ).

We readily find by explicit differentiation that
o (N =

-t (C20)

—i

I+ 1)

12 G. N. Watson, Theory of Bessel Functions (Cambridge Uni-
versity Press, The Macmillan Co., New York, 1944), 2nd ed., Sec.
6.3.

r—H—lf du e—u(u2 — r2)l (C21)
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in view of earlier results. From the inequalities for

decreases with increasing r. This, via Eq. (C18), leads
real positive k13:

to the inequality of Eq. (C13).

An inequality of th_e form lug(r)] < C ( kr )l+1’ (C24a)
|A(rs)l < Alk (C22) L+ ke
can be established with 4 independent of /. In terms of kr vl
the previous notation (r > s): lu (Ml < C(l n kr) ’ (C24b)
|H(rs)| = i uo(P)u,(s) — “L(usl‘z_i)(_rz one readily concludes that
0 |A(rs)| < 2C¥k. (C25)

< i [uoMu (M) + lue(u (NI, (C23) —n
13 Reference 8, Egs. (3.9).
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Nonrelativistic sum rules previously obtained for each phase shift in the framework of elastic scattering
by a local central potential of finite radius are shown to follow from the causality principle of Wigner and
Van Kampen, under the assumptions that the phase shift satisfies the Levinson theorem and that, at high
energies, the integrability condition holds. In fact, it is shown that under these assumptions, any
interaction of finite radijus which is causal in the sense of Wigner and Van Kampen is equivalent to a local
potential of the same radius. First we recall the sum rules and mention some of their applications.
We give a brief survey of their proof in potential scattering, which is based essentially on the analytic
and asymptotic properties of the Jost function (or the S matrix). Then we show that, under the
assumptions mentioned above on the phase shifts, the properties of the R matrix derived by Wigner and
Van Kampen from causality lead to the same analytic and asymptotic properties of the Jost function
(defined now directly from the S matrix) as in potential scattering, providing, therefore, sufficient
information for the direct derivation of the sum rules. Finally, using the Gel’fand-Levitan and
Marchenko integral equations of the inverse-scattering problem, we show that, in fact, this information
is sufficient to entail that the causal interaction of Wigner and Van Kampen is equivalent to a local
potential of the same radius.

I. INTRODUCTION by E; = —y%,j=1,2, -, n, the sum rules read®

In a previous paper,’ one of the authors has derived | Ay s _ v 1 f ® iz
nonrelativistic sum rules in the framework of potential dk Sy 7w

scattering with central potentials of finite radius. _ _
These sum rules are integro-differential relations x logcos [zr + d(k + 2) 26‘(k)+6(k+z)+ B(k)]l’

between each of the phase shifts and the binding z

energies of the possible bound states with the same 1)

angular momentum. Denoting these binding energies 00x) = — 2% -y @
i=1 X

* Postal address: Laboratoire de Physique Théorique et Hautes

Energies, Batiment 211, Faculté des Sciences, 91-Orsay, France.

+ Laboratoire associé¢ au C.N.R.S.

1 K. Chadan, Nuovo Cimento 40, 1194 (1965).

2 As usual, we choose the units in such a way that z# = 2M = 1,
where M is the mass of the particle. The energy is then given by
E = k?, k being the wave number. For negative values of k, the
phase shifts are defined by §,(k) = —&,(—k).

They are valid for all values of r greater than the radius
R of the potential, so that we have in fact a continuous
infinity of sum rules.

Different types of sum rules have also been obtained
in the more general case of potentials which may have
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an infinite tail.? These new sum rules, more complicated
than (1), are of course also valid inside a potential of
finite radius ( < R). If the potential has a finite radius
R, and if r is outside this radius, the new sum rules,
for the S-wave case, read

ddg P (™
r+— =S(k,r ——f dk’

dk (k. ) 7 J-

sin [k'r 4 (k)] |/( _
k' sin [kr + d4(k)]

X log’

r> R,
where S(k, r) is given in general, by*

3)
?74r) ?s }
S(k,r) =2 [ NG
ten= Z R+ K+
iy,(r) being the imaginary zeros, in the upper-half k
plane, of the regular solution ¢,(k,r) of the radial
Schrédinger equation, normalized according to®-®

lim 21 + DMgyk, r) = 1. (5)

For other waves, one simply has to replace in (3) the
sine functions by appropriate combinations of the
spherical Hankel functions w,(kr), and exp (£id,).®
Both types of sum rules may be used in practice to
calculate in a very simple and direct manner the
radius of the potential and the energies of the bound
states from the knowledge of the phase shift, without
using the Schrédinger equation. Such calculations
have been performed in the case of neutron—proton
singlet and triplet interactions at low energies.* The
results are in very good agreement with the experi-
mental results of effective-range theory and the
deuteron binding energy. As is seen from (1) and (3),
no internal quantities like the potential or the internal
wavefunction appear in any form in these sum rules.”

3 K. Chadan, Nuovo Cimento 41, 115 (1966); 44, 838 (1966).

4 K. Chadan and A. Montes Lozano, Phys. Rev. 164, 1762 (1967).
It is shown there that (1) these zeros, and their complex conjugates,
are the only complex zeros of ¢,(k, r); (2) y,(r) are monotonically
increasing functions of r; (3) lim y;(r) = y;.

>0

5 For the study of the solutions of the radial Schriédinger equation
we refer the reader to the review article by R. G. Newton, J. Math.
Phys. 1, 319 (1960). We shall follow the notation of this article.

8 R. G. Newton, Scattering Theory of Waves and Particles
(McGraw-Hill Book Co., New York, 1966); V. de Alfaro and T.
Regge, Potential Scattering (North-Holland Publ. Co., Amsterdam,
1965).

7 At first sight, it may seem that, even for r > R, the zeros
{iy(r)} are somehow explicitly related to the internal region because
they are the zeros of g,(k, r) normalized according to (5). In the
absence of any information on the internal region, the wavefunction
outside is given by (see Ref. 5) @,(k, r) = A(k)[u,(kr) — tan dy,(kr)]
with an arbitrary A(k), which depends explicitly on the internal
region. However, it is shown in Ref. 4 that {y,(r)} depend explicitly
on r, with strictly positive derivatives, so that they necessarily come
from the expression inside the bracket, and not from A(k). It follows
that, for » > R, {y(r)} and {y,} can be calculated directly from the
phase shift. This is of course a matter of principle. In practice, one
knows the phase shifts only numerically, and an analytic continua-
tion outside the real axis of the expression inside the bracket is in
general impossible. This is why, in practice, one has to use the sum
rules to obtain {y;(r)} and {y,}, as done in Ref. 4.
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One may therefore ask whether it would be possible
to derive the above sum rules from some general
principles, without making use of the Schrédinger
equation in the interior region. Everything in (1) and
(3) being directly given by the phase shifts [or the R
matrix of Wigner, formula (44) below], one thinks
immediately of the causality principle, and its con-
sequences on the analytic properties of the R matrix,
as an “‘ersatz” for the Schrodinger equation in the
interior region. The purpose of the present paper is to
show that, indeed, the sum rules can be directly
derived from the results of Wigner on the R matrix.?
In fact, one has to make, at some point of the proof, a
mild technical assumption about the asymptotic
behavior of the phase shifts in the limit of infinite &,
namely, that

8,(k) = —Nm + n(k), (6a)
k-
where N is a nonnegative integer, and that
[ e mrd < o (6b)

which is true in general in potential scattering if (see
Appendix A):

R
f riV(r)|dr < co.

The reason for taking N nonnegative is as follows. As
we shall see later, the phase shift is an analytic function
of k in the neighborhood of the real axis, and because
of the symmetry property ¢,(—k) = —38,(k), we take
4,(0) = 0. On the other hand, if the Levinson theo-
rem>—which is true in potential scattering—holds, we
have 6(o) = —nm, n being the number of bound
states. Here, wishing to derive our sum rules with a
finite number of bound states, we must assume
something of the sort (6a). Moreover, the interaction
cannot be equivalent to a local potential unless the
Levinson theorem holds. Although we have some
reasons to believe that condition (6a) is also a con-
sequence of the causality condition and the finiteness
of the number of bound states, and not an extra

8 E. P. Wigner, Proceedings of the International School of Physics
“Enrico Fermi,” Varenna, Course 29 (Academic Press Inc., New
York, 1964). These lectures contain complete references to earlier
works. The R-matrix theorem was first proved by Wigner and co-
workers from the assumption that the Hamiltonian is a self-adjoint
operator bounded below and having a finite radius. It was then
realized that the same conclusions on the properties of the R matrix
could be obtained if one uses only the causality condition. Both
approaches are described by Wigner in the above lectures. See also
N. G. Van Kampen [Phys. Rev. 91, 1267 (1953)], who studies the
implications of the causality condition directly on the S matrix.
His results are somewhat weaker than those of Wigner on the R
matrix. However, with some weak additional assumptions, Van
Kampen [Physica 20, 115 (1954)), is able to show that the S matrix
has analytic properties closely related to those of Wigner’s R matrix
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assumption, we admit it as such with no further
comments.

In Sec. II, we give, for the sake of completeness, a
brief survey of the essential mathematical tools and the
analytic properties of various functions which are used
to prove the sum rules in potential scattering. In Sec.
III, we summarize the analytic properties of the R
matrix obtained by Wigner and Van Kampen from
causality, and show their bearings on the properties
of the functions considered in Sec. II. It turns out that
the analytic properties thus obtained are identical
with those of Sec. II, and therefore that the sum rules
can be derived directly from causality. In fact, in Sec.
IV, we prove that causality and conditions (6a), (6b)
are equivalent to a local potential. In other words, we
show that any causal interaction for which the phase
shift satisfies (6a), (6b)is equivalent to a local potential.
Finally, in the several Appendices we work out in
detail the proofs of some technical points which
otherwise may obscure the progression of the reason-
ing.

II. MATHEMATICAL TOOLS AND A BRIEF
SURVEY OF THE PROOFS IN
POTENTIAL SCATTERING

The definitions and theorems we begin this section
with are given in the book of Boas on entire functions,’
to which the reader is referred for details and original
references. We deal here exclusively with entire
functions of order one and finite type. They are
commonly called functions of exponential type
(exponential type T, say, if the type is needed). The
Phragmén-Lindelsf indicator function of such a
function f(z), is defined by

h/(6) = lim sup r* log | f(re®)|.

r=>o

Q)

The function h,(0), for a given value of 0, is either
finite or — co.

Class P: This class has been introduced by Levin.®
Let f(z) be an entire function of exponential type =
(finite). f(z) is said to belong to the class P if the two
following conditions are satisfied:

(a) f(2) has no zeros in Imz <0, (b) A(—a) >
h, () for some « in the range 0 < a < 7.

For functions of the class P, we can prove the
following.

Theorem 1°: If f(z) € P, one has
/@I =1z ®

% R. P. Boas, Entire Functions (Academic Press Inc., New York,
1954).
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for all z in Im z < 0. In other words, if (8) holds on
one ray, even in the weak form of condition (b) above,
it holds on all rays.

This theorem is essential in what follows. As we
shall see, we have mostly to deal with functions of
the form

g(z) = exp (in) f(z) & exp (—iw)f(—2z), areal, (9)

where f(z) € P, with strict inequality sign in (8),°
and

f(=2) = [fz")]* (10)

It is then obvious that because of (8), |f(2)| > | f(—2z)|
if Imz < 0. Therefore, g(z) cannot vanish in the
lower half-plane. The same is true in Im z > 0 because
there | f(z)] < |f(—2)|, so that, finally, the zeros of
g(2) are all real. The importance of this remark stems
from the fact that our sum rules (1) are nothing else
but the results of the following theorems of Paley
and Wiener,” and Pfluger,’ applied to appropriate
solutions of the Schrddinger equation outside the
potential (» > R), which have real zeros in the k
plane (a fact which is proved exactly in the above
manner).

Theorem 2: If f(z) is an entire function of
exponential type with real zeros only, and f(0) =1,
the three conditions

hf(:l: ’5’)

= lim |y|™"| f(£iy)] = (B F Ima), (lla)

y— o
tim "4 _ 2p, (11b)
A—- o
A
lim Pf logl/W gy = —a8  (11¢)
A0 —A X

are equivalent, n(4) denotes the number of zeros of
f(2)in|z] < A, counted according to their multiplicity,
and P means the principal value of the integral.
Suppose now that f(z) has arbitrary zeros, real or
complex, and is bounded on the real axis. We have the
following theorem on the density of the zeros.

10 J¢ is obvious that if f(z) € P, (8) holds with strict inequality
sign for f(z) = eiezf(2), no matter how small € (> 0) is. It follows
that g (z), defined by (9) with f(z), has all its zeros real for any
f(z) e P. In general, by the continuity theorem, g(z) =lim g(z)

E—>i

will also have only real zeros, except in some pathological cases
where the continuity theorem breaks down.

11 This theorem, as stated here, is an obvious modification of the
Theorem 8.2.1. of Ref. 9. According to Hadamard’s factorization
theorem of entire functions, we multiply the canonical product
considered in the book by exp (etz) to cover all cases. If the function
is real on the real axis, we have Im o = 0. This is in fact what hap-
pens later, when we use Theorem 2 to derive (1).
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Theorem 3'2: Let f(z) be an entire function of
exponential type = in each of the half-planes
Imz > 0and Imz < 0. Let f(z) be bounded on the
real axis. If we denote by n_ (4) the number of zeros
with modulus less than 4 in Rez > 0 and Rez <0,
respectively, then

fim A _ A T (12)

A— o0 A-»0 A m

In other words, the zeros have the density z/= in
each of the above half-planes (total density 27/m).

For functions of exponential type with arbitrary
zeros, we have the following theorem.

Theorem 4*3: Let f(z) be an entire function of
exponential type =, z, its zeros, and f(0) = 1. The
conditions

7C = EM <, r,=]lz,|, 6,=argz,,
1 rn
(132)
and
lim ") _ 25, (13b)
A-©
together, are equivalent to
4]
1im1—3f g lfON 4 = — B —©). (130)
A= 0T J—4 X

As we shall see, Theorems 3 and 4 are the basic
tools for the derivation of the sum rules (3).

Having now collected all the necessary definitions
and theorems, we show briefly how the sum rules
may be derived in potential scattering. As is well
known, if the potential satisfies

f " V@) dr < oo (14a)

and

f V()| dr < o, (14b)
0
the scattering process and the bound states may be
entirely described in terms of the so-called Jost
function fi(k) (Refs. 5 and 6). If we denote by
fi(£k, r) the two independent solutions of the radial
Schrodinger equation satisfying

lim exp (Likr) f(Lk, r) = i,

>

(15)

12N. Levinson, Gap and Density Theorems (Am. Math. Soc.
Colloquium Publ., No. 26, New York, 1940), Chap. III; P. Koosis,
Bull. Soc. Math. France 86, 27 (1958). The density of the zeros is
defined by lim n(A4)/A4, n(A) being the number of zeros in [z| < 4

A—-> o
counted according to their multiplicity. Similarly, one can define
the density in a half-plane (left, right, upper, lower, - - -, etc.).
13 Reference 9, p. 143, Theorem 8.41.
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the Jost function f;(k) is defined by
@ik, 1) = 3k fi( =R fi (K, r)
— (=D%B) fi(=k,nN], (16)

@, being the regular solution, normalized according
to (5). The properties of the above functions are as
follows®:

(A) ¢,(k,r), for each value of r, is a real even
entire function of k of order 1 and type r. Its asymp-
totic properties in the & plane are given by

ok, r) = kK sin (kr — Lim)
je] = o0
+ o(lk|7exp |Im k| r). (17)
(B) Forr # 0, f,(k, r)isregular analyticinIm k < 0,
and continuous on Im k = 0 except at k& = 0. Also,
ifr#0,
lim k'f,(k, r) (18)
k=0
exists if the limit is carried out in the region of
regularity. As [k| - oo in Im & < 0, we have

Silk,r) = ite”®" 4 o(exp Im kr). (19)
The *“‘symmetry”” property's
fil=k*, 1) = (=D![filk, N]* (20)

follows from the radial Schrodinger equation [V(r)
real] and (15). Notice that both k¥ and —k* are in the
same half-plane.

If the potential has a finite radius, k'f;(k, r) becomes
an entire function of &k for r # 0.

(C) The Jost function, which can also be defined by

Sulk) = EW(fi(k, r), @ik, 1], @n

W being the Wronskian, is a regular analytic function
of k in Im k < 0, and continuous in Im k£ < 0. From
its definition and (20), it follows that, wherever it
exists,

Su(=k*) = [fi()]*.

This shows that f;(k) is real on the imaginary axis.
Note that, in general, (16) makes sense only for real
values of k. In the limit of large k, we have

22)

lim fy(k)=1. (23)
e
On the real axis, according to (22) we have
S(£k) = | fi(£k)| exp [+i0,(K)] 24

14 Real in the sense of analytic functions. It is: real on the real
axis, so that, by the Schwarz reflection principle, @, (k*,r) =
@ik, r)*. Also, because of its evenness, @, is real on the imaginary k
axis.

15 It follows from (20) that i*fy(k, r) is real on the imaginary axis.
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and
0 (—k) = —d,(k), (25)

d,(k) being the phase of f(k). Now, using this, to-
gether with (15) and (16), we see that, for k real, we
have

gk, r) = (= Dk M fuk)| sin [kr — dlm + 8,(k)],
o (26)

so that ¢,(k) is the phase shift. The S matrix on the
real axis is therefore given by

Sy(k) = exp [2i6,(k)] = fLOLL(=R)1 (27)
If there are bound states, they are determined by
the zeros of fi(k) in Imk < 0.3¢ These zeros,
k;= —iy;, j=1,2,-++,n, are simple, situated on
the imaginary axis, finite in number, and they corre-
spond to bound states with energies E; = —yx3. On
the real axis, f;(k) never vanishes.’® Finally, the phase
shifts satisfy the Levinson theorem

8,(0) — 8,(c0) = nm. (28)

If the potential vanishes outside a radius R, f,(k)
becomes an entire function of order 1 and type 2R.
More precisely,

[fi(k) — 1}exp ik R) = o(1),
k] — o0, Imk >0. (29)
This, together with (23) and Theorem 1 show that,!
forr > R,
"k — iy, .
gk, 1) = T ——~ exp (i k)fk) € P, (30)
k + iy,

=1

its type being r. Note that, if r > R, g(k, r) satisfies (8)
with strict inequality sign. Also, g(k, r) satisfies (22)
[or (10)] in the entire plane. As is easily seen, all of the
above properties are also valid for g[(k" — k), r], k
being fixed and real. Combining now exp (ix)g[(k" —
k), riwith exp (—ia)g[— (k" — k), ], with an appro-
priate phase «, we obtain functions similar to (9), with
real zeros, to which, after normalizing them to 1 at
k' = 0, we may apply Theorem 2. This, after some
easy algebra, leads to two kinds of sum rules.’” If
we take the plus sign in the above combination, we
obtain (1), whereas if we take the minus sign, we
obtain formulas similar to (3) in which S(k, r), the
zeros now being all real, is given by (4) with all
y;(r) = 0 [i.e., by a sum identical with the one that
figures in the right-hand side of (1)], but where 6(k),
Eq. (2), is present in the argument of the sine functions.

18 We leave out the possibility of £,(0) == 0, which corresponds to
a resonance (/ = 0) or a bound state (! # 0), at zero energy. There
is no loss of generality in doing so. One can handle the problem in
the same way (Ref. 1) as when £,(0) 3¢ 0.

17 For details, see Ref. 1.
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The derivation of (3) is similar to that of the previous
case. We consider now the wavefunction ¢, outside
the potential (» > R). It is given by (16) where
fi(k, r) is now the free solution®

wikr) = —ikrh®kr),

wi(z) = ile‘iz[l +o(i”,
fzl=o |21

h{¥(z) being the spherical Hankel function. From (17)
and Theorem 3, it follows that® the zeros of ¢, have a
total density 2 r/m. This, together with the properties
of the complex zeros* +iy;(r) of ¢, , shows that we can
apply Theorem 4 to ¢, (k" + k, r)/g,(k, r), k being
fixed and real. The net result is the sum rule (3) and"
the similar ones for higher /.

From the above considerations, it is now clear
that the essential ingredients in the derivation of the
sum rules are the analytic and asymptotic properties
of fi(k), namely that fi(k) is an entire function of
order 1 and type 2R, satisfies (22), (23), and (29),
and that its zeros in the lower half-plane are pure
imaginary and correspond to bound states. To derive
the sum rules from causality and the analytic proper-
ties of the R matrix, we have to show that the S matrix
[see formula (47) below] can be written in the form
(27), where f,(k), the “Jost function,” has all the
essential properties, mentioned above, of the true
Jost function of potential scattering. This is the main
conclusion of the present paper, the proof of which we
devote Sec. III.

(3D
(32)

II. “JOST FUNCTION” IN R-MATRIX
THEORY
By definition, the R matrix relates the value of the
wavefunction to its normal derivative on the sphere
inside which the interaction takes place. Assuming the
interaction to be invariant under spatial rotations,
we can consider separately each angular-momentum
state. The wavefunction outside the interaction
region being given in general by
vk, r) = A(k)wy(kr) + By(k)wi(—kr), (33)
where w,(kr) is the free solution introduced before,
Eq. (31), the R matrix (rather its /th element) is
simply
R(E) = yi(k, RB)[yi(k, R). (34)
The R theorem of Wigner® now states that R,(E)is a

real meromorphic function of E of the following
form:

‘}!2
Rl(E) - 2 E 4 E ]
A Lgp T

where y,, and E,, are real constants. The poles E,,

(35
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may approach infinity in either direction but cannot
accumulate in a finite point. It is obvious from (35)
that R,(E) is a Herglotz function,’® and maps the
upper and lower half-planes into themselves. In
other words,

ImR(E)-ITmE >0 unless ImE=0. (36)
Also,
,y2
SH< &)
1 kB,

Let us now see the relation between R,(E) and the
S matrix. From (33) and (32), we have

Si(k) = exp [2i6,(k)] = —(—1)'B,(k)[4,()].  (38)
On the other hand, using the Wronskian'®

Wiw,(kr), w(—kr)] = (—1)2ik, (39)

wifgl=sg~fg (40)

in (33), we obtain
Ak) = — (=D Qik) Wiw,(—kr), vk, r)] (41)

and

B,(k) = (—1)!Qiky ' Wiwkr), w,(k, )], (42)
so that
s = MWl n]
W(—k)yw(—kr), pi(k, r)]
From this, (33), and (34), it is easily found that
R(E) = —Wf(kR) + (—1)lSz(k)wf(—kR), (44)
—wy(kR) + (—1)'S,(k)w(—kR)
, d
wy(kR) = o w,(kr),r:R. (45)
Conversely, we have
Si(k) = g()g,(—k17, (46)
gi(k) = k'w,(kR) ~ R(E)w(kR)]. 47)

Now comes the crucial point. We want to write S,
[Eq. (46)] in the form (27), with f,(k) having all the
properties, mentioned at the end of Sec. II, of the
true Jost function of potential scattering. The R
matrix being meromorphic, it is obvious that we
cannot simply take f;(k) = g,(k). To remedy this, we

18 J. A. Shohat and J. D. Tamarkin, The Problem of Moments
(Am. Math. Soc., New York, 1963). Quite generally, a real mero-
morphic Herglotz function admits the Mittag—Leffler expansion

y2 ,yz
RO =z +p+ T -5
n Wy — 2 Uy
where all the constants are real, and o 2> 0. This is equivalent to (35)
if @ = 0 and the sum in (37) converges to f3.
1% All the derivatives are taken with respect to r, Eq. (45).
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have to show that there exists an appropriate real'*
entire function F;(k?%), such that

Silk) = gl (l)F(K?). (48)

That F;(k%) must be a real function is the consequence
of the fact that, because of®

wi(—z*) = (=D w,(2)]* (49)
and the reality of R,(E),
R,(E*) = [RY(E)]*, (50)
g.(k) satisfies already (22), i.e.,
g—k*) = [g.()]*. (5

Therefore, to ensure that f;(k), Eq. (48), also satisfies
(22), we must choose F,(k?) real:

Before giving the explicit construction of F,(E),
let us enumerate the properties of the S matrix one can
derive from those of the R matrix, namely (35), (36),
and (37). We consider for simplicity the § wave, and
drop henceforth the subscript /. The other waves can
be handled in the same way, with some minor changes,
as shown in Appendix B. As has been shown by Van
Kampen,2® the above properties of the R matrix imply
(and are implied by) the following properties of S:

(a) S(k) is a meromorphic function of & in the entire
plane;
(b) on the real axis,

[SU* = [S(K) = S(—k); (53)

(c) the poles of S lie either on the positive imaginary
axis or in the lower half-plane.® The poles on the
positive imaginary axis are simple. It has been shown
in the first paper of Van Kampen® that poles of higher
order on the +i axis would violate causality;

(d) in the first quadrant of the k plane,

Im [exp (2ikR)S] £ 1; (54)

(¢) the absolute value of Si(k) = exp (2ikR)S(k) is
uniformly bounded in 0 < argk < {7 — ¢, > 0.

Note that properties (a) and (b) are trivial con-
sequences of the reality and meromorphy of the R
matrix, and obviously hold for all /.

Let us now study the properties of the poles E, of
the R matrix. They are needed in the construction of
F(k*). Consider first the negative poles. We assume
that the number of bound states is finite, i.e., there is
a finite number of poles of S(k) on the imaginary

20 N. G. Van Kampen, Rev. Mex. Fis. 2, 233 (1953).
21 W. Schiitzer and J. Tiomno, Phys. Rev. 83, 249 (1951).



1904

axis.? This is a reasonable assumption in general, and
is dictated here by our wish to prove the sum rules.
If we think in terms of potential scattering, the
number of bound states is finite if r¥(r) is integrable
at the origin.>¢ On the other hand, as discussed by
Wigner® and Van Kampen,® an attractive potential
behaving like r—" (n > 2) at the origin—which has
indeed an infinite number of bound states—or, more
generally, a self-adjoint Hamiltonian which is not
bounded below, would certainly violate the causality.
In fact, in this case, because of the well-known
phenomenon of collapse into the origin, the R matrix
cannot be defined. The number of bound states being
finite, we can see at once that the same must be true
for the number of negative poles of the R matrix.
Indeed, a bound state (k = iy, y > 0) is determined
by the vanishing of the denominator of (46)%:

w(—iyR) — R(—yw'(—iyR) = 0. (55

Because of (49), the functions w(—iyR) and w'(—iyR)
are either real (/ even) or pure imaginary (/ odd), and
R(E)is an increasing function on the real axis because
of (35). Also, if E, ; and E; (> E;_,) are two con-
secutive poles of the R matrix, one has R(E; ; + 0) =
—oo and R(E; — 0) = +oo. It follows that there is
one bound state between each two consecutive
negative poles of R(E). This implies that the number
of these poles must be finite.

Consider now the positive poles of the R matrix.
From (44) and (31), the R matrix is given by (/ = 0),

R(k?) = (1/k) tan (kR + 0). (56)

Using condition (6a), one sees easily,? that the poles
and their residues in the k plane (E, = k?) are given
asymptotically by

+k, = v, + 0(n,), (57a)
+pi=b; + O, (57b)
22 i (7/R)), (57¢)
where A is a large positive integer, and
vi= (4 + H(7/R), (582)
b,= —1/7R. (58b)

If k, is a pole, —k, is also a pole with an opposite
residue. Collecting first the contribution of these two

22 That these poles correspond to bound states is clear from the
definition of ¢;, (33), and the fact that they come from the vanishing
of the denominator of (46), which is proportional to A4,(k).

23 Notice that k = 0 is neither a pole of S, nor a pole of R.

24 To calculate the residues, we need the first derivative of d(k).
S being holomorphic in a neighborhood of the real axis, and having
no zeros on the real axis because of | S| = 1, the phase shift § =
(2i)"1og S is also holomorphic in the neighborhood of the real
axis, and therefore has bounded derivatives of all order in that
neighborhood.
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poles together and then summing over 4, we get (35)
back, with the asymptotic residues
vi = —2k;p, = (2/R) + O(n,). (59)
The above expressions for the poles and their
residues are asymptotic, and hold for large values of
the index. In fact, it is clear that there exists an integer
A such that, for 1 > A, there is a one-to-one corre-
spondence between the poles k,; and their asymptotic
form v, . Note that the first few &, are purely imaginary
(E, < 0) if there are bound states.
From the above asymptotic values of the poles and
the residues, it can be shown that?®
lim — ikR(E) = 1 4 o(1),
k=
uniformly in any sector e < argk <7 —¢, € > 0.
Using this property in (46), and remembering (32)
we see that

(60)

exp (2ik R)S = o(1), (61)
k| = oo
uniformly in any sector 0 < e < argk <7 — ¢ < 7.
If k; =iy;, y; >0, j=1,---,n, are the poles of
the S matrix on the +/ axis, we get from |S(k)| = 1
on the real axis and the maximum modulus principle,
that

mmmmnw—mm+wmwM31
i=1
in Imk>0. (62)
This is the generalization of the property (e) of the
S matrix to the whole upper half-plane.
Let us now consider tentatively

Hﬁsnﬁ—ﬁ}

i y)

(63)

where E, are the poles of the R matrix. That this
function is entire and real is obvious because of the
uniform convergence of the infinite product in any
compact of the E plane [consider log F, and use
(57a)]. With this choice of F, the function f(k) defined
by (48) is obviously entire. Using the general theory
of meromorphic functions,? it is shown in Appendix

2 The E plane is cut along the positive-real axis, k = E?¥ is
defined with Im k > 0 if £ is not real-positive, and k real-positive
if E is real positive on the upper rim of the cut. It is well-known that
the asymptotic properties of entire functions and meromorphic
functions are closely related to the asymptotic behavior of the zeros
and poles (see Refs. 9 and 26). More precisely, there is a definite
relation between the asymptotic behavior of a(r, 0) and s(r, o),
where these two symbols represent, respectively, the number of
zeros and poles in |z| < r, and the growth of the corresponding
meromorphic function. From (56) it is clear that in our case the
zeros and the poles of R(k?) are asymptotically those of k! tan (kR),
and we expect the asymptotic behavior of R(k?) in the upper half
of the k plane to be the same as k~!tan (kR — Nm) ~ —(ik)~\.
In Appendix C we show rigorously that this is indeed the case.

2¢ R. Nevanlinna, Eindeutige Analytische Funktionen (Springer-
Verlag, Berlin, 1953), p. 163ff.
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C that R(E) has the factorization

_ R0 8
R(E) = R(0) F(E)

= R(O)]:[ (1 - Eﬁ) [1:[ (1 — EE)T, (64)

" A
where E|, are the zeros of R(E). These zeros are simple
and interlaced between the poles E,. They have the
asymptotic form

2,2
E, = (,u + é) -17—;—2 + po(u), wpalargeinteger, (65)

as is clear from (56) and (B15). Also, it is shown in
Appendix C that R(E) has the following asymptotic
behavior in the entire plane:
1 1
R(E) = —tan (kR — }lm) + (L), (66)
ko ke |k|
and in Appendix D that in all complex directions,
0 < argk < 7, F, and G have the uniform asymptotic
behavior

P=T(1-5)

E,
= Ak 'cos (kR — Hm)[l + o(1)],  (67)
k=0
E
=T0(-5)
— Bk~"'sin (kR — 3m)[1 + o(1)], (68)
k— oo

where the constants 4 and B are related by 4 = R(0)
B (for the actual values of 4 and B in terms of £, and
E; , see Appendix D).

Using the above asymptotic behaviors in the defini-
tion of the “Jost function” (47) and (48), we obtain

fulk) = k'[w(kR)F(E) — R(O)G(E)w;(kR)]
= A[l + ¢ **B(1) + o(1)].
k=00
This behavior is in agreement with both (23) and (29)
if A =1. The “Jost function” should therefore be
defined by

fuky = (K'{A)[w(kR)F(E) — R(O)G(E)w(kR)]. (69)

It is an entire function of order 1 and type 2R.

It remains to be shown that its zeros in the lower
half-plane are simple and on the imaginary axis.
This has been shown for the S wave by Schiitzer and
Tiomno,* as was mentioned before under property
(c) of the causal S matrix [note that a pole of S in
Im k > 0 is due to a zero of its denominator f(—k)].
In Appendix B, we show that the above property is
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true in general (/ > 0). It is in fact sufficient to prove
only that the zeros in the lower half-plane are on the
imaginary axis. That they are simple is a consequence
of the causality condition,® as we saw before under
property (c) of the S matrix. The property (22) is also
automatically satisfied. We have therefore completed
our proof that the causal S matrix can be written in
the form (27), with f,(k) having all the properties of
the Jost function of potential scattering. We can
therefore derive our sum rules directly from the
causality condition and the Levinson theorem.

In fact, we are going to show in Sec. IV, using the
Gel'fand-Levitan equation of the inverse scattering
problem, that the above properties of f,(k) entail the
existence of a local potential of radius R which
reproduces our causal S matrix. This of course does
not mean that the interaction is itself local, but only
that it is equivalent to a local potential as far as the
R and the S matrix are concerned.

IV. THE EQUIVALENCE OF THE CAUSAL
INTERACTION WITH A LOCAL POTENTIAL
OF FINITE RADIUS

It will be shown now that a causal interaction of
radius R satisfying the Levinson theorem and (6b) is
in fact equivalent to a local potential of the same
radius. For simplicity, we consider the S wave with one
bound state. As will be seen, the generalization to
higher waves and more than one bound state is
straightforward.

We start from the Gel'fand-Levitan integral
equation® of the inverse scattering problem which
implies that given an arbitrary phase shift® (satisfying
the Levinson theorem) and the bound-states energies,
there exists a family of potentials (the so-called phase-
equivalent family), depending on as many arbitrary
real-positive parameters as there are bound states,
satisfying conditions (14a), (14b), such that all the
potentials of the family reproduce the phase shift and
the binding energies. The arbitrary real positive
parameters are in fact the norm of the bound-state
wavefunctions defined by the boundary condition (5)
of Sec. I. They can vary between zero and infinity.
In general, different members of the family have
different asymptotic behaviors at r = co. We therefore
have to show that the properties of the Jost functions
(or the S matrix) which were derived in Sec. III
entail the existence of a potential of radius R in the

27 Reference 5, Sec. 8.

%8 A sufficient condition for the existence of the potential would
be the continuity of the phase shift on the real axis. Here, we have in
fact much more than this since d = 2i)"'log § is analytic in a
neighborhood of the real axis because of | S(k)] = 1, which guaran-
tees that .S has neither zeros nor poles on the real axis.
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family. According to a theorem by Newton,?® this
potential is unique among the phase-equivalent
family. All the other members behave at infinity as a
linear combination, with nonzero coefficients, of the
bound-state wavefunctions, so that they do not have a
finite radius. To prove the existence of a potential of
finite radius in the family, we use another integral
equation, derived by Marchenko,?®3 which is
equivalent to the Gel'fand-Levitan equation, and is
such that the asymptotic properties of the potentials
are much more transparent. This equation reads

F(x + y) + K(x, y) +fwK(x, DF(t + y)dt =0,
0<x<y (70

~vt _1__ ® _ ikt
F(t) = Ce' + 5 f_ w[l S(k)le™ dk, (71)

—»% being the energy of the bound state, and C
(positive) the normalization constant:

¢t = [CIf =iy, it ar (1)
0
The potential is given by
Vi) = =2 4 K(r, r). ~ (73
dr

Necessary and sufficient conditions for the existence
of a unique solution of the above integral equation
are also known.®2 It can be easily seen that these
conditions are satisfied in our case. In fact, we do
not need to look at these conditions since, as was
mentioned before, the Gel'fand-Levitan equation
guarantees the existence and the uniqueness of the
potential if the phase shift (satisfying the conditions
stated before), the bound-state energy, and the con-
stant C are known.

Let us consider first the case of no bound state.
In this case, F(f) reduces to the Fourier-integral
transform of 1 — S. The S matrix is now holomorphic
in the upper half-plane and satisfies there the condition
(61). By closing the contour of integration in (71) in
the upper half-plane, it is seen that F(f) =0 for
t > 2R. It follows then from Eq. (70) that K(x, y) = 0
for y > x > R, and this, according to (73), implies
that the potential vanishes beyond the radius R.

The case where there is a bound state is quite
similar. The S matrix still satisfies (61), but now has a
pole at k = iy. By closing the contour of integration as

20 R. G. Newton, Phys. Rev. 101, 1588 (1956).

30 7. S. Agranovich and V. A. Marchenko, The Inverse Problem
of Scattering Theory (Gordon and Breach, Science Publ., Inc.,
New York, 1963), Chap. 5.

st .. D. Faddeev, J. Math. Phys. 4, 72 (1963).
32 Reference 30, p. 132, theorem 5.6.1.
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before, we find

F(t) = [c + M]e‘”, t>2R, (74)
f'(=iy)
I'(=ip) = (1) =—sy-
This, together with (70) and (73), implies that V(r)
behaves in general like exp (—2yr) for r > R, except
when
C = —if@f (~ip), (75)
in which case it has, as before, the radius R. This is
equivalent to saying that the unique member of the
phase-equivalent family which has the radius R is
such that the bound-state wavefunction normalization
is determined by (75). It remains to be shown now,
that the right-hand side of Eq. (75) is indeed positive.
This is true in general, in the absence of ghosts,
and can be shown here in a very simple manner.
According to (46) and (47), and if we notice that
wo(z) = exp (—iz), the condition f(—iy) = 0 [which
is equivalent to g(—iy) = 0] gives

g(—iy) = e[l + yR(—y")] = 0.
Accordingly,

g(iy) = e'F[l — yR(—p»)] = 2¢'%.
Also,
g'(—iy) = —ie”""[R + 2y*R(—*) — RyR(—»")]
= —ie7?"®2R + 2y*R(—y)],
where R(—y?%) = dR/dE at E = —y%. The R matrix

being an increasing function on the real axis, we get,
finally,

LGN
f(=iy)

g(iy) 2¢"7E

i = - >0
g(—iy) 2R + 2y°R(—y")
Q.E.D.

If there is more than one bound state, the first
term in the right-hand side of (71) is replaced by a sum
over the bound states, and the above analysis can be
carried out exactly in the same way. For each bound
state y,, the normalization constant C;, corresponding
to the potential of finite radius, would be

2 exp (2y,R)

2R + 275R(—7))

For / > 0, the proof can be carried out as for the
S wave. The starting point is again the Marchenko
equation for / 3 0, given by BlaZek,?® which is quite
similar to (70) and (71) except that the exponentials
are replaced by appropriate combinations of Hankel
functions. The calculations are elementary, and lead

H

3 M. Bla¥ek, Commun. Math. Phys. 3, 282 (1966).
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to the same conclusion: In the phase-equivalent family
of potentials, there is one with radius R. It corresponds
to the normalization constant

PP I A1 (7))
C, = —l,r2dr:| = —j
= | [ =

To prove the positivity of the right-hand side, one
uses the same method as for / = 0, above, combined
with the recursion formulas of Appendix B for the
functions w,(kR). It is elementary but tedious and we
shall not reproduce it here.

As is obvious now, the decomposition of the
R matrix into the product (64) and the detailed
properties of the “Jost function” are not necessary at
all for the proof of the equivalence of causal inter-
action with a local potential of the same radius, since
this proof is based entirely on the meromorphy
properties of the S matrix (46) and (61), the latter
being a direct consequence of (60). Once this equiv-
alence is shown, it follows that the S matrix is given
by (27), with f(k) having all the required properties,
and the sum rules become a trivial consequence of the
above equivalence. The decomposition formula (64)
is also obtained easily from formula (44) and the
remarks of Sec. II on the zeros of functions which are
combinations of functions of class P. This is the
reason why the proofs of (64), (67), and (68) are given
only in Appendices C and D. That they are given at all
is simply because these properties, which are estab-
lished without knowing beforehand the existence of
the equivalent local potential, seem to hold, in a
slightly modified form, under more general circum-
stances. One may therefore hope that our sum rules,
in a generalized form, would be true for more general
classes of causal interactions, especially for some
restricted class of nonlocal interactions which are not
equivalent to a local potential. We intend to develop
this in a forthcoming paper.

Finally, it may be shown that the properties of the
“Jost function™ established directly from those of the
R matrix, when used in the Gel’fand-Levitan integral
equation, lead also to the equivalence theorem.
However, the proof is much more involved than given
here.
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APPENDIX A

In general, under conditions (14a), (14b), the Jost
functionin Im k < 0is given by [Ref. 5, formula (4.4)]

fitk) =1 +f0R<pl(k, NV(rkiwkr)dr. (A1)
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Here, of course, we only need condition (14a).
The phase shift on the real k axis is the phase of the
Jost function, j.e.,

d(k) = Im log f,(k). (A2)
Because of®
fik) =1 + o(1), (A3)
we have e
log fz(k)g filk) — 1, (Ad)
so that, for k large enough,
dy(k) = Im log fi(k) = Im fy(k). (A5)

We have therefore to show that k= |[Im f(k)| is
integrable at infinity. Now®

)
Im w(kr) = —uy(kr) = — (g’ kr) T3 (kr). (A6)

Using the upper bounds given in Ref. 5 (k real-
positive),

K kr T
<4 A7
luy(kn)| < ﬁ+h) (A7)
and
k < r I+1 A
N <B , 8
|9k, ) Q+h) (AS)
in (Al), we find
R 201+1
(kr)
ummscﬁmuwma:;@;
E kr
< cf PV —K—ar. (A9)
0 (1 + kr)?
It follows that
ka—l m £ dk < | drr v [ —4
m
Ko ' - J;) rrver Kor (1 + u)?
R
< Cf r|V(r)| dr. (A10)
° QED.

APPENDIX B

This Appendix is devoted to a detailed study of the
functions considered in Sec. III, for all values of the
angular momentum /. First, let us mention some
properties of the free solutions w,(kr). We have®

wi(z) = —v(z) — iu(z) = i'e" [l + 0(1/z)], (B1)
uyz) = zj(z) = (—1)"u(—2), (B2)
v(z) = zny(z) = (—1)'v(—2), (B3)
(sin(z — 3w, z— oo, (Bda)

ui@) = {z’“[(Zl F DUz >0, (B4b)
o) = :—c:s (z — }m), z—> o, (BSa)
— QL= 1), z—0. (BSb)
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Accordingly, the asymptotic form of the R matrix
(44), for k — + o0, is

1 l
R(K®) = . tan (kR — —;—’ + 51)
+ ‘ o(L). (e
sin [2(kR — 17 + 8,)] ch)'

From this and (6a), it follows that the poles k,, and
the residues p,, are given asymptotically by

ki = vy + Oln(kz)] = vy + Oly(=4/R)], (B7)

pu = by + Oln(k)] = v, + Oln(74/R)], (BSY)
where A is a large integer (2 0), and

(B9)

(B10)

There is therefore a one-to-one correspondence
between the k,, and v, for |A| > A, A being a fixed
large positive integer. Combining the poles +k;,
which have opposite residues, we get

2 Vi
R(K) = 3 ———,
e ‘?’Eu —E

the sum now being over the poles of the R matrix
which we number also symbolically by the set {1},
although the set {1,2,- -} would be more appro-
priate. The first few E;, may be negative if there are
bound states. For 4 > A, we have

(B11)

g

E, = (z + )(R?‘) +Ja(d),  (B12)

Yi = (2/R) + «(d). (B13)
According to (6b),

j "I ()] dh < 0. (B14)

It is clear also that the zeros of R,(E) are given
asymptotically by

E, = EY + pa(u), (B15)

EY =+ 1075 (B16)
where u is a large integer. Formulas (B12-B16) are the
generalizations of formulas of the Sec. I given for
I=0.

We have now to generalize to / 0, the properties
of the S matrix, stated for / = 0 in Sec. I1I, which are
needed in our analysis. As was noted before, properties
(a) and (b) are trivial consequences of the reality
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and meromorphy of the R matrix, and (49). In fact,
it is obvious that because of (46) and (51), we have in
general (k complex)

Si(—k) = [S(T™ (B17)

and
S/(—k*) = S} (k),

i.e., the S matrix is real on the imaginary axis.

Property (c) can be established as follows. Accord-
ing to (46), we have to prove that g,(k), given by
formula (47), does not vanish in Im k < 0 outside
the imaginary axis. The zero due to k' being compen-
sated by the pole k=% of w,(kR), we are left with the
solution of

(B18)

wy(kR) — kR(E,(kR) = 0, (B19)
d
W, (kR) = (d—p) wi(o)p—xre (B20)

We note now that w,(kR) does not vanish in the lower
half-plane.®* To simplify the writing, let us put
kR = p and Ry(p*/R?) = Ri(p?).

If we divide by w,(p), (6.19) becomes

W) _ _R

= B21
P wi(p) (82D

EL(PZ) ,
R,(E) being a Herglotz function [Im R(E)-Im E > 0
if Im E # 0]; we have

Im [Ry(p)]* = —Re p-Imp- [+],
where the symbol [+] means a positive function which
does not vanish except perhaps for real values of p?,

i.e., p either real or pure imaginary. It follows that,
in the lower half of the p plane,

Im R*(p*) = Re p+ [+].

We are now going to prove that in the same domain,
the left-hand side of (B21) satisfies

Im [ﬂ“_’l_(i)] = —Re p* [+].
wi(p)

Clearly, this would mean that (B19) does not vanish

in Im p < 0 except perhaps on Re p = 0. For this

proof, we proceed by induction.®® We start from the

recursion formula3®

pwip) + pwialp) — Iw,(p) = 0.
This relation gives, respectively, for /and / + 1,

7
Wi W;
Wiy, Wit
34 Bateman Manuscript Project, Higher Transcendental Functions,
A. Erdélyi, Ed. (McGraw-Hill Book Co., New York, 1953), Vol. II,
p- 62.
35 We wish to thank E. Cremmer for his help in this proof.

38 These recursion relations are easily obtained from those for the
Hankel functions, Ref. 34, and our definition.
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and
1+p(ﬂ) =2l+1—p(wi1).
w, w,

Note that we always divide by a function which does
not vanish in Im p < 0. Taking the product of these
two formulas, and using the recursion relation®

QI+ Dw, = p(wiyy + wiy),
we get

[+ pwi/wolll = p(wa/wi 1)1 = p*
Separating the real and imaginary parts, and using the
self-explanatory notation

p(wi/w) = G, + iH,,
we obtain
(=6, )G, + H_H, = (x2 - yz) — Il — Gy,
—H G+ (- G_)H, =2xy + IH,_,.
Solving these two equations for G, and H,, we find
G =-1— (Az—l)_l[(,}’2 —xHA, 4 — 2xyH, 4],
(B22)
(B23)

p=x+1iy,

H, = (A )7 [ — yDH, 1 + 2xy4, 4],
where

A =1—G,
and

Al—l = Azz—l + Hz2—1 > 0.

We are now going to prove that B, = —x'H, =
—(Re p)7 Im [p(w;/w,] is positive in the half-plane
y =1Im p < 0. Indeed, we get from (B22) and (B23)
that

Ay =214+ 1+ (A )7 [(* — x4, — 2x%B, ],
(B24)
B = (A )G = yDB,y — 2p4,.,4) (B25)
Writing now (B25) for / 4 1, and eliminating A,
and B, with the help of (B24) and (B25), we finally find
By = A7 —=2(21 + 1)y + Ay |pl* Biy].

It follows that, in the lower half-plane, B,,, is strictly
positive if B,_, is so. Now, for S and P waves, we have

e )

—ipe i
=—(Rep)_11m[ ‘pe }=1

e

and
. —1\ _—ipys
_(pl*=21m p)
1+ ip|®
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It follows that, for all /,

Im [p(wi/w)] = —Re p-[+]
inIm p < 0.

The fact that the eventual zeros on the negative-
imaginary axis are simple, i.e., the poles of S;(k) in
the upper half-plane are simple, is a consequence of
causality, as was mentioned in Sec. III.

As for properties (d) and (e), they can also be
generalized to all /, and k in the whole upper half-
plane, by using a product similar to the one in the
left-hand side of (62), and by replacing everywhere
exp (2ikR) by appropriate combinations of w,(+kR).
However, we do not use them in our analysis, and so
we do not pursue the matter further.

We are going now to establish some expansion
formulas for tan (kr — 4/7) and sin (kR — }/7) that
we use in Appendices C and D. For the first function,
we start from the Euler formula®’

tan (z — %)

to which we add

o0 -1
0=Z[(z+l—-|_2——177+n7r)

1

—1
— (z+l——-;—177+n77) ]
It is then easily found that

tan (z — }lm)

( l+1 )—1
= —|Z — m
2

- ?jzz / [22 - (n + H'Tl)zﬂ
~(+0r3 [(z + nm)? — (’%41)2 772:|_1.

The second series being absolutely and uniformly
convergent, we finally obtain

tan (z — 3l=)
I+1

=2 z{z / [22 - (n + —;)Zﬂ} +o(1) (B27)

in all complex directions.

37 G. Valiron, Théorie des fonctions (Masson et Cie., Paris, 1948),
p. 384.
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For the second function, we begin with?3

0 — 1
sin (2 — 41m) = (z = ¥ [T (1 — 2——2—’”) ¢#lum
X 1‘[ (1 + == 21”) e, (B28)

The second infinite product can be written

0 I ©
II=IIxII.
v=1 v=1 v=I+1

Making the change of variable v = u 4/ in the
second product above, we get

0 1

=10 (1+*27)

v=1 v=1
© ,u,77'+%—l7'r+z)
X €x —Zlym —_—
Pz IT (7

p=1
xexp[—(l—l+ 1 )z/w].
popwoopbl

Collecting now all the exponentials in the right-hand
side, except the first exponential of the second product,
we obtain

1 l

P [( +Ew(/t + l))z]

which is equal to one by virtue of
L1 l
=2 pu+)

v=1 ¥
(For the proof of this, see below.) Going back now to
(B28), and putting the two infinite products together,

we find
sin (z — 3m) = (z — 3lm) H (1 + %’”)
umr

© (ot 3 — 2 = (a4 )
(n + 3)*7* =i p(u 4 0)

v=1 7Y

(B29)

p=1

(B30)

Note that all the operations we have performed on
the infinite products are legitimate because these
products are all absolutely convergent, and we have
extracted from them other absolutely convergent
infinite products. To prove (B29), we proceed by
induction. For / = 1, it holds trivially that

]
.M

i 1 _3 (l _ _1__)
amip(p+ 1) =\ p+ 1
fﬂ“ dx (> dx

2 =] z=1L
u X 1 X

Il
Ms

1

u
38 Reference 37, p. 433.
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Suppose now that (B29) holds for / — 1. Taking
the difference of each of its sides for /and / — 1, we
get, as above,

1
(u+1—Du+1
1 dx

zx2

o~ —
Il
M8

1
L

1
-

Il
i
=
<
+
=
fl
g‘ﬁ
"

Q.E.D.
APPENDIX C

Here we have to show that in general (/ > 0)
R,(k?) = k~'tan (kR — ¥Im) + [k[*o(1) (C1)

for k — oo in all complex directions in the upper half-
plane. By definition,

2
Rk = 3 —1 2
*) =3 (C2)
where, for 4 > A (a large fixed integer),
Ey = E3 + Aa(d), (C3)
(1 +1E 1) =, (C4)
2 /R
2 2
v = + a(d), (C5)
R
and «(4) is such that
f IR d < 0. (C6)

As is obvious, we can neglect the first A terms of the
series in (C2) which are O(E™!) for E— . For
A > A, there is a one-to-one correspondence between
the poles of R,(E) and those of £~ tan (kR — i/m).
To simplify the writing, we drop henceforth the
subscript /. As is clear from the above formulas, we
have, uniformly in all complex directions (0 < € <
arg E < 27 — o)

lim R(E) = 0.

|E|=

Let us see first what we can get from the above prop-
erties of R(E) by using the general theory of mero-
morphic functions.?®* According to (C3), the number
of poles of the R matrix in |E| < r is given, asymptot-
ically, by

€7

n(r, ) = (R/mrt + 0(r1). (C8)
Also, the origin not being a pole, we have
n(0, o) = 0. (€9

If we denote by n(r, 0) the number of zeros inside the

3 E. C. Titchmarsh, Theory of Functions (Oxford University Press,
London, 1939), p. 284bfT.



NONRELATIVISTIC SUM RULES

circle |E] < r, counted according to their multiplicity,
we also have

n(r, 0) = (R/mr? + 0. (C10)

Indeed, R(E) being a Herglotz function does not
vanish outside the real axis. On the other hand, there
are no zeros for E < E;, and those in £ > E, are
interlaced between the poles E;, and are simple
because R(FE) is monotonically increasing between two
successive poles. There is exactly one simple zero
between two successive poles. In fact, according to
Appendix B, and formula (6a), these zeros are asymp-
totically close to (4 + 3)*s%/R?, ie., they are
situated, in the k plane, half way between two neigh-
boring poles.

Consider now the characteristic function T(r)
(Refs. 26 and 39). It is given by (a # ©):

T(r) = m(r, o) + N(r, )

= m(r, a) + N(r,a) + ¢(r,a), (Cl1)
where @(r, a) is a bounded function of r, and
m(r, ) = - f log* |R(re®)] do, (C12)
27 Je
N(r, o) f mt ) g = 2R3 4 o), (C13)
T
= do, Ci4
m(r, a) f R (re"") e (Cl4)
N(r, @) = f ' 1(‘7—“) dt, (CI5)
)

n(t, a) denoting the number of the roots of R(E) — a
in |E| < ¢, counted according to their multiplicity,
and (« > 0)

log* « = max (0, log ). (C16)
It follows from (C10) that
N(r, 0) = (2R/=yt + 0Gd). (C17)

Consider now the function m(r, o). It is obvious
that because of (C7), this function is bounded when
r— oo by staying a finite distance (no matter how
small) away from the poles E,, i.e., if we exclude small
intervals [r — E){ =d, A =1, 2, -~ . Indeed, R(re*¢)
goes to zero at r = 00, e < ¢ < 27 — ¢, and is
bounded on the arc —e < ¢ < € if we exclude the
above intervals. Note that we can choose d small
enough so that all the zeros of R(E), E,, are outside
the intervals |[r — E,| = d.

Therefore, if ré¢ [E, —d,E, +d], A=1,2,--+,
we have

T(r) = N(r, ) + m(r, ) = (2R/m)r? + O(1). (C18)
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Now, according to (C11) with ¢ = 0, the asymptotic
equality of N(r, oo) and N(r, 0), and the boundedness
of g(r, 0), m(r, 0), and m(r, co)are equivalent, so that,
for relE, —d,E, + d], and A— o0, we can use
m(r, 0) instead of m(r, c0). Consider therefore

1 27 +
m(r, 0) = 5 log
W JO

dg. (C19)

R(re*)
The intervals [E, — d, E, + d] being free from zeros

, the integrand is bounded on the arc —e < ¢ < ¢,
In fact it is mostly zero because R(E) is large close
to the poles. On the other hand, R(E) being a Herglotz
function, we have, for ¢ £ 0, 27, the lower bound*®

IR(ré®)| > <, (C20)
r

C independent of ¢.
Therefore, if r — o0 by staying within the intervals
(E, — d, E, + d}, we have
m(r, 0) < O(logr). {C2h)
It follows that no matter how r-— o0, we have,
neglecting O(log r),
T(r) ~ (2R[m)r. (C22)
The order of the meromorphic function®® R(E) is,
accordingly,

(€23)

It follows from the factorization theorem of mero-
morphic functions that®

re=rOTI (1 =) /[T (- £)]

(C24)

This formula will be useful in Appendix D.

That the asymptotic behavior of R(E} is given by
k=1 tan (kR — }Im) can be shown as follows. First of
all, we have the Mittag-Leffler expansion

tan (z — }lm) = ——L _2'(1 +i),

I 4+1 —ew\z — v, Anm
Z - ———— 1T
2
(C25)
where
I+ 1
At ——}m,
( T )”

0 Reference 26, p. 217ff; Ref. 39, p. 284e.

i Reference 26, p. 224, formulas (7) and (8); Ref. 39, p. 284f.
Here p = §, and the zeros and poles have genus 0 {g = 0 in Nevan-
linna’s terminology; p; = pa = 0 in Titchmarsh). We have assumed
that R(0) 72 0. If the origin were a zero (simple) of R(E), we would
have a factor R’(0)£ instead of R(0) in front of our formula. How-
ever, the factor E could be absorbed in the numerator (function (),
and nothing would change in our analysis.
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and the prime on > means that the term 4 = 0 is
omitted.

As shown in Appendix B, formula (B27), the above
formula leads to

2 1

= = k'tan(kR — }/ k™*o(1) (C26

RS E} - Ko (KR = 4m) oD (€26)

in all complex directions.
Consider now

Z( v 2/R )

\E,—E E —E
0.2 _ 2 3 2
= ; I:E).y). - _Ii E, — E(V). - E):}
X [(E; — E)E — B)I™". (C27)

We are going to show that this difference behaves
like [E[-*o(1). As before, we can drop any finite
number of terms we wish from (C27). They will
contribute only by O(E~?). From (C3) and (C5), it is
seen that the main terms in the numerator are E%(A)
and E«(A). Once these are taken care of, the remainder
Ax(A)/R can be shown, with the same method, to give
a smaller contribution.

Now, for E not on the positive real axis, ¢ =
arg E 5 0, 27, we have (draw a figure and project £
on the real axis, and E, on the direction ¢):

|E — E| > |E| [sin ¢|,
([E§ — E| > Ej [sin ¢l,

or
|ES — E| > }(ES + |E]) [sin ¢,
and similar formulas with E, instead of E.
Therefore,
z E(}).a(;t)
(E; — E)XE} — E)

ES |a(4)]
4
S42 (E, + |EN(ES + |E])sin®
4 [a(A)] < 4 1 la(A)]

=sin* ¢ T E, + [E| " sin? ¢ |E|} T (E, + |ED?’
the series in the rhs being convergent by virtue of
(C6). For |E| — o0, we get therefore |E|~* o(1). The
other main term can be worked out similarly:
s Ea() < - 42 (i)oc(l)l
(Ej — EXE, — E) sin® ¢ ™ Ej + |E|
= |EI™} o(1).
As for the remainder, with numerator Ax(4), the same
method gives O(|E|™*). We have therefore proved

formula (C1) rigorously. In fact, it is now easy to see
that, in all directions, including the positive real axis,
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we have the asymptotic behavior
R(E)~ k™ tan (kR — }lm — Nm).  (C28)

To end this appendix, let us say a few words about the
properties of the two entire functions

F=H and G=H
A n

which figure in (C24). Each one is an entire function
of order } in E. Indeed, the convergence exponent of
the zeros in both cases is*? p, = 4, the genus of the
zeros (or of the canonical products) is zero, and
n(r) =~ (R/m)rt. According to Theorem 2.6.5,%% both
functions are of order p = p, = }. That both are also
of finite type is clear from Theorem 2.9.5. According to
Definition 2.7.3, the genus of F and G is zero (see also
Theorem 2.12.5).42 The asymptotic properties of F and
G are studied in Appendix D.

APPENDIX D
We have to study here the asymptotic properties of
F=TI and G=T].
A u

They are quite similar to each other as is intuitively
clear from the asymptotic expressions of the zeros
E, and E;,. We consider in detail G, because it enters
directly into the definition of the “Jost function” (70).
According to the estimates of canonical products at
large,*® we have, uniformly in all complex directions
(p #0, 2m):

o(erem =TT [1 - 7]

# E,

It

= exp [(|EIF REC™2)(1 + o(1))], (D1)

and an identical expression for F(E). However, the
above estimate is clearly not sufficient to ensure that
the “Jost function” would satisfy (29). We have to
obtain a more precise statement than merely o(1). We
start from formula (B30):
0 2
sin (z — 4lm) = O(Z)(z — 3= I (1 - 12), (D2)
p=1 Z”
z, =@+ i)m, u=12,--.

As we saw before, for u larger than some integer M,
there is a one-to-one correspondence between E;
Eq. (65) and EY = (u + 3)°n*/R%

Accordingly, we can write

G(E)
sin (kR — im)

[ - )L Gl o

42 Reference 9, Chap. 2. The number of the theorems mentioned
below refers to this book.
43 Reference 9, Lemma 10.3.6.
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where P is an integer (2 0). Note that for u < M,
there is not necessarily a one-to-one correspondence
between the zeros of R,(E) and those of

k' tan (KR — 3hm).

This is the origin of the term O(kF).
To see the asymptotic behavior of the above ratio,
we take its logarithm:

Il

] i E E

log #2M — | (1—-———)-—10 (I——--):l.

°8 I n;u[ °8 E, g Ey
Wt (D4)

Each series is absolutely and uniformly convergent in
any compact of the E plane because

E E

log (1= 5} = = 75 = 0™,
EY) uow E)

and a similar statement for E instead of Eﬂ’.

Now (D4) can be written
E; E — E;
— log EZ%’ + > log £
o

E_E()/'

u

(D5)

The first series is absolutely convergent because of

By _ B dpn) | )

Eg'n—voo Eg' /2 ’
and (C6). The second series in (D5) is, therefore, also
absolutely and uniformly convergent (it is the differ-
ence of two absolutely convergent series). This can
also be directly checked in the above manner. Now,
for E— oo, arg E 7 0, 27, each term of the second
series in (DS5) vanishes, and so does the series itself.
It follows that, in all complex directions, we have

E
1 —=
ul:gl( E,’;)

log = = O(1). (D6)
|B| =
1 - =
MHI( E,(i')
We have therefore proved that
6B =TI (1~
" E,
= sin (kR — 3Im)Ok?)(1 + o(1)), (D7)
E-on

Q being an appropriate integer (Q = 0).

A similar analysis can be made for F(E). Because of
the shift #/2R in the position of the zeros in the k
plane, we have to compare F(E) with the cosine func-
tion. The result is

F(E) ~ O(k®)cos (kR — }Im),
E-w

Q' being an integer (2 0). Note that, because of (Cl1),

(D8)
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we have

0 =0+ 1 (D9)

To obtain the actual value of Q (or Q') is a more
delicate matter. As is clear from the analysis leading to
(D7), Q is related to the difference between the total
number of zeros of R,;(k?) and k™ tan (kR — %/m), in
the k plane. We will concentrate now on the calcula-
tion of @', using the well-known formuia®

: py=_ (L@

no(f’ D) noo(f, D)_ZHT l'f(Z) dZ,
where n,(f; D) denotes the number of times the
meromorphic function f(z) takes the value « inside
the domain D bounded by the simple Jordan curve I'.
The integral is taken in the counterclockwise sense
along I', and it is assumed that there are no zeros or
poles on the boundary I' of the domain.

We have to compare the zeros of F [poles of R;(E)]
with zeros of cos (kR — /7). From now on, we will
work in the k plane where it is easier to keep track of
the zeros and poles. Now, according to (44), the poles
of R,(k?* come from the zeros of the denominator:

(D10)

Dy(k) = —wi(kR) + (=1)'wi(—kR)S(k). (D11)

The origin not being a pole of the R matrix,® it is
easily seen from (46) and (47) that®

Si(k)y = 1 + O(K*). (D12)
k-0

From this, it follows that both the numerator N, and

the denominator D,, of (44) behave like k! near the

origin.*® It follows that the number of poles of R,(k?*)

is given by the number of zeros of D,(k) = k=D (k).

We are therefore interested in the difference

no(Dy; 1k} < r) — nylcos (kR — yim); [k] < r], (D13)

r large enough, so as to include all the zeros E, and E?}
which are not in a one-to-one correspondence to each
other, i.e., all the zeros with 2 < A, It is obvious that,
making r larger and larger, because of the one-to-one
correspondence between E, and EY for 4 > A, the
above difference remains fixed once we have included
all the zeros corresponding to A < A. We can therefore
take the limit r — oo in (D13). Let us denote by
n(f—w(f; r) the number of zeros or poles of a mero-
morphic function f(z) inside the upper (+) and the
lower (—) half of the circle |z| = r, respectively, and

44 Reference 37, p. 391, formula (54).

43 We have w,(z) = —u,(2) — iu,(z), where v, has the parity I,
and u, the parity / <+ 1. In general, w)(z) = (G, — H;) exp (—iz),
where G, and H, are polynomials, with real coefficients, in z—, of
degree / and [ — 1, respectively. Their parities are / and [/ — 1,
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by n, (f; r) their total number in |z| < r. We have
neo(Ry;r) =ny(F;r) = ”o(ﬁz =Kk7iD;;r)
= —I + ny(Dy; r), (D14)
no(Dy;r) = ng(Dy5 1) — n,(Sps 1) + n,(S;;r)
= nO(Dl; r) - noo(Dl; r) + noo(Sl; I’),
(D15)
where use has been made of (D11), and*®
n(Sp; 1) = nh(S;; 1) + 0y (S 1) = n + ny(S; 1),
(D16)

n being the number of bound states (poles in Im k& >
0). Now, from the symmetry relation

S(—k) = [S, ()] (D17)
and (D16), we deduce
no(S;;1) =n + ny(S;7)
=2n — [ng(Sy; r) — n(S;; )] (D18)

Collecting the above results, we get finally
ny(F,r) = —l + ny(Dy; 1)
= no(Dy; 1) — n(Dy;r) — 1+ 2n
= [m(Sis 1) = (Sl (D19)
To simplify the writing, let us make the change of

variable kR = p. Applying (D10) to D; and cos (p —
$m), we get

[no(Dy; ) — no(cos (p — 3Im); Dlren
= 2n + — lim {& + tan (p — %lw)} d
217Tr->oo ipl=r Dl
Imp>0
1 (*8
— dp + — lim
+ 2177,[—00 S, 2iT row |,,| "
Imp=

DI Sl
X 1= 4t — 117 — = dp. D20
{D,+ an (p — 3lm) S} . (D2O)

12

486 Remember that .S; has no poles or zeros on the real axis.
47 In Sec. I1I, this property was stated for k real. However, it is
obvious that it holds in general in the complex plane.
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Now,

®Sig, =

.S, [5(00) — (-] =

—2N, (D21)
2177

and the other two integrals in the upper and the lower
half-planes vanish in the limit r — oo because of (61),
(D11), and (32), as is easily verified.* It is understood
here that, in accordance with the conditions of
validity of (D10), the limit r — co has to be taken in
such a way as to avoid the zeros and poles of D,, S,
and tan (p — %/m). This is always possible because all
these functions are meromorphic in the whole p plane,
so that, excluding appropriate small intervals, we can
make r — oo without ever having zeros or poles on the
circle |p| = r. The final result is

[no(F; r) — ny(cos (p — 3im)], ., = —I + 2n — 2N.
(D22)
It follows that, for 0 < argk < =,
F(k®4os = A k22N cog (kR — 3m)(1 + o(1)),
(D23)
and

G(K?),., = B k™" gin (kR — Hm)(1 + o(1)),

(D24)
where
<WE2, w EO/
A==t i D25
E"‘ u1>_'[M E‘i ( )
n=<M
]__,[Eg. -] EO
A=A H E—‘ (D26)

In fact, 4 = BR(0) because of (Cl). Note that the
above asymptotic behaviors are even under k — —k
irrespective of the parity of /. If the Levinson theorem
holds, we have n = N.

48 It is sufficient to use the asymptotic behavior of the functions
under the integrals, and the fact that wy + [1 — I + 1)z~%w, = 0.
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The asymptotic properties of a class of nonlinear boundary-value problems are studied. For large
values of a parameter, the differential equation is of the singular-perturbation type, and its solution is
constructed by means of matched asymptotic expansions. In two special cases, very simple approximate
analytic solutions are obtained, and their accuracy is illustrated by showing their good agreement with

the exact numerical solution of the problem.

I. INTRODUCTION

In a previous paper,! an expansion method for
nonlinear boundary-value problems was presented.
The eigenfunction-expansion basis used was defined
by the associate linear boundary-value problem. As the
problem became strongly nonlinear, more terms in the
expansion were needed for accuracy. We present here
a study of the asymptotic properties of the same class
of problems in slab geometry. In two special cases,
approximate asymptotic solutions are obtained whose
accuracy increases as the nonlinear distribution departs
more from the linear distribution. Thus, when more
than two terms in the expansion method are needed
for accuracy, the present asymptotic solutions give
very simply a distribution which is in excellent agree-
ment with the exact numerical solution. It is shown
that in the general case an approximate solution can
be obtained in terms of asymptotic expansions.

II. THE NONLINEAR PROBLEM

The problem studied arose in connection with the
distribution of the energy released in a nuclear power
reactor as a result of a power excursion.? The distri-
bution is given by the following nonlinear boundary-
value problem:

Ly

—at r’(x)y — y" =0,

¥(0) = y(m) = 0. )

In (1), r®(x) is the space-dependent perturbation in
the neutron multiplication of a reactor with an
infinitesimally small initial neutron population; the
perturbation makes the reactor supercritical, thus
leading to the release of energy. The energy release
through various nonlinear physical effects, such as

1J. Canosa, J. Math. Phys. 8, 2180 (1967).
2W. L. Ergen, Trans. Am. Nucl. Soc. 8, 221 (1965).

Doppler broadening of the neutron-absorption cross
section or moderator-expansion effects, reduces the
neutron multiplication and the neutron population
eventually becomes zero. Equation (1) gives the
distribution of the energy release from the start of the
perturbation till the neutron population again becomes
zero. The exponent # is a positive number, and n > 2.

Due to the physical nature of the problem, we
assume the existence of a solution which is continuous,
positive, and bounded in the domain. The uniqueness
of the solution is proved by the following:

Theorem.® If a positive solution of Eq. (1) exists,
it is unique.

Proof. Let us assume that there are two positive
solutions, y; and y,, and let
n=Jy1— )z (2)
Then
d277 2 n
ﬁ+r(x)?7=y1—y£',
7(0) = n(m) = 0. (3

Define the following implicit function of x:

1
¢, y) = n f [ty + (1 — Dy,]"" di

1

_ [+ A =9yl

Y1— Je 0
_ WMoY oy @)
Yi— )e N
Thus 7 satisfies
d2’7 2
s + [r(x) — gy1, yo)lp =0, 79(0) = n(w) =0,

(5)

3 H. B. Keller (private communication).
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and also

Ay
N L ) — g(ris O)lpy = 0, 3,(0) = yy(m) = 0.

dx*
(6)

But, as # > 2 and y, and y, are assumed positive,
obviously

[ty + (1 =0y 2 [1]"

and so from (4),

0<:<1L, ()

g1,y > g1, 0) t)]

in any interval of x where y, and y, are positive.
Therefore,

ri(x) — g1, y2) <r¥(x) — gy, 0). ©®)

Sturm’s fundamental comparison theorem* can
now be directly applied to Eqs. (5) and (6), even if
these are nonlinear. As §(0) = (=) = Oand y,(0) = 0
by hypothesis, Sturm’s theorem shows that, as y,
oscillates more rapidly than # in the interval (0, =),
y: must vanish at least once between 0 and . This
contradicts the assumption that two positive solutions
exist.

We now present some results of interest that have
been obtained for the general case where r3(x) is a
positive function in the domain, at least piecewise
continuous, and n > 2.

It is of some interest to point out first that no
positive solution can exist unless

x> 1, (10)

where r2(%) is the value of r?(x) at some point Xx
inside the domain. For 7% constant, we have the
condition

(1

The proof is quite simple and is based on the extension
of an idea due to Kastenberg.® The fundamental
eigenfunction of the Helmholtz equation obeys

d*y,

— + 4y, =0.

e V1

r2> 1.

(12)

If we multiply (12) by y, the solution of (1) and (1)
by y:, subtract and integrate over the domain, we get,
after using Green’s theorem,

f s — PGy dx + f yytdx = 0. (13)
0

4 E. L. Ince, Ordinary Differential Equations (Dover Publications,
Inc., New York, 1956), p. 224.

5 W. E. Kastenberg, Ph.D. dissertation, University of California,
Berkeley (1966).
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As y and y, are strictly positive, (13) can only be
satisfied if

[t = reowmax <. (14)
0
Applying the mean-value theorem,
s = P s dx <o,
0

that is,

A — 3% <0,
and so

R >n=1, (15a)

which is the desired result (10) from which (11)
follows when r? is constant. The usefulness of this
result is that if

r? = const = 1, (15b)

Eq. (1) has no solution, while the linear equation
associated with it has one (y = sin x). Therefore, if
we confine our discussion to the case

rrxz21l, 0<x<m, (15¢)

(as it is done in this paper), the average value of r?(x)
over the domain is a measure of the nonlinearity of
the problem; i.e., if

x> 1,

the solution is close to that of the linear problem
associated with (1) with the condition (15b); and if

r¥(x) — oo,

the solution departs strongly from that of the linear
problem.

III. UPPER AND LOWER BOUNDS FOR THE
MAXIMUM OF THE DISTRIBUTION

One should also note that, when

r(x)—1,

(16)

corresponding physically to very small perturbation
increases in the neutron multiplication, the energy
release is quite small and the distribution given by (1)
approaches (except a multiplicative constant) the
fundamental mode of the general eigenvalue equation

dz

SR Py =~ =0, 0 =ym) =0. (D
The expression (16) defines an asymptotic limit of the
problem. In this paper, we will study mainly the other
asymptotic limit when

ri(x) - o,

(18)
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corresponding to large perturbations in the neutron
multiplication, large energy releases, and thus strong
nonlinear effects. In this case, the distribution given
by (1) departs strongly from the linear distribution (17).

We now derive upper and lower bounds for the
maximum value of the distribution given by (1).
Because of the conjecture in Sec. I, the solution must
have at least a maximum. Let the maximum value of
the distribution occur at x = a; then

dy@ _, &y@

ya) =M, Ix - (19)
Thus, from (1) and (19),
%
DO = @) - Fap@ <0 @0

As r*(a) and y(a) are strictly positive quantities, we
finally have
y(@ < [P@F, 3y

so that an upper bound for the solution is given by
(22)

If 2 is constant, the solution has only one maximum
at the center of the domain.

The lower bound for the peak of the distribution is
now derived. We multiply (1) by y,, the fundamental
eigenfunction given by (17), Eq. (17) by y, the
solution of (1), subtract and integrate over the domain.
After applying Green’s theorem and noting that the
resulting surface integrals vanish because of the
boundary conditions satisfied by y and y,, we get

y(x) < [maximum of r2(x)J/»-,

~ | 'y dx + l1j yydx =0. (23)
0 0

Therefore
A =f Yy dx/f Yy dx.
0 ]

As the lower bound of the distribution is zero, the
application of the mean-value theorem leads to the
following inequality:

@29

0< f Yy dx < MP j yridx,  (25)
0 0

where M is the maximum value of the distribution y
in the domain. Using now (24), Eq. (25) becomes

0< Ay yyydx < b f Dydx o @6)
or ° °
M1 > Ay, (27)
and finally,
M > YD, (28)
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Therefore, from Eqgs. (22) and (28), it follows that the
maximum value of the distribution is bounded by
A < M < [maximum of F(x)[Y* Y. (29)

To illustrate the inequality (29) explicitly, consider
Eq. (1) where r? is constant and n = 2; then the
fundamental eigenvalue of (17) is 4; =r2 — 1, and
(29) becomes

1< M<r (30)

In the limit case 2 — oo, it is clear from (30) that
M —r 31
IV. GENERAL ASYMPTOTIC SOLUTION

We seek the solution of

Ly

S+ r(X)y — )" =0, y0) =y =0, (32)
dx

in the asymptotic case
r¥(x) = Ap(x),

A— o and p(x) = 0O(1),

(33)
where
(34)

and both 4 and p(x) are positive. The general result
(29) indicates that the solution of (32) away from the
boundaries is of the same order of magnitude as
[r3(x)]'/*-V, This suggests the introduction of a new
variable

y= A/(n—-1) Y, Y=0(), (35)
in terms of which (32) becomes
2
LY 4 oy =1 (36)
dx
with
e=1/A—-0. 37

Equation (36) is in the form of a singular perturbation
equation, the solution of which will be sought in the
form of asymptotic expansions.

A. Special Cases

We will first give the formal solution of Eq. (36)
in the simplest case, where

p(x) = const = 1, (38)

and then extend the treatment to the general case in
which p(x) is not a constant.

From a representation of Eq. (36), with the property
(38), in the phase plane (Y, dY/dx), it can be shown
that its solution has a maximum at the domain
center and is symmetric about it, so that one needs
only to construct the solution in 0 £ x < #/2.
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For n = 2, Eq. (36) becomes

da’y
e—— +Y—-Y2=0
dxt

(39)
and its solution proceeds as follows:

(i) Outer Expansion. We assume the solution in the
form of an asymptotic series

oo

Y(x, &) = 3 fi(x) = fo(x) + efi(x) + - - -.

i=0

(40)

Substituting into (39) and grouping like powers of e,
we can determine the functions f;(x) recursively. One
gets

Sfox)=1 and fi(x)=0, i>0, (41)
so that (40) degenerates into
Y(x,¢) = 1. (42)

Transforming back to the original variable y, Eq. (35),
y(x, ) =AY(x,e) = A= 1fe =r? (43)

[see (33) and (38)]. That is, away from the boundaries,
the solution is given asymptotically by the straight
line (43), a result already suggested by (30).

(ii) Boundary-Layer (Inner) Solution. To study the
solution near the boundary x = 0, define a new length

% = x/(h. (44)
Then Eq. (39) becomes
d*y
— +Y-—-Y*=0. 45
dz* )
Equation (45) has a first integral
2
(d—Y) + Y?— %Y® = const. (46)
dax

The boundary-layer solution near x = 0 is associ-
ated with the limit process ¢ — 0, % fixed, and has the
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form
Y(X, €) = go(%) + Br()g (X)) + - - -. 47)

p1(€) — 0 as € — 0; it is to be found in general so that
consistent problems occur for the higher approxima-
tions. Only the first term is considered here and
satisfies essentially (45):

d2

oy g —gi=0.

ds2 “8)

Now the boundary conditions at o for g, no longer
involve € but are determined by matching with the
outer expansion (42). For this simple case the match-
ing occurs as X — o0, x — 0, and requires

go(0) =1, dgy(0)/d% = 0. 49)

The boundary condition (49) fixes the constant of
integration in the integral corresponding to (46):

(d—g—")2 +g—3s=1%

dax (50)

The variables in (50) can be separated and the problem
is reduced to one quadrature, where the integration
constant is determined by the boundary condition at
=0

£:(0) = 0. (51)
After carrying the integration, we get
1= 42— /e (T~ 43
8o(¥) = \/ v (52)

1422~ 3+ (7T —4/3)e ¥

There is a corresponding boundary layer near x = =
with % in (44) replaced by X = (= — x)/()}. Because
of the symmetry of this case, it is sufficient to consider
0 < x < =/2. Therefore the boundary layer solution
contains the outer solution, and thus is uniformly
valid in the range 0 < x < #/2. In Table I we give

TaBLE I. Asymptotic approximation vs exact solution.

rt=38 rt =10 rt=16 r* =20
x/(m[2)
Exact Asymptotic Exact Asymptotic Exact Asymptotic Exact Asymptotic

0 0 0 0 0 0 0 0 0

0.1 1.989 1.994 2.766 2.768 5.495 5.495 7.586 7.586
0.2 3.700 3.709 5.069 5.073 9.679 9.680 13.05 13.05
0.3 5.029 5.041 6.772 6.778 12.39 12.39 16.33 16.33
0.4 5.993 6.009 7.941 7.949 14.00 14,00 18.12 18.12
0.5 6.660 6.682 8.704 8.717 14.91 14.91 19.05 19.06
0.6 7.106 7.138 9.187 9.205 15.41 15.41 19.53 19.53
0.7 7.394 7.440 9.483 9.511 15.68 15.68 19.76 19.76
0.8 7.569 7.638 9.657 9.701 15.82 15.83 19.88 19.88
0.9 7.663 7.766 9.746 9.817 15.88 15.91 19.93 19.94
1.0 7.693 7.850 9.774 9.888 15.90 15.95 19.94 19.97
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TasLE II. Asymptotic approximation vs exact solution

rt =225 rr=4 rr=9 rt =16
x/(w[2)
Exact Asymptotic Exact Asymptotic Exact Asymptotic Exact Asymptotic

0 0 0 0 0 0 0 0 0

0.1 0.2367 0.2476 0.4351 0.4371 0.9641 0.9642 1.668 1.669
0.2 0.4608 0.4821 0.8306 0.8344 1.748 1.748 2.843 2.843
0.3 0.6620 0.6930 1.160 1.165 2.284 2.284 3.480 3.480
0.4 0.8340 0.8739 1.414 1.421 2.610 2.610 3.771 3971
0.5 0.9743 1.023 1.599 1.609 2.793 2,793 3.907 3.907
0.6 1.083 1.142 1.728 1.740 2.891 2.892 3.961 3.961
0.7 1.164 1.235 1.813 1.829 2.943 2.944 3.984 3.984
0.8 1.219 1.305 1.865 1.889 2.969 2971 3.993 3.993
0.9 1.250 1.357 1.894 1.930 2.981 2.985 3.997 3.997
1.0 1.260 1.3%6 1.903 1.953 2.985 2.992 3.998 3.999

the results obtained from (52) together with the
direct numerical solution of Eq. (39) for several values
of r? (note that r? = 1 = I/e). The agreement with
the exact results is already quite good for r2 = §, the
maximum error (2 %) occurring at the domain center.
The table shows that, as r? increases, the agreement
improves rapidly and the discrepancy from the exact
solution is only one or two units in the fourth signifi-
cant figure. The general result (30) is also illustrated
in Table 1. The expansion method,! in return, gave
good results for r2 — 1, where the distribution ap-
proaches the linear (sine) distribution defined by (17),
and where only one term in the expansion was
necessary; with two terms, the expansion method
gave good results for r2 < 8, above which more terms
were needed and so the method became quite laborious.
The present asymptotic solution thus complements
the expansion method, and gives the solution for
strongly nonlinear problems where the distribution is
markedly different from the linear distribution.

Another special case in which an explicit asymptotic
solution can be obtained is when 7 = 3 in Eq. (36).
The general result (29) becomes

(=~ DE< M <r=1/(}, (53)

so that in the limit #2 — oo, the solution at the center
approaches asymptotically the upper bound

y(m[2) > /().

The procedure is now formally the same as that

followed for Eq. (39). The results corresponding to

Eqgs. (42) and (52) are, respectively,
Y(x,¢) =1 54

and

exp(2% — 1

8(®) = exp (\/5 H+1

(5%

In Table II we give the results obtained from Eq. (55)
together with the numerical solution of Eq. (36) with
n = 3, for several values of r2 It is seen that the
agreement is excellent for r? 2 4.

The ranges of validity of the asymptotic approxima-
tions are obtained readily from Egs. (52) and (55).
For if these equations are asymptotically to approach
the outer solution, Eq. (42), we must have

Y (ag)

202 — \/g)e—u/z(e)*r &1, vty

respectively, so that finally we get

that is,

r2>7 and r2>4

for the ranges of validity of (52) and (55).

These two special cases (# = 2 and 3) seem to be
the only ones in which it is possible to obtain the
indefinite integrals arising from the separation of
variables in the result corresponding to (48) for a
general value of n.

When 7 > 4, although no explicit solution can be
obtained, the solution of (36) can be reduced to a
simple quadrature. The general result (29) is now

(r2 — 1)1/("—1) S M < r2/(f—1) = (I/E)l/("_l), (56)

so that for 2 — o0, the maximum of the solution at
the center of the domain approaches asymptotically

y(@[2) = (1ey/»v. (57

That is, as is seen by inspection of Eq. (36) together
with the restriction (38), the outer solution is always

Y(x,€) =1, (58)

independently of n. Furthermore, the equation
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corresponding to (48),

d’g n
d)EZO + 8 — g =0, (59
always has a first integral
dgo\ 2 2 +1
=2 — o™ = const, 60
(d)?)+g° n+130 cons (60)

whose constant is obtained with the usual matching
condition with (58), i.e.,

dg,(c0
go(©) =1, ——g°(~ ) _ 0. (61)
dx
Thus (60) becomes
dgoV' _n—1_ 5 2g3™
2N = g+ =2—=P, . (62
(d)?) m 1 8o n+ 1 +1(80). (62)

It can be shown by elementary means that the
asymptotic value of the boundary layer solution, i.e.,
g0 =1, is a double root of the polynomial P, (g,)
appearing in (62). This remarkable property of the
problem reduces the solution of (59) to a straight-
forward quadrature. Because of this property, we
can rewrite (62) in the form

(‘%) = (8 — 1’0, 1(30).

where O, ; means simply a certain polynomial of
degree n — 1 in g,. Therefore the solution of (59) is
given by

(63)

(64)

o dgo <
. —f 1 =X,

0 (80 — DI[Q,1(g0)]
where the integration constant has been determined
by the boundary condition at X = 0, and the sign by
the fact that dg,(0)/d% > 0. For g, = 1, the integral
(64) becomes infinite as it should [see first equation
in (61)]. In an actual calculation we are only interested
in the range 0 < % < 7/2(e)t. For values of g, not
too near 1, the numerical integration of (64) can be
done by elementary means (e.g., Simpson’s rule)
because the integrand is well behaved. For values
go— 1, the form of the integrand (64) allows us to
avoid numerical difficulties, because 0, _,(g,) does not
vanish at g, =1, and can be extracted from the
integrand; the form of the remaining part of the
integrand, which can be integrated in closed form,
shows clearly the exponential decay of the boundary
layer solution into the outer solution.

B. General Case

We now briefly describe the asymptotic behavior
of the solution of Eq. (36) in the general case in which
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p(x) is a well-behaved function. The formal procedure
is quite similar to that of the previous section:
(i) Outer Expansion. We assume a solution

Y(x, &) = fo(x) + filx) + -+, (65)
and, following the usual procedure, we get
Jo(x) = p(x)/*-1), (66)
1 1/(n—2)y»
=T e

-1 p(x)

In the first-order treatment to which we restrict
ourselves, only the first term in (65) is needed, and
we expect it to approximate the solution of (36)
away from the boundaries.

(i) Boundary-Layer (Inner) Expansion. We define
a new length by

~ X

x 3 (68)
where X% is fixed, i.e., O(1). As (68) shows, when
€ — 0, the actual thickness of the boundary layer
approaches zero as €2, The outer expansion (65) is
then expected to be valid in most of the domain, except
in the infinitesimally thin boundary layer. With (68),
Eq. (36) becomes

2
d—;’ + p(efn)Y = Y™ (69)
ax
Let us expand
Y(% €) = g® + g,(®) + -,
p(E%) = po + ppeti 4+, (70)

where p, = p(0), p, = p'(0), etc. Substituting (70)
into (69) and proceeding in the usual fashion, we

1/{n1) :

PIX)

pMin-1)

B.L. SOLUTION

\}\FIRST ORDER
l

0 /2

FiG. 1. Hlustration of the results of a first-order treatment.
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obtain the first approximation to the boundary layer:

d2g0 n
d_iz + Po8o = 8o

(7D
which is of the same form as (59). Equation (71) shows
then that, to first order, the boundary-layer solution
has the same form independently of the coefficient
p(x) in Eq. (36). Therefore, all the discussion about
the boundary layer presented in the previous section
applies equally here. In this first-order treatment, the
rough matching of (71) with the outer solution (65)
is achieved by imposing

1/('n—1),

go(©) = py
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i.e., the boundary-layer solution must approach
asymptotically the value of the outer solution at the
origin. Note that, for x very small although fixed, as
% = x/et, if e > 0, ¥ — 00, and so the actual distance
from the origin at which the boundary layer solution
blends with the outer solution becomes increasingly
small with e. For clarity, the results of the treatment
are illustrated in Fig. 1, assuming that p(x) and thus
the solution of (36) is symmetric. The matching of the
boundary layer and the outer solutions will be some-
what rough in this first-order solution. However, a
uniformly valid first approximation is

Y(x, €) = folx) + &(H) — /"™ + 0(1)

and defines a smooth curve.
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The microscopic linearized Vlasov equation is solved in terms of a generalized inverse dielectric
function e (r, r’; ¢, ¢") and the initial phase-space density fluctuation. This expression is then used to
calculate the density autocorrelation function and to obtain a generalized kinetic equation for plasmas
and gravitational gases. It is shown that many of the results for the inhomogeneous system have a close
similarity to the corresponding results for homogeneous systems. In particular, the test-particle theory is
exhibited and an expression is obtained for the phase-space density of the polarization cloud associated

with a test particle.

1. INTRODUCTION

Much attention in recent years has been devoted to
the problem of deriving kinetic equations for homo-
geneous plasmas. Several methods have been applied
to this problem and many cases have been treated
successfully. Various authors have succeeded in
obtaining kinetic equations for systems with only the
coulomb interaction,’™* for systems including the
electromagnetic field,*” and for quantum systems.®-10

* Supported in part by ARL, OAR, USAF 33(615)2705, through
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1153 (1966).

The problem of a convergent kinetic equation has
also been considered by several authors.11—13

The methods used for these problems in general fall
into three groups. One of these groups uses the
BBKGY hierarchy for the reduced distribution func-
tions as its starting point.2~* Another group follows
the techniques introduced by Prigogine and his
co-workers.” A third technique'®™'? which has
recently become popular is the outgrowth of work by

11J. Weinstock, Phys. Rev. 133, 673 (1964); Phys. Fluids 10,
127 (1967).

12 R. L. Guernsey, Phys. Fluids 7, 1600 (1964).

13 H. Gould, Lectures in Theoretical Physics, W. E. Brittin, Ed.
(Gordon and Breach Science Publ., Inc., New York, 1967), Vol. IX.

4], Prigogine, Non-Equilibrium Statistical Mechanics (Inter-
science Publishers, Inc., New York, 1962); R. Balescu, Statistical
Mechanics of Charged Particles (Interscience Publishers, Inc., New
York, 1963).

15 ). Dawson and T. Nakayama, Phys. Fluids 9, 252 (1966);
J. Math. Phys. 8, 553 (1967).

18 W. R. Chappell, J. Math. Phys. 8, 298 (1967); Lectures in
Theoretical Physics, W. E. Brittin, Ed. (Gordon and Breach Science
Publ., Inc., New York, 1967), Vol. IX.

17 J. Price, Ph.D. thesis, University of California (1966).
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Klimontovich!® and Dupree® and is based on the fact
that the microscopic distribution function satisfies
exactly the Vlasov equation.

In a recent article!® we discussed this approach for
the case of homogeneous systems. We showed that we
could obtain an asymptotic (# — o) expression for the
microscopic distribution function by solving an
approximate equation of motion. This approximate
equation is simply the linearized Vlasov equation for
the microscopic distribution function. It is equivalent
to the equations of motion for the two-particle
correlation and autocorrelation functions when the
three-particle correlation function and the effects of
close collisions are negligible. The use of this asymp-
totic expression to calculate the correlation function
yields the Balescu-Lenard-Guernsey kinetic equation
and other results. This asymptotic expression for the
microscopic distribution function also yields the test-
particle results which express the system as a collection
of noninteracting quasiparticles. A quasiparticle is
composed of a particle moving at constant velocity
plus the associated polarization cloud induced in the
medium by the particle. We also indicated that the
test-particle approach could be extended to inhomo-
geneous systems. But we were unable to obtain an
expression for the phase-space density of the polariza-
tion cloud. Finally, we obtained a set of equations
describing a homogeneous, slowly varying system
which contains small, inhomogeneous, quickly varying
perturbations.

In this paper we discuss the generalization of the
previous results to inhomogeneous systems. The
inhomogeneous case has been considered by a number
of authors.1®-2! But these considerations have been
limited to considering the inhomogeneous system as a
perturbation on a homogeneous system (generally
upon the equilibrium system). The resulting equa-
tions are quite difficult to interpret. This is quite
different from the homogeneous case where, generally,
the kinetic equations have very simple interpretations
in terms of the, golden rule, using dynamically
shielded potentials or in terms of the Boltzmann
equation.’22 Another difficulty is that these results
cannot be applied to the gravitational gas because,
unlike the plasma, it has no tendency toward homo-
geneity.

We show that the inhomogeneous system does

18Iy, L. Klimontovich. Zh. Eksp. Teor. Fiz., 33, 982 (1957)
[Sov. Phys.—JETP 6, 753 (1958)].

19 R. L. Guernsey, Phys. Fluids 5, 322 (1962); Lectures in Theoret-
ical Physics, W. E. Brittin, Ed. (Gordon and Breach,Science Publ.,
Inc., New York, 1967), Vol. IX.

20 M. K. Sundaresan and T. Y. Wu, Can. J. Phys. 42, 794 (1964).

21 R, Balescu and A. Kuszell, J. Math. Phys. 5, 1140 (1964).

22 H, W. Wyld and D. Pines, Phys. Rev. 127, 1851 (1962).
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have many of the characteristics of the homogeneous
system. In particular, we can solve the microscopic
linearized Vlasov equation in terms of a generalized
dielectric function. In the first section we discuss some
general properties of the microscopic distribution
functions and autocorrelation functions. In the next
section we solve the approximate equation of motion.
We are then able to obtain approximate expressions
for correlation functions in terms of the initial one-
particle distribution function and the initial two-
particle distribution function propagated along the
unperturbed orbits. The effect of the medium on a
test particle is again (as in the homogeneous case)
to modify the ficld due to the test particle by the
generalized dielectric function. The test-particle
results extend as expected,’®? and we obtain an
expression for the phase-space density of the polariza-
tion cloud. In particular, we can consider the system
to be a collection of noninteracting quasiparticles. The
quasiparticle consists of a particle traveling an orbit
determined by the mean fields plus the associated
polarization cloud induced by the particle. Finally, we
are able to obtain a generalized Kinetic equation which
contains the effects of the dielectric function but not
those of the three-particle correlation function and
close collisions. We confine ourselves throughout to the
one-component system.

2. MICROSCOPIC DISTRIBUTION FUNCTIONS

The microscopic or “‘exact’ one-particle distribution
function has been discussed by many authors re-
cently.’=17 It is given by

N
J@p 9 =360 —r %@ —p ()
where r;(t) and p,(¢) are the position and momentum
of the ith particle at time #. It is easy to show that this
distribution function obeys the microscopic Vlasov
equation

of(x,0) p of of
—— +=+=+F-—=0,

ot m Oor op

where x = (r, p) denotes a point in phase space, F
denotes the force which includes all external forces
and the “exact” fluctuating force arising from inter-
particle interactions. For example, if the particles
interact through a two-body potential such as the
Coulomb or gravitational potentials, then this
contribution to the force is given by

@

FGr, 1) = “a% f dx' 0@ — 1)f, p. ). ()

28 M. E. Rensink, Phys. Rev. 164, 175 (1967).
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It is also easy to show that f obeys another equation
of motion which involves the N-particle Liouville
operator £, . This equation is

3f (x, 1)
ot

In the above equation we are considering f to be a
function of a point I in the 6/V-dimensional I' space.
The operator £ is defined by

0 0

— iLyf(x, 1) = 0. 4)

N p, N
iy = z—l-— + zF(xi)"‘-'
Simoor St op

€ ]

4

where F(x,) is the force experienced by the ith particle.
The Liouville equation for the N-particle distribution
function f(I', 1) is given by

%;L’t) + i€ fy(T, ) = 0.

We can solve Egs. (4) and (6) formally as
Fx, ) =fx, T(2, o) = e (x, To)

and
Sv(@o, 1) = e Erify (T, 0) = fy(T'(—1,T), 0),

where

(6)

(M
©®)

I, To) = €T )
defines the time-dependent, 6N-dimensional phase
point I'(z, I'y), whose initial value is I'y.

The average value of the microscopic distribution
function is given by

(Fe, By D)o = f dTof (e, p; T(t, To) STy, 0)
= f AT 7(x, p; T)fu(To, 0), (10)

where dI'; is a volume element in the 6 N-dimensional
phase space. The above equation has a close similarity
to the “Heisenberg picture” in quantum mechanics
because all of the time dependence is in the “operator”
£ and the average is taken with respect to the initial
distribution function. The anti-Hermitian properties of
the Liouville operator also allow us to write Eq. (10) as

(Fx, . D) = f dT,f(x, p; To)e £ (T, 0)
= (f(r, p, 0)),. (11

The above equation represents the “Schrédinger
picture” where all of the time dependence is in the
distribution function. From Eq. (11) it is easy to
show that

(e, p, 1)) = nfi(r, p, 1), (12)
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where n is the average particle density and f; is the
usual one-particle reduced distribution function. In a
similar manner it is easy to show that

(F@r, p, OF (F, p, 1)) = n2fi(r, p; ¥, D', 1)
+ né(r — r)é(p — p)fi(x, p, 1). (13)

One of the interesting aspects of the ‘“Heisenberg
picture” is that it is a very convenient way to treat
multitime correlation functions. In particular, any
two-time correlation function involving one-particle
observables®® (e.g., the particle density) can be written
in terms of the quantity

(F F (', )
- f dT (e (x; ToNe ™ F(x'; T fu(To, 0)  (14)

- f ar; f dlof (x; T f(x'; T

x e atgmitNUE T, 0)8(T, — Ty).
With the use of Eqgs. (8) and (9) we obtain
(Fx DF ' )

- f ar, f AT (e T, T DTy, ;T4 1), (16)

(15)

where D, is the joint probability density that the
system will be at the point Iy at time 7 and at the point
I'; at ¢’ and is given by

DTy, t; T, 1) = (T, DO(Ty — Tt — t', Ty)).

17
If we substitute the expression
N
JepTo =38 —rde—p) (19
for finto Eq. (17), we obtain
<_f1 (x, t)fl(x” t,)> = n2W12(xa t; x” t,)
+ nWll(x’ t; x" t,), (19)

where Wy, and W), are the quantities introduced by
Rostoker.16:24

We can also write the two-time correlation in
another form. We have

(Flx DF ', 1))
= f dTof (x; Ty 47 (x's T(t', T)) ST 0)
- f dTef(x; L) f y(x', 13 Ty, 7),

where T =t — ¢’ and

', 5T, 1) = e f(x", 0) f(Ty, t).  (21)
2¢ N. Rostoker, Phys. Fluids 7 479, 491 (1964).

(20)
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We note that f}, obeys the Liouville equation as a
function of r. The two-time correlation function is
now seen to be simply the reduced one-particle
distribution function corresponding to f,. That is,

<f(x’ t)f(xla t’)>0
==Nfﬂ%&r—nw@-m»&ﬁﬁﬂJﬁFmﬂ

(22)
(23)

= nfy(r, p’, t';1, p, 7),
AT P, 51,9, 0) = (Fx, Df (X" * 1)),

which is given by Eq. (13). This result is equivalent
to the theorem proved by Weinstock which relates
the autocorrelation function to a one-particle distri-
bution function.?

3. LINEARIZED MICROSCOPIC VLASOV
EQUATION

It has been pointed out by several authors'>—17 that
the linearized microscopic Vlasov equation is equiv-
alent to the equation for the two-particle correlation
function in which the three-particle correlation
function and the effects of close collisions have been
omitted. In the homogeneous case, the linearized
microscopic Vlasov equation is easily solved and the
resulting kinetic equation is the well-known Balescu-
Lenard—Guernsey equation.!* In this section, we
consider the case in which inhomogeneities in space
are allowed and the Bogoliubov adiabatic assumption
is not used.

We write the microscopic distribution function as

FGe, O = nfiCx, ) + & (x, ),

where the quantity of represents the fluctuating phase-
space density. From Eq. (2) we obtain for f; the
equation

afi(x, 1) 10
0

24)

(6F(x, DOf (x, 1)),
(25)

7 4+ L , )= ———:
y + iLyfi(x, ©) np

where OF represents the fluctuating force arising
from d&f, i.e.,

6F(x’ t) = F(x, t) - <F(x’ t)>1 (26)

and we assumed that it commutes with the divergence
operator in momentum space. The one-particle oper-
ator iL, is given by
. p 0 i)
iL,b=2.2 4+ ®.—.
" m or & op

28 J Weinstock, Phys. Rev. 139, A388 (1965).
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We can define the time-dependent operators2®

ro(t) = Uo(t’ 0)1', Po(t) = Uo(t: O)P, (28)
where
aU—";’ﬁ — iL (DUt ') =0,

which describe a particle moving in the average force
field (F) which includes all of the external forces and
any forces which arise from inhomogeneities in the
system.

The equation of motion for the fluctuating phase-
space density is

0

(a_t + iLo) 87(x, ) + noF(x, 1) - 5‘1- fix, 1)

= — a—ap - [OF(x, t)éf (x, 1) — (OF(x, DOF(x, D).  (29)

The linearized microscopic Vlasov equation is obtained
by neglecting the right-hand side of Eq. (29). Clearly,
this assumes that the fluctuations are small and not
very “stiff,” such as those arising from soft collisions
as opposed to hard collisions. This assumption is
equivalent to neglecting the three-particle correlation
function and the effects of close collisions.?-1¢

We can solve the resulting equation in terms of the
initial value of &f as®

8f (x, 1) = Uy(—1, )87 (x, 0)

t
— nf dr'Uyt, H)0F(x, t') « 9
0

op

The way in which the fluctuating force is related to of
depends on the system under consideration. We now
restrict ourselves to a one-component system in which
the particles interact via a two-body potential @(r).
We have in mind either the Coulomb or gravitational
potentials. We can then write

H(x, 1), (30)

SF(x, f) = — a@ f dx'OE — 1), . (1)
r
Equation (30) can then be rewritten as

of (x, ) = Uy(—t, 0)3f(x,0) + n ﬁ ar Ut t)g-r

X f dx'®(r —r')- ap Sfilx, t’)6f (x,t). (32

0
If we then integrate both sides of the above equation

28 The operator U,(t, 0) is the time-translation operator for the
unperturbed orbits. Its initial value is the unit operator and it has the
semigroup property Uy(t', t)Uy(t", 1) = Uy(t', 1).

27 A somewhat related approach was discussed at the IXth annual
meeting of the Division of Plasma Phys., A.P.S. (Nov., 1967), by
J. Price.
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over the momenta and define the fluctuating particle
density

85, 1) = f dpof(x, p, 1) (33)

we obtain2®

fdr’J;t dt'e(r,x’; t, t)op(r', t)

~ J dpU(—1, 0)8(x,0), (34)
where the generalized dielectric function is given by
vt 1) = 8(t — 1)0(x — ) — n f dpUt', 1)

% 00(r — r') ofy(r,p, t) )
or op

It is easy to see that if f; is independent of space and
time, the usual dielectric function is obtained by a
Laplace-Fourier transform. It is not surprising that a
dielectric function of this form should arise. The fact
that the system is inhomogeneous in space and time
means that the Fourier transform of the dielectric
function is not just a function of k and o, but is a
function of two wavevectors and two frequencies.
Such generalized dielectric functions have been discus-
sed elsewhere in recent years.?

In order to obtain an expression for the fluctuating
particle density, we need to introduce the inverse of the
dielectric function which is defined by the integral
equation

(35)

f drft"‘dte_l(r", r;t", De(r, v'; 1, t)
e = &(r — r)d(t" — t).
With the use of Eq. (35) we obtain
SN, T 1) = 8@ — 1) — 1)
+ nJ‘de:”dte'l(r, ' t, YU, 0)

X a(D(r - r,) . afl(r’ P, t,)
or dp ’

If the one-particle distribution is independent of space
and time, we obtain the usual expression for the
dielectric constant.

The use of Eq. (36) in Eq. (34) yields

(36)

(37

t

8p(r, 1) = f dx’ f dr'e(x, ¥'; 1, 1) UY—1', 0)f (x', 0).
0

(38)

28 The integral over time in Eq. (34) should be extended infinites-
imally beyond 7 so as not to require a factor of 2 in the first term of
Eq. (35).

2 P, C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).
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The force due to d5 is given by
SK(r, ) = — ai f dr'd(r — )0, ). (39)
r

We thus have the usual description in terms of a
generalized dielectric function. If we replace ¢~(r, r’;
t,t'y in Eq. (38) by O6(r —r')é(z —¢'), then the
corresponding fluctuating force obtained from Eq.
(39) is that due to noninteracting particles traveling
along the unperturbed orbits given by Eq. (28). The
effect of the medium is to modify the force by a
dielectric function.

We can now write df in terms of its initial value as

‘a2

8 (x, 1) = Uy(—t, 0)6f(x,0) + n L dt'Ut', 1) P
’ — ’ . a ! "
X fdr O — 1) ——apfl(x, t )fdx

11
xj dve (', 5 1" ) Uy(~1", 0)8f(x", 0).

0
(40)

As we have mentioned previously, the effect of the
operator Uy(—¢, 0) is to propagate backward in time
along the unperturbed orbits. If we define

fo(x5 t) = UO(_t’ O)f(xa 0)’

where f is any function of x = (r, p), then we can
write Eq. (40) as

f l[IJ‘ l IP(J:/ tl l .X, l)éf (x’ ll), (|2)
[} ’

(41)

where

i
P(e't! | xt) = n f dro@t", 1)ULt 1)
0
a ” " a my, —1g ' 7Y
x——fdr(D(r—r)-—fl(x,t)e ¢ 1, 1), (43)
or op

where
6(x) = {0’ x> 0}.

1, x<0

The quantity P(x't’ | xt) is the generalization of a
similar quantity introduced by Rostoker* for the
homogeneous case. It is the phase-space density at x
of the shielding cloud induced by a test particle at
x’.2¢ It has been shown previously that the test-particle
theory holds for inhomogeneous systems.'¢23 Equa-
tion (43) gives an explicit expression for P(x"t’ | xr) in
terms of the inverse dielectric function. The expression
given by Eq. (42) can then be interpreted in terms of
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the test-particle theory. It says that the system can be
considered to be a superposition of N noninteracting
quasiparticles which are composed of a bare test
particle following the unperturbed orbit given by
Eq. (28) plus the polarization cloud induced by the
test particle.

We are now in the position to calculate various
correlation and autocorrelation functions. We only
need an expression for the quantity (6]” x, t)df ox’,t')).
This is very easy to obtain. We find

(0%, DOFO(x', 1)) = ng(xo(—1), x¢(—1'), 0)
+ nd(xo(—1) — x(—tNSAx, 1),
(44)

where x,(¢) is the unperturbed orbit given by Eq. (28).
Thus, from Eqs. (42) and (44), we can obtain an
expression for the quantity (8f(x, 1)0f (x’, t')) and all
related quantities in terms of the inverse dielectric
function and the initial one- and two-particle distri-
bution functions propagated along the unperturbed
orbits.

In particular, we obtain for the density auto-
correlation function the expression®®

(6p(x, DOB(X', t'))

t ¢
_____J.dx/rf dt//fdxll;f dtme—-l(r’ l’”; t, tﬂ)
0 0

X e—l(l", l'”; t’, t,”)[nzgg(x —t”) xm
+ na(xg(_tu) — m t’”))fg(x” tu)]

In order to obtain a kinetic equation we need an
expression for (8p(x, t)df' (x, t)). This can be calculated
by using Eqgs. (38), (42), and (44). We then obtain a
generalized kinetic equation when we substitute
the result into Eq. (25). The generalized kinetic
equation is

afl(x9 t) _ll afl(xs t)
ot

1), 0)
(45)

+ (s afl(’; )

t
_10 @ f drd@ — r) f dx’ f dare(r,v'; t, t')
ndp or 0

x {[nam(—r) — XY= NS 1)
),0)]

30 A very similar expression for the quantum case was obtained
by D. Dubois, Lectures in Theoretical Physics, W. E. Brittin, Ed.
(Gordon and Breach,Science Publ., Inc., New York, 1967), Vol. IX.

+ nPgy(xe(—1), x4(—
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+ftdt”fdx”P(x”t” | x, )
[
X [n0(xg(—1") — xg(— DS, t')

+ (=1, xi(~1), 0] (46)

The above equation is relatively complicated, but
it does represent a solution of the problem when we
ignore the three-particle correlation function and the
close collision effects. These approximations are
reasonable for the Coulomb and gravitational forces.
To lowest order, we can replace f%(x, t) by the exact
quantity f1(x, ¢) on the right-hand side, giving us a
kinetic equation involving only f; and the initial
correlation function. Equation (46) gives a general
result to which approximation procedures, such as the
adiabatic assumption, can be applied to obtain
kinetic equations for particular systems. Of course, we
also need to obtain approximate expressions for the
inverse dielectric function. In reality, thé kinetic
equation consists of Eq. (46) and Eq. (37). This is
really the case with the Balescu-Lenard—Guernsey
equation as well, because the dielectric function there
contains f3(¢) as well. We note also that the problem of
obtaining the kinetic equation is intimately connected
with orbit theory because of the U, operator. This was
to be expected.

Finally, we can obtain the generalization of the test-
particle result for the correlation function for in-
homogeneous systems. We find that

t
e, ) = [ PGt = 0, | DA, 1)
0
t
+ f dt"P(xo(t — ), " | X', ) fi(x, 1)
0

t t
_I_f dtuf dtmfdxﬂp(xﬂ’ t" I X, t)
[} 0

X P(xg(tm _ tll)’ tu/ I xr, t’)fl(x", t").
47

Equation (47) is subject to the usual interpretation.
The correlation between two particles arises from three
effects. The first two terms are the contribution due to
one particle being in the polarization cloud of the
particle. The last term is due to both particles being
in the polarization cloud of a third particle.
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Galilean transformations are expressed as transformations in a five-dimensional space, with a subsi-
diary condition, and a Galilean tensor calculus with a nonsingular metric is developed. It is shown that
the homogeneous Galilei group is isomorphic to a subgroup of the pseudo-orthogonal group O(4, 1),
which leaves the difference of two components of a vector invariant. A set of scalar variables for a Galilean-
invariant § matrix is selected. A Galilean-invariant phase space is defined and a recursion relation

derived.

INTRODUCTION

Galilean invariance'~® is of interest to the physicist
since it is the nonrelativistic limit of Lorentz invariance
and is the invariance obeyed by classical mechanics.
There has also been recent attention given to the
construction of kinematically consistent nonrelativistic
quantum theories.® However, the elegance of the
manifestly covariant formulation of Lorentz invariance
is lost in the usual treatment of Galilean invariance.
In what follows it is shown that a manifestly covariant
formulation of Galilean invariance follows in a
natural way from the limit of Lorentz covariance.
One can then systematically construct Galilean
covariants and choose scalar variables for a Galilean
invariant S matrix in an identical manner to the
construction in the Lorentz-invariant case. A Galilean-
invariant phase space can also be defined and a
recursion relation similar to the relation for Lorentz-
invariant phase space will be shown to hold.

1. GALILEAN COVARIANCE

In considering Galilean invariance it is convenient
to work with Galilean quantities which are the non-
relativistic limits of the corresponding Lorentz
quantities. Rather than regard the limiting process as
one in which we let ¢ — oo, we retain rest-energy
terms as well as the next order term in v/c. Thus, the
relativistic energy~momentum relation E = [m2ct +
(0)2c2)? becomes E = mc? + (p)?/2m. Similarly, the
general homogeneous Lorentz transformations (includ-
ing spatial rotations R) reduce, in the Galilean limit,
to

p'=Rp + mV,

E'=E+ V'Rp + imVv?,

x'= Rx 4+ Vi, M
U =1

! V. Bargmann, Ann. Math. 40, 149 (1939); 59, 1 (1954).

2 E. Inonu and E. P. Wigner, Nuovo Cimento 9, 705 (1952).
3 M. Hamermesh, Ann. Phys. 9, 518 (1960).

4J. M. Levy-Leblond, J. Math. Phys. 4, 776 (1963).

5 J. Voisin, J. Math. Phys. 6, 1519 (1965).

¢ J. M. Levy-Leblond, Commun. Math. Phys. 4, 157 (1967).

A homogeneous Lorentz transformation can be
represented as a linear transformation on a Lorentz
four-vector. On the other hand, a Galilean transforma-
tion of energy and momentum cannot be represented
as a linear transformation acting on an energy-
momentum four-vector because of the explicit
appearance of the mass in the transformation. In
order to have a linear transformation, we must
introduce a fifth component to our Galilean vector.

. P
With a five-vector” p* = (E ) , a homogeneous Galilean
m

transformation can be represented by a matrix of the
form

| @
0 {0 1
The three-by-three “space part” of each five-by-five
matrix will be abbreviated in the upper left corner.
A space-time five-vector has x for its first three
components and ¢ for its fifth component. Its fourth
component must be related to x and ¢ in the same way
that E is related to p and m, i.e., x* = ¢t + (x)?/2t.
The metric in this five-dimensional space can be
found by taking the Galilean limit of the Lorentz
scalar product. The Lorentz scalar product E,E, —
P: - P; becomes, in the Galilean limit, m E, + m,E, —
mym; — Py - P;. Our nonsingular® Galilean metric is
therefore determined to be
-1

) 3

0

The group of transformations G is just the group
which leaves the metric g invariant under a congruent

” From now on factors of ¢ will be understood and not written
explicitly.

8 P. Havas, Rev. Mod. Phys. 36, 938 (1964). A four-dimensional
formulation of Galilean invariance using a singular metric is
developed here.
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TasLE I. Contravariant and covariant Galilean five-vectors.

Space-time Acceler- Momen-
differentials  Velocity ation tum Force Gradient
dx frid a* pz Fa Ve
dx v a p F -V
dr(1 + v32) 1+ v32 a-v E F-v 9/0t
dt 1 0 m 0 0
dxa v! ad Pd Fz Vd
—dx —v —a —p —~F v
dt 1 0 m 0 0
dt(v3[2) vi[2 a-'v E—m Fe.y ofot

transformation G'gG = g, with the subsidiary con-
dition that it leave the “submetric”

0 00
@) =10 00 “4)
0| 01

invariant, G%g,G = go; i.e., it must leave the fifth
component of our five-vector invariant.

We may now lower indices on contravariant vectors
to form covariant vectors. Some Galilean five-vectors
of interest are given in Table I. We observe that for a
covariant vector it is the fourth component which is
invariant. The following relations may be noted:

Pp, = m’, (52)

Vv, = 1, (5b)

v*a, = 0 = v,a°% (5¢)

F* = d(p®)/dt = ma®*, (5d)

drt = g,y dx* dx? = dx* dx, = df*, (5¢)
VeV, = —V2 (5f)

There are two n-particle invariants which should be
distinguished. The invariant center-of-mass energy or
“effective mass” of » particles, which in the Lorentz
case is [(3 E)? — (3 p.)?E, becomes in the Galilean
limit

U=2E — Qp)r23m,. (6)

The invariant “effective-mass squared” (3, p),(3 p;)*
becomes

M? = Z 2(mE; + m;E;, — p;- p;) + (m; — mj)2]’
i<j (7

and is no longer the square of the center-of-mass
energy. These two invariants are not independent,

G. PINSKI

but are related by
M? =23 myU — (3 mp2 ®)

We note that U > M, with the equality holding only
when all the particles are at rest.

The Levi-Civita symbol e, is a fifth-rank
covariant isotropic tensor under transformations
for which det G = 1, and may be used to construct
Galilean covariants. In particular, the Galilean
analog of any Lorentz covariant constructed with the
fourth-rank symbol ¢, , may be found immediately.
For example, the Lorentz quadrilinear invariant

Pie P2z D Py

- Piy P2y Pay Py
euvpap;‘p;pglll = (9)

D1z P2. Psz D4

E, E, E, E,

has as its Galilean analog

Prz P2x P3x Pao
ply p2y D3y p41/

€aprasPiPEPIPE = . (10)
p2z p3z Ps,

P12

my my, my; my

recalling that the fourth component of a covariant
vector is an invariant.

The square of the spin for an n-particle system is
given, for the Lorentz case, by

L= —wwt (11)

where
w, = [2(P.P)] e, P"M?, (12)
P'=73%p!, M’ =3 (xfp} —xIpd). (13)

In the Galilean case we have

2= —w,w (14)

where
Wy = [2(P,P) ] e yp,0sPPMY. (15)

PP and M" are again given by (13). The fourth
components of the momentum and position vectors
do not appear in w,.

There are, in addition, Galilean tensors which do
not correspond to any Lorentz tensor, namely those
for which an index of the Levi-Civita symbol is not
held fixed. The quintilinear Galilean invariant

(16)

has no Lorentz analog. Apart from constant factors,

Q = €.p,sDi PEDIDIDE
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this invariant can be written as

Ul;v 021', Uy U4x Uom

Uy, Uy U3y Uy Usy

Uy, Vs, Uz, U4y Vg,
2 2
2

v v ol
1 1 1 1 1

We now find an equivalent group G which leaves
the pseudo-orthogonal O(4, 1) metric

amn

invariant. If we find a congruent transformation C
such that C"gC = &, then the equivalent group G =
C-'GC will leave the metric & invariant: G'gG = &.
It will also leave the metric g, invariant: G'g,G = g,,
where g, = C'g,C. Under such a transformation, a
Galilean vector p* becomes p = C~!p. One choice®
of Cis

1
c=| Lo (18)
1 -1
The matrices of the group G then have the form
RV vV
G=|V™R | 14+V¥2 —V2 (19)
V'R Vi2 1= V32
The “submetric” g, is
0 0 0
a=lo 1 -1 20)
0 | -1 1

P
The new Galilean vector is p* = ( E

E—m
total-energy, kinetic-energy five-vector. It is now
evident that the homogeneous Galilei group is
isomorphic to a subgroup of the pseudo-orthogonal
group O(4, 1) which leaves the difference between the
fourth and fifth component of a vector invariant.

) , amomentum,

? More generally, the matrix C may be chosen to be

k arbitrary.
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2. SCALAR VARIABLE PROBLEM

The problem of selecting a set of scalar variables
for a Lorentz-invariant S matrix has been discussed
by Rohrlich.!® He has shown the following:

For an n-particle reaction there are 3n — 10
independent bilinear scalars needed to reconstruct the
momentum configuration with respect to three
momenta, $ay p;, Pz, Ps, chosen as base vectors. The
3n — 9 scalar variables

pl.pk5 k=29“'7n_19
pZ'Pk’ k=3"",n_1’
P3.Pk9 k=49”'3n_13

together withthen — I massesm, k=1, -+, n—1,
determine the n — 1 four-vectors up to a choice of
two vectors, for k = 4, - -, n — 1. The nth vector is
determined by momentum conservation. If the mass of
the nth particle is specified, then p, is in fact over-
determined, placing a single constraint on the 3n — 9
variables. Only 3n — 10 are therefore independent.
The dichotomic invariant sign e, ,,pipypsp3 serves to
distinguish between the two choices of p, for each
k=4,---,n— 1. Therefore, n — 4 of these dicho-
tomic quadrilinear invariants in addition to the
aforementioned bilinear invariants specify the con-
figuration uniquely.

There is an entirely analogous situation for the case
of Galilean scalar variables. The appropriate bilinear
scalars are Galilean scalar products of the form
Pl - Suppose that we are given three base vectors
pi = (p;, E;,m),i=1,2,3, and that for an arbitrary
P, k=4, -+ ,n— 1, the scalar products

Pi* P =mE + myE, — mmy, — p; - Py,

=123 @

are specified. We may then solve these three equations
simultaneously for p, in terms of E, in the form
pr = &, + B.E:. Since E, — (p,)22m,, = m,, we have
a quadratic equation for each E,; if one solution is
real, the other must also be, leaving us with two
physical vectors as in the Lorentz case.

The quadrilinear Galilean invariant

M ']
Sign €,4,0,P% PLPIPS

is now the dichotomic parameter which distinguishes
between the two vectors. The specification of n — 4 of
these quadrilinear invariants, in addition to the 3n —
10 independent bilinear invariants, therefore deter-
mines the n-particle configuration.

10 F. Rohrlich, Nuovo Cimento 38, 673 (1965).
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3. GALILEAN-INVARIANT PHASE SPACE

Under Galilean transformations, both 4% and
d'p = d®p dE are invariants. Although a phase space
defined by

f IT [dsp,.wa(P -3 p,-)

is Galilean-invariant, we may choose not to work with
it since it does not have the same dimensions as, and
is not the nonrelatjvistic limit of, the Lorentz invariant
phase space. However a Galilean-invariant phase
space defined by

Fo= [ 11t = m)]
1
x 63(P -3 p,.) a(E -3 E,.) 22)
1 1
does have these properties. If we note that

d*p,d(p} — mf) = d°p, dES[(2m,E; — m; — p)) — m]

3 2
_ 4p: dE; 6[E,- - (m,. + _pz_):l (23)
2m 2m,

i !

and introduce the notation
k k 2 k
u,=E; — pzz'/zmh U, = in - (Z Pi)/zzmi,
1 fl 1
6‘(P -3 pz-) = 63(P -3 p,-)a(E -3, @9
1 1 1

we can write

Fn(Un; ml’ T, mn)
= f TT [d*pidu; — m]o* (P -3 p)
11 @m) ! h 25)

A recursion relation for the quantity

Rn(Un; my, ", mn)

= J 11"[ [d*p,0(u; — m,)]8* (P — ép,.), (26)

similar to the recursion relation'!!?2 for Lorentz-
invariant phase space, may be easily derived. Inserting
into the integral (26) the factor

n—1

| = f d‘ré“(r— b3 p,.) f dUS(U,_, — U),

11 p P, Srivastava and E. C. G. Sudarshan, Phys. Rev. 110, 765
(1958).
13 G, Pinski, Nuovo Cimento 24, 719 (1962).

G. PINSKI

we have
Rn(Un; my,: -, mn)

- f { ﬁ[d‘p,.a(u,. - m,.)]a4(r —"gp,.)
X f a'p,8(u, — m,) d'r
X 8(U,_y — UYSNP — r — p,,)} U

, m)RP(U,; U, m,) dU.
27

Un—mn

=fn—1 R, ,(U;my,---
m;

Here

R(U,; U, m,)

= f d*p,d(u, — m)d*rd(U,_, — U)S*P — r — p,)

(28)
is readily evaluated to be

Rél)(Uﬂ ; U9 mn)

= 2n(U, — U — mn)*(l/Zm,, + 1/2"§m,.)_§.
Also '
Ry(U; my, my)

= 2m(U — my — m)¥(1/2m, + 12m)E. (29

It should be noted that, unlike the situation for the
Lorentzrecursion relation, the function RV (U,,; U, m,,)
is an explicit function of the sum of the masses of
those particles which have effective mass U, and must
be distinguished from the function Ry(U; m,, m,).

The two-particle Lorentz and Galilean phase space
may now be compared:

FE"(Us my, my) = = |pr™|/U,
FE(U; my, my) = 7 [pf™!|/(my + my),  (30)
where the center-of-mass momentum of a particle is

2 - 2y
1= 1= (=2 ()
2 U U

U—my—my 7}

Gal 1 2
= —— 31
9= [ ) o
Unlike the two-particle Lorentz phase space which
approaches a limiting value with increasing energy,
the two-particle Galilean phase space is unbounded.

Application of these relations to Galilean statistical
theories will be treated in a separate publication.
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We derive some new equations for the wavefunction for the three-body scattering problem using the
‘‘partial-wavefunction approach.” All scattering processes are solutions of inhomogeneous coupled
integral equations for the scattered parts of the total wavefunction. We show how the Pauli principle is
incorporated when some or all of the particles are identical. This leads to a reduction in the number of
independent scattered partial wavefunctions when some of the particles are identical. The kernels in the
integral equations contain no ¢ functions but each scattered partial wavefunction does have a self-
coupling term. We apply the method to the scattering of three identical bosons interacting through zero-
range pair potentials. The method gives the same equation for this problem as obtained by the Faddeev

T-matrix approach.

L. INTRODUCTION

The advantages of writing the wavefunction as a
sum of three parts for a bound-state system of three
identical particles has been shown by Eyges.! Faddeev
has applied a similar idea to the scattering problem,
and written the 7 matrix as the sum of three parts.?
Using the “partial-wavefunction” approach, we have
also shown how solutions for a bound-state system of
three arbitrary particles can be constructed which are
eigenstates of a complete set of commuting operators.?
The method has been applied with success to the
heliumlike atom,? and has led to a new technique for
calculating bound-state energies for three-body sys-
tems.

The purpose of this paper is to show how the three-
body scattering problem can be treated in a similar
way by breaking up the scattered part of the total
wavefunction into a sum of three parts which we
call “scattered partial wavefunctions.” General oper-
ator equations for the three-body scattering problem
are derived and the matrix elements of these
equations for several specific situations are written
out in the momentum representation. In order to
show the reader how these equations are applied we
consider explicitly the case of three identical particles
interacting through zero-range pair potentials and
demonstrate that the method, in this case, gives the
same results as the Faddeev T-matrix approach.

II. THE EQUATIONS FOR THREE-PARTICLE
SCATTERING

The Schrodinger equation where the center-of-mass
and time motion have been separated out is

HY, = EY,,

1 L. Eyges, Phys. Rev. 115, 1643 (1959).

* L. D. Faddeev, Zh. Eksp. Teor. Fiz. 39, 1459 (1960) [Sov.
Phys.—JETP 12, 1014 (1961)].

3J. R. Jasperse and M. H. Friedman, Phys. Rev. 159, 69 (1967).

M

where V', is the Schrodinger state-vector and H is the
Hamiltonian operator written as

H=H0+Vz‘i+ij+sz" (2)

Consider a system of three disringuishable particles
where particle k is incident on a bound state of
particles i and j. We may write the total state-vector as
the sum of an incident part, which is a known eigen-
state of H, + V;;, and a scattered part which is
unknown,

¥, = PO 4,

Substituting this expression into Eq. (1), rearranging,
and writing the result in terms of the resolvent oper-
ator Gyo(s) = (H, — sI)7, we obtain

Y = —Go()H{ (Ve + Vi)V 4 (Vii + Vi + Ve)¥},

where s is defined as the complex energy parameter.
Let this definition for G,(s) and a consistent extension
of the energy of the in-state to complex values serve to
define the continuation of the energy to the complex
plane in our equations. It can be shown that a solution
of the following form exists®:

W, =V 4+ v + vy + s

where the three scattered partial state-vectors, w;;’s,
are given by a set of coupled operator equations. In
matrix form we have:

Yy 0
Vi | = =G Vi JT?
Vi Vii
Vi Vi Vis\ [
=GN Vi Vie Vallvn] )
Ve Vie Vi \Wu

4 This resuit follows using arguments similar to those developed
in Ref. 3.
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Rewriting these equations so that the self-coupled
terms appear together gives

(1 + Gy()Vilwss 0
[1 + GV, k]%k = —Gy()| Vi e
[1 + Gy($)Vieslwrs Vii

O V Vu 1/)1'}'
=G| Vie 0 Villvnl-
Vie Vie O Vi

If the incident wave were a state where each particle
were free, then the inhomogeneous term of the first
equation in Eqgs. (4) would be —Gy(s) V¥ instead of
0. The momentum representation of the homogeneous
equations embodied in Eqs. (4), representing the
three-body bound states, is the same as that derived
in Ref. 3.

Consider a system of three particles interacting
through pair potentials, where particles i and k are
identical and particle j is different. In dealing with
situations where some of the particles are identical,
we may either solve the Schrodinger equation without
any symmetry requirement on the solution and then
symmetrize (or antisymmetrize) afterward, or we
symmetrize (or antisymmetrize) both the solution and
the equations in the beginning. In a two-body problem
with two identical particles, there is no advantage in
using one method over the other. However, for the
three-body problem using the partial-wavefunction
approach, it is advantageous to symmetrize (or anti-
symmetrize) the solutions first. Since all pair potentials
are even functions of their arguments, the three
coupled equations which result are no longer all
independent and the system of equations can be
simplified. In this way the number of independent
scattered partial wavefunctions can be reduced. The
Hamiltonian is given by Eq. (2) where the pair poten-
tials V;; and ¥V, have the same form. It can be shown
that the incident state-vector and the scattered state
vector are?

PIAD = i + i,
WA =y & yh+ i
and that the total state-vector is given by
‘Ft = \J'S.40) + \IrS.A,

where the incident partial state-vector is a known
eigenstate of H, + V,;. The 4+ and — superscripts
refer to either the symmetric or antisymmetric total
solution. The e and o superscripts refer to the evenness
or oddness of the scattered partial state-vector upon
exchange of particles i and k. For particle £, incident
on the bound state of particles i and j, we substitute

“
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this form for the total state-vector into the Schrédinger
equation and use procedures similar to those of the
previous case to obtain

[1 + Go(s)Visvili™ V95
*[1 + Go(s)Virlyl™ | = —Gols) Vi
[1 + Go(s)Viilyz® Vl¥ly £ 93
0 ¥V, Vi (2
— G Vae O Vallxvi™)
Vi Vie O v

Note that the total state-vector and the coupled set
of equations giving the partial scattered state-vectors
are explicitly symmetrized (or antisymmetrized). For
this system it is possible to show that there are only
two independent equations by proving that?

(1) _ . (3)
Wz; = Yix

By this we mean that when we take the matrix elements
of the operator Eqs. (5) in momentum space we can
prove that the form of (¥ is the same as that of
¥$ and the form of y};— is the same as that of y}—.
If each particle were initially free, then the inhomo-
geneous terms would be

and "= ¢k~

”r['l/)“) (1)]

Vilwis
V;“[,'p(t) (z)]

In order to make these operator equations more
explicit we write out the matrix elements for the case
of two identical particles interacting with a third
which is different. The center-of-mass coordinates in
position space and in momentum space may be
defined as follows:

—GO(S) (z) (l)]

R = (myx; + myx; + mrM™,
r; =(r,—r),
i = I — (mx; + myr)(m; + m)~,
K=k, +k; + k.,
= (mk; — mk;)(m; + m)™,

®, = [(m; + mpk;, — my(k; + k)M,
where the three sets of coordinates for each representa-
tion are generated by allowing 7, j, and &k to assume
the values 1, 2, and 3 in cyclical permutation and M
is the total mass. Letting particles 1 and 3 be the identi-

cal pair and taking the matrix elements of the two
independent equations of Eqs. (5) in the frame
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(kyo, %) = (k, %) gives®
57(k, %) + [(2m)% (0K + Bsx® — )]
X fj dr dk'Vio(1) s ~(k', x) exp ir - (k' — k)
= If;7(k, %) — [(2m)*(aek® + o’ — T
x J dr di Vig(r){ £ ¢ (0K', K — b™'x)
x expir. [k —k — (b7 — b)x]
+ $3°(3K', k' — 2%)
x expir.[—k' —k + (2 — a)x]}
B30k, %) + [2m)* (a5 k® + for® — )7
X J-J dr dk'Vay (r) 5 °(k’, w) exp ir - (k' — k)
= I (K, %) — [2m) k™ + o™ — )]
x f dr dK' Ve ()t (—ak', k' — a*)

(6a)

x expir- [k —k — (a — Hx]
+ ¢ (—ak’, kK — a %)
x exp ir- [k — k + (a7 — })n]}.
Here we have defined
k, x| ph) = 5 7(k, %)
and the inhomogeneous terms are
I (k, ®) = —(£)[2m) (a2k® 4+ B’ — 917!
x J f dr dK'V,(£)$O(bK', K — b%)
x expir-[k' —k — (b~ — b)x], (7a)
I (k, %) = —[Q2m)* (2 k® + forx® — )]
x f f dr dk' Vi (D8 (—ak’, k' — a~'x)
x expire [k —k — (a — Hx]
+ $iH(—ak, K — a7')
xexpir-[—k —k + (@' — Px]}. (7b)
We have also defined
&, % | yi) = ¢k, ),

and the constants appearing in these equations for
my = my are given by

(6b)

— ~1
Ky = %a s

Bs = 3(1 +b),
og; =1, fo= 3@ -3},

a = my(my, + my)™, b =m(m + my) L

5 Note that the homogeneous parts of these equations differ
slightly from Eqgs. (14a) and (14b) of Ref. 3. This comes about
because we have redefined the total wavefunction for the case of
two identical particles [given in this paper by Eq. (8)] and have
corrected a slight error in the symmetry discussion in Ref. 3.

1933

The space part of the total wavefunction in the frame
(ky3, #3) 1s defined as

<k12’ x3 | lF.‘tS'A> = q);q,A(klZ’ K3)a
and is given by
Q'?'A(klza %3)
= <f>§i2)(k12, %) + S‘b(liz)(—kza, %) + ¢—1+-2,_(k123 "3)
£ ¢ (—kos, %) + H31°(Kgy 5 %), (8)

Note that ®%:-4(k,,, %;) is symmetric or antisym-
metric upon the exchange of particles 1 and 3.

For three identical particles it is also possible to
show that a solution of the following form exists:

IIJ‘tS.A — 1P'S.A(i) + IP'S.A ,
where
S, A8 _ ,0(4) e,0(1) e,0(1)
WA =l S+ i+
8.4 __ .0 €,0 e,0
W= 9+ v’ + e

The coupled equations, which result when the incident
state is the one in which one particle scatters from the
bound state of the other two, are given by

[+ Go(s)V;;]v55°
[t + Go()Vilyi’

Vil + vi?]
= —Gy()| Vilyi"? + v’ ]

[l + Gs)Vlws® Vil + 50
0 Vz Vi:‘ 'pfa"o
=G Vir O Vi Vi 9
Vie Vie O Vi’

Again, we have explicitly symmetrized or antisym-
metrized the equations and as a consequence we may
show that the form of each incident partial state-
vector is the same, and the form of each scattered
partial state-vector is the same. This in turn implies
that there is only one independent equation in Eqgs.
(9). Taking the matrix elements in momentum space
of the single independent equation in Egs. (9), and
dropping the subscripts 7, j, and k we obtain

¢k, %) + [2m)°(k* + 3 — 9!

x f J dr dk'V(D)¢*(K', %) exp i - (K — k)
= I*°(k, %) — [2m)*(k* + §x* — 9]

x f f dr dK'V(D){$°GK', K — 230)

x expir-(—k' — k + $x%) + ¢*°(—ik’, k' — 2x)
x exp ir- (k' — k — $x)}, (10)
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where we have defined (k, x | p5°) = ¢5°(k, %) and
where the inhomogeneous term is

10k, %) = —[(2m)*(k®* + §<* — )]
x f dr dK V(E){¢-" PGk, K — 2)

X exp ir+(—k' — k + $x)
+ ¢e'0(i)(—%k’, kK — 2“)

x expire (k' — k — $x)). (11)

The total wavefunction in the frame (k;;, %) is
Kig» % IIF‘?'A) = (D;g'A(kﬁ’ %)
= ¢k, %) + 6k, %)
+ 7 s 1) + $(Ks5, )

+ kg, %) + (k> %) (12)

III. THREE IDENTICAL PARTICLES INTER-
ACTING THROUGH ZERO-RANGE PAIR
POTENTIALS

In Sec. II we have derived some general equations
for the three-body scattering problem using the
partial-wavefunction approach. We have also shown
how the Pauli principle may be incorporated so as to
symmetrize or antisymmetrize the equations when
some or all of the particles become identical. In this
section we consider one case explicitly, i.e., the case
where three identical particles interact through zero-
range pair potentials, and show that our method
produces the same result as the Faddeev T-matrix
approach.

The method we propose for calculating the total
wavefunction consists of performing the following
three steps:

(1) Take the matrix elements in momentum space
of the appropriate operator equations for a given
incident state;

(2) Use the knowledge of the bound states of each
pair problem and the requirement that the Fourier
transform exist and represent all possible outgoing

3wNPf(%; %)

AP B(1)] — TN T % Ko)
[ + DAy

J. R. JASPERSE

states to deduce the most general expansion for each
scattered partial wavefunction;

(3) Substitute these expansions into the appropriate
equations and derive a set of coupled integral equations
for the unknown functions appearing in each ex-
pansion.

Let us carry this out for the zero-range pair po-
tential problem. The pair problem has one bound
state given by

NeyP(xr) = Nle~#'jr; NP = (5/277)'},

for r > ry, where r, is the range of the potential. In
momentum space we have

NPGA(k) = NP(K® + %5 NP = (B/n™)R.

The incident partial wavefunction, when one particle is
incident on the bound state of the other two, is then

¢k, %) = NP (k)(2mP8(x — %),  (13)

where %, is the wavevector of the incident particle.
We have dropped the e and o superscripts since it is
understood that we are looking for the symmetric
solution. Since the pair potential has zero range we
see from Eqs. (10) and (11) that the following sub-
stitution is valid:

ok, %) = (k® + 3% — s)7g(x; x,).

The wavefunction in momentum space must have the
appropriate singularities to produce all possible out-
going states. Since the pair problem has only one
bound state we may write

¢(k’ x) == 3‘771\7”(k2 + %Kz — s)—l
X (=B + 3 — 57 (%; %), (14)

where f is a bounded continuous function of « and
0 (angle between x and x,) with bounded continuous
derivatives on « and 0. Substituting Eq. (14) into Eq.
(10), noticing that the factors (k® 4 3« — s)? cancel
out, multiplying through by ¢#*(k), and integrating
with respect to k, we obtain

= —@2n) f f f dk dr dk’V(r);b’*(k){qS(“(%k', k' — 2%)

xexpir-(—k' —k + %x) + ¢“’(—%k’, K — 20)expir- (kK —k — %u)
3mNPA(K — 2%; %) exp ir - (—k' — k 4 $%)

[3K) + 3K — 20)* — s])[—p* + 3K — 2%)* — 5]

37Tpr(k’ — 2){; x0) exp ir . (kl —k — %n)

[(—3#K)" + 3(k' — 2%)* — s][—B* + (k' — 2%)* — 5]

}. (15)
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Here we have defined the following expression:
AP + DY) = f dk ¢ﬁ*(k)[1 + Q) f f dr dk'V(x)
x [(k'® + 3= ) expir+ (k' — k)]}.

The integrations over the pair potential may be
eliminated by making use of the two-body Schrodinger
equation in momentum space:

&) = —[2m°(K* + O™

x f dk drV(r)d?* (k) exp it - (k' — K).
This reduces the vector integrations from three to
one. Substituting Eq. (13) for the ¢ and making an

appropriate transformation of variables for the one
remaining vector variable appearing in Eq. (15), we

obtain
AP + D« £(; %)
DIA* + D( )](__ﬁ2 il

= 4n¥(x, + 3)* + 7147 * (%o + 10)¢F(Ing + %)
f(y; %)
Hid .
] e sas oy o
The expression for A# + D#(x) becomes
(K* + 14’ *(k)}
(k* + 32— s) |

For the zero-range pair potential we may calculate
A? 4+ DF(x) by using the following formula:

dx x* —x¢zfdx 1 +C

f (x* % 2) (x*F 2)

We see that the infinite parts cancel and we are left
with

AP + DP(x) = f dk{qb’*(k) -

AP 4 DF(k) = 27%[—B — i(s — 3D

The integral equation for f becomes®

3 SOG%) 2y, 2 — )t
(8) (B — i(s — %Ka)%] (6 weuy + 15— 3)
3 fy; %)
+—=|d :
8w2f y(y2+y-u + =)=+ D — )

(16)

Note that the self-coupling of the scattered partial
wavefunction causes no difficulty at the point x = x,,

¢ The inhomogeneous term may be written this way since the
equation only has meaning for s = (m/A*)E &+ ie in the limit as
€ — 0. For a different derivation of this equation, see G. V. Skornia-
kov and K. A. Ter-Martirosian, Zh. Eksp. Teor. Fiz. 31, 775 (1956)
[Sov. Phys.—JETP 4, 648 (1957)).
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and that the kernel of the integral equation for fis a
Schmidt operator for all complex s except for part of
the real axis from —p? to co. It is also possible to
prove’ that the limit on the cut exists for s—
(m/R?)E < 0 in the Banach space C, (the space of
bounded continuous functions with bounded con-
tinuous derivatives) and hence, for E < 0, the kernel
is compact in C;. The compactness proof fails in C,
for s — (m/A)E > 0. This does not mean that the
kernel cannot be made compact in some other Banach
space. In fact, making the substitution

¢'(¢; %) = (DB — ils — AN (; %)
we obtain the following equation:
(5 %) = (k® + %+ %9 + 1§ — 5)7
! ¢'(y; %)
| 2 ; anh
™ (< + ey +y =s)B +ils — 1))
(17)
This equation is identical with that derived by Faddeev
for this problem.? Faddeev has shown in general that
the fifth power of the kernel is compact in a certain
Banach space.® The space part of the total wave-
function for symmetric states is then
OF(k;, 3z) = SYM {N*¢’(k,)(2m)*00, — %)

+ 3mNA(KE + Bk — )

X (=B + B — )7 (s %)},
where the SYM denotes symmetry with respect to the
variables k;; and %, as written out explicitly in Eq.
(12). We note here that Eqgs. (16) and (17) are not
unique as they stand due to the pathological behavior
of the three-body bound state for the zero-range pair
potential.’ The three-body transition amplitude for
this problem can be calculated in a straightforward

way. For example, in the frame (k;;, ;) we get the
following result for elastic scattering:

Tf<—-i = [_f()(, uo)]u—»xo Ef(KOa 0, K0)~
IV. DISCUSSION

We have derived some new equations for the three-
body scattering problem using the partial-wave-
function approach and showed how the equations
simplify when some or all of the particles are identical.

” The proof is similar to that of Lovelace, [C. Lovelace, Phys.
Rev. 135, B1225 (1964)).

8 L. D. Faddeev, Mathematical Aspects of the Three-body Problem
in the Quantum Scattering Theory (Steklov Mathematical Institute,
Leningrad, 1963), No. 69.

® The nonuniqueness is due to the fact that the three-body bound
state has a solution for arbitrary E. For a discussion on how a
satisfactory solution can be chosen using these equations, see G. S.
Danilov, Zh. Eksp. Teor. Fiz. 40, 498 (1961) [Sov. Phys.—JETP 13,

349 (1961)].
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We have also indicated how each partial wavefunction
can beexpanded and applied the method to the problem
of three identical particles interacting through zero-
range pair potentials. It is important to note that with
this method we do not need to know the off-shell,
two-body ¢ matrices; only a knowledge of the two-
body bound states for each pair potential is necessary.
Our feeling at present is that this method can be

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 9,
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applied to more complicated pair interactions. Three-
dimensional, square-well scattering and electron-
hydrogen scattering are currently being considered
using this approach.
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The most degenerate class of representation functions @#%.(6) pertaining to U(6) ® U(6) have been
calculated for arbitrary quark number N with the baryon number B, and W, W’ weights of the U(6)y
subgroup assuming the following values: B =0, §, £, 1; [W], [W’] = 1, 6, 21, 56. These functions are
the matrix elements of the rotation operator exp (—i6J,) between basis vectors of the degenerate U(6) ®
U(6) Feynman series (characterized entirely by BN W labels), and are essential to the generalized Reggeiza-

tion program,

1. REPRESENTATION FUNCTIONS OF THE
MOST-DEGENERATE SERIES

A generalized Reggeization scheme based on the
supermultiplet symmetry U(6) ® U(6) has recently
been proposed! where it has been assumed for definite-
ness that the sequence of physically observed states
falls in an especially simple class of representations®—
the Feynman series—which are characterized by only
two Casimir labels: the baryon number B and the
quark number N. Correspondingly, the poles of the
generalized partial-wave components of the § matrix
are presumed to occur just in this degenerate sequence
and to provide the supermultiplet Regge poles. An
analysis shows that the N-plane Regge-pole contri-
bution to the amplitude is of the form BdgP,.(6)/
sin ma, where d3P,.(6) is the continuation of the
rotation-matrix element

d¥Pw(0) = (NBW| e+ INBW") (1)
to complex N = «(E) for the degenerate states

* The research reported in this document has been sponsored in
part by the Air Force Office for Scientific Research (OAR) through
the European Office of Aerospace Research, United States Air Force.

1 A. Salam and J. Strathdee, Phys. Rev. Letters, 19, 339 (1967);
R. Delbourgo, M. A. Rashid, A. Salam, and J. Strathdee, Phys. Rev.
Phys. Rev. 170, 1477 (1968).

2Y. Dothan, M. Gell-Mann,and Y. Neeman, Phys. Letters. 17,
148 (1965); A. Gotsman and Y. Neeman, Tel-Aviv University
preprint (1966); R. Delbourgo, A. Salam, and J. Strathdee, Proc.
Roy. Soc.(London) '289A, 177 (1965).

|BNW). In practice, therefore, one requires a knowl-
edge of these functions for B = 0 (meson exchange)
and B = 1 (baryon exchange). The B = 0 functions
have been stated in a previous publication!; in this
paper we present the B = 1 functions, building these
up from the known B = 0 set through B = } (quark
sequence) and B = § (biquark sequence).

Before evaluating the d(6), one should briefly
recall the precise definition of the U(6) ® U(6)
degenerate-states set which we are proposing to adopt
in order to appreciate the comparatively simple
nature of the ensuing results. To do so, it is useful to
state the significant properties of the fundamental
spinor (“quark™) representations from which all
others, and in particular the degenerate series, can be
constructed. Letting B, and B, refer to the “baryon
numbers” of the commuting phase transformations
of U(l) ® U(1) and writing (W, W,) for the repre-
sentations of the commuting SU(6) groups of SU(6) ®
SU(6), we have the four basic spinors:

v, transforming as (6, 1); B, = 4,

0
y° transforming as (6, 1); B, = —3, B, =0,
y, transforming as (1,6); B, =0, B, =1}

b

—1
3-

" transforming as (1,8); B, =0, B,

By constructing multispinor products of these four
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We have also indicated how each partial wavefunction
can beexpanded and applied the method to the problem
of three identical particles interacting through zero-
range pair potentials. It is important to note that with
this method we do not need to know the off-shell,
two-body ¢ matrices; only a knowledge of the two-
body bound states for each pair potential is necessary.
Our feeling at present is that this method can be
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in U(6) ® U(6)*
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The most degenerate class of representation functions @#%.(6) pertaining to U(6) ® U(6) have been
calculated for arbitrary quark number N with the baryon number B, and W, W’ weights of the U(6)y
subgroup assuming the following values: B =0, §, £, 1; [W], [W’] = 1, 6, 21, 56. These functions are
the matrix elements of the rotation operator exp (—i6J,) between basis vectors of the degenerate U(6) ®
U(6) Feynman series (characterized entirely by BN W labels), and are essential to the generalized Reggeiza-

tion program,

1. REPRESENTATION FUNCTIONS OF THE
MOST-DEGENERATE SERIES

A generalized Reggeization scheme based on the
supermultiplet symmetry U(6) ® U(6) has recently
been proposed! where it has been assumed for definite-
ness that the sequence of physically observed states
falls in an especially simple class of representations®—
the Feynman series—which are characterized by only
two Casimir labels: the baryon number B and the
quark number N. Correspondingly, the poles of the
generalized partial-wave components of the § matrix
are presumed to occur just in this degenerate sequence
and to provide the supermultiplet Regge poles. An
analysis shows that the N-plane Regge-pole contri-
bution to the amplitude is of the form BdgP,.(6)/
sin ma, where d3P,.(6) is the continuation of the
rotation-matrix element

d¥Pw(0) = (NBW| e+ INBW") (1)
to complex N = «(E) for the degenerate states

* The research reported in this document has been sponsored in
part by the Air Force Office for Scientific Research (OAR) through
the European Office of Aerospace Research, United States Air Force.

1 A. Salam and J. Strathdee, Phys. Rev. Letters, 19, 339 (1967);
R. Delbourgo, M. A. Rashid, A. Salam, and J. Strathdee, Phys. Rev.
Phys. Rev. 170, 1477 (1968).

2Y. Dothan, M. Gell-Mann,and Y. Neeman, Phys. Letters. 17,
148 (1965); A. Gotsman and Y. Neeman, Tel-Aviv University
preprint (1966); R. Delbourgo, A. Salam, and J. Strathdee, Proc.
Roy. Soc.(London) '289A, 177 (1965).

|BNW). In practice, therefore, one requires a knowl-
edge of these functions for B = 0 (meson exchange)
and B = 1 (baryon exchange). The B = 0 functions
have been stated in a previous publication!; in this
paper we present the B = 1 functions, building these
up from the known B = 0 set through B = } (quark
sequence) and B = § (biquark sequence).

Before evaluating the d(6), one should briefly
recall the precise definition of the U(6) ® U(6)
degenerate-states set which we are proposing to adopt
in order to appreciate the comparatively simple
nature of the ensuing results. To do so, it is useful to
state the significant properties of the fundamental
spinor (“quark™) representations from which all
others, and in particular the degenerate series, can be
constructed. Letting B, and B, refer to the “baryon
numbers” of the commuting phase transformations
of U(l) ® U(1) and writing (W, W,) for the repre-
sentations of the commuting SU(6) groups of SU(6) ®
SU(6), we have the four basic spinors:

v, transforming as (6, 1); B, = 4,

0
y° transforming as (6, 1); B, = —3, B, =0,
y, transforming as (1,6); B, =0, B, =1}

b

—1
3-

" transforming as (1,8); B, =0, B,

By constructing multispinor products of these four
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quarks we can represent any U(6) ® U(6) state. Thus
a supermultiplet of baryon number B = B, + B,
and quark number N = 3(B, — B,) is described by
the multispinor® X

(Dbl bl “ng—3B2
an1+381 » 4y aﬂz

By imposing tracelessness and particular symmetries
in indices of the same type, we may select out the
desired (W, W,) level.

The degenerate series referred to above is defined by
the additional conditions n; = n, = 0, together with
complete symmetry in the remaining indices, viz., by
multispinors of the variety <D”’1 ggls ,» Thus for the
mesons (B = 0) and the baryons (B = 0) we encounter
the Feynman series:

N= 0, 1, 2’
(WI, W2)= (19 1)’ (69 6), (21571)"” ;B'__O
(Wy, Wy) = (56, 1), (126, 6), (252,21), - ; B= 1.

The simplifying feature of these sequences is that,
under the reduction SU(6) ® SU(6) to SU(6), the
SU(6) (W) representations occur singly in any
(W, W,) representation of SU(6) ® SU(6). Con-
sequently, the labeling |[BNW) is sufficient to char-
acterize the degenerate states. Nevertheless, it must be
emphasized that the |BNW) vectors on their own
cannot constitute a complete set since, for given B
and N, they need to be supplemented by other less-
degenerate vectors.

In the simplest instance* the Reggeization program
for U(6) @ U(6) calls for the evaluation of the special
representations dyB,(0) of Eq. (1), for B =0 and

= 1. In previous work! it was shown that arbitrary
d% w(8) for given B can be built up from the lowest
W, W’ values by differential techniques, and that it
was sufficient to consider the basic functions

Aty (0), =0; digyer8), B=14;
d[21][21 ](0), B=3; d[56][56 ](9)3 B=1;

and so on. We shall demonstrate below how the
B # 0 functions can themselves be built up from the
B = 0 set also by successive differentiations through
B =1}, %, etc.

2. MULTISPINOR d(6) FUNCTIONS

The calculation of d(6) will be carried out in two
steps: the first consists in casting the arguments in the

3 R. Delbourgo, M. A. Rashid, A. Salam and J. Strathdee,
Trieste Conference Proceedings (I.A.E.A., Vienna, 1965).

4 One should not categorically preclude the possibility that the
physically observed supermultiplets fall into sequences of levels
more complicated than the degenerate sequence considered in this
paper. If that is the case, the calculations will be correspondingly
more complicated; that is all.
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M-function framework of the inhomogeneous U(6, 6)

- theory to obtain U(6, 6) tensor expressions for the

d(6); the second step, deferred to Sec. 3, consists in
contracting over external U(6,6) wavefunctions®
@B By) | to obtain the canonical expressions for
(4, Axi3p)
d(o).
Now the fundamental function d3,,,(6) arises in the
supersinglet scattering process

(1’ 1)%1&‘1 + (la 1)%17—(1_) (1> 1)§p+a' + (1’ 1)—%11-—(1’

by including an intermediate (%, N), meson state and
imposing U(6);y, conservation® at the 3- point vertices—
that is in fact the basic source of di},,(6) in the
Reggeization scheme. As the rules for such M-
function calculations have been stated so often,® we
shall not repeat them here. The significant point to be
made i's that dy,,,(6) devolves upon reducing the
expression

N N
Py =10 — maG + myz[ 3 [T aft] /¥ @

for p* = m?; a straightforward, if tedious, computa-
tion shows that the right-hand side of Eq. (2) reduces,
for U(») ® U(»), to

Fy = (4m®1q] lg'DVCR(G - 4. ©)
where
q-4' =—9°9 +9q-pg p/m*=lgllglcosb. (4
Thus
diY115(0) oc Ci(cos 0) (5)
for U(6) ® U(6).
Cons1der now the functions di,;(0) belongmg to
the B = § family of excitations. These arise from the
scattering process

6D+ A, H—>@E, D+ 1,1

by including an intermediate B = § state of arbitrary
N. The basic quantities which enter are the vertex
function

(, )] Fia

& 166, 1))

=3 [us. [T at] [emrev + by
B
and the numerator of the propagator
(p* — m@E O R
N
=3[0+ miz I+ mite - mi] |
4,B k=1
(m*MINI(N + 1)!
which together provide the expression

Treyery = diggn THuL/(2m) N+, ©
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where

N
Ti=(p+ m)ﬁ”*‘g {( — m)q'(p + m)}%5

R. DELBOURGO

we get the multispinor expressions for B = §:
N =(B1Bs) yNA1A
d[21][21'](0) = Y delBlg 2(0)“5111]4,) s (12)
with

N
P> [%ﬂ I1 qﬁz} / (N+ DL (6) a¥44x6) oc [(—8m’g"*(N + 1)(N + 2)]*

The right-hand side of (6) is not so difficult to simplify
as it appears to be at first sight, if we make use of the

following trick. We notice that, since

Fyy = (4m? |q] 1g'DVHCE, 1 (cos 6)
N+1

= H {(p — m)q'(p + m)}5!

x [B Iﬁlqﬁ’;]/(N + DY,

k=1

OFy.y _ {(0 — m)q'(p + m)}5>
oq3 N!

N
X H {(p — m)q'(p + m)}5

N
xS [%ﬂ II qé:].
B k=1

Hence,

a A4
[(p + mq'(p — m) —} Fyit
dq B
8m3q"?
N!
N
x 3 [ o, 1T o]
B k=1
= —8m*¢’*(N + )T54- @)

The advantage of this manipulation lies in the fact
that the left-hand side can be readily evaluated
according to techniques which have already been
described elsewhere.! Thus

N
»+ M)E”“Ul {(p — mq'(p + m)}5:

2 2\

— {0 — m)a(p + my}\L! C%v"'] ®
lql

and leads to

am® 1al 19'DY 1 A yacky 4y
T‘4=(—————— ADBCyH — (ADBCR), (9
BTN+ 1y [(ADECRn — (A)ECNT (9)
where

AL =(p + m)2m,

A_=(p+ mq (p— myq(p+ m)8m*|qllq'l. (10)
In this way we have arrived at our multispinor formula
for d(0) for the degenerate family belonging to B = }:

d¥(0) oc [AChyy — ACRIMN + D). (D)

The same trick method can be used with success
to obtain the B = %, 1 degenerate-series functions.
Performing the same manipulations as outlined above,

x [@+maG—m) 58‘}]2

214
X l:(P + m)q'(p — m)—] Fyio
0q B,

= [(AnfEADZChy — 24 R ichy,
+ (AEAECY YN + DV + 21
(12%)
or, abbreviating to an obvious notation,
d¥(0) oc [A, ® A, Clyrs
—2A, ®A_Clo + A_® A_CL]; (127)
B=1:
d¥6) o [AL ® AL ® A CRys —3A, @ AL @A _Clys
+3A, @A ®A Cl—A_®A_®A_CEL, (13)

relating to
dé\sle][w](e) = a{ﬁ‘f"*”(k’)dﬁf‘éﬁ;;‘"u,f&m)(k). (13')

The reader is urged to test the veracity of the results
for small ¥ by direct explicit calculation. Note that all
d¥(6) are associated with the “threshold” factor

(4m® |q] 19'])™.
3. CANONICAL d(6) FUNCTIONS

We have only to perform the contractions # A u
over the Bargmann-Wigner wavefunctions v in Egs.
(6), (12), and (13) in order to arrive at the canonical
forms dj ,,,(6). These are straightforwardly done if
we make use of the basic contractions

12r',:i:j\+ur,‘i = ﬁr’,:i:A—ur,:t = 6rr' €os %0’

Gz Ay, = —d, A u = 16,sini0, (14
which formulas are easily proved in the rest frame of
p- + are helicity indices and r, r’ are SU(3) indices

of the quark wavefunctions. The remaining thing to
be done is to impose the boundary conditions

dlIYV,W’(G =0) = ‘5WW'

to find the over-all normalization factors, and this is
also easily done from the well-known properties

ck) =T + NITW + DIG),
k) = »eRE). (15)
We present below all relevant expressions for the
reduced functions d%.(6) defined by

dpy wA0) = %, p1(6) = dgp d3:(6),  (16)
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where R and R’ refer to SU(3) labels contained in Finally, for [R] = [R'] = 8:
W, W’. These are derived by inserting the appropriate

Ny 3
wavefunctions® in (6), (12), and (13): d33(0) = a,y cos 30
Hpp—e1 = Yras X [Chys — 3Cye + 3 c0s 8CRyy — CR
[(R= .
Upp=n1] = Hipa s = “fﬁmm + “[ﬁ]{ﬁ]’ Jf_"%(a) = a2y sin 30

[R=10]
u[W._SG] = Ui L8, Ev) = u(rstlf)uv) + {u[rs]i [Aulv + cycl:c}

% Cm + 3Cm — 3 COSB " + C,,,
The final results for d%,(6) are (v = 6): [Ches Ntz N+

(20

Case: B=0; [W]=[W]=1 PR . .
At this point it is instructive to write down the

d5(8) = a%.CH(cos 0), orthogonality properties of these functions. For the
a8 =T'(» + 3B)I(N + 1))I(N + v + 3B) B =0 and B =1} functions given above, one can
X224+ - (6B—24; (A7) definitely state the relations
Case: B=%;[W]=[W]=6 B =0:
N s | ’ Y ald
iﬁ(e) = Ay C'OS %G[CN+1 C:V s de(g) dM(e)(Sin G)v 46
d™(0) = a}, sin 30[Cy,, + Cyl. (18) ' .
Note the close similarity of these expressions with the — Syu2’T(N + DTy + D] ,
ones encountered® for SU(2) by putting » = 1. QN 4+ (N + »)
B =1
Case: B=§; [W]=[W1]1=21 s
When [R] = [R] = 6: f d% i (0) dif - (B)(sin 6)" d
N, — a2 2 7 — " 1
‘;x(g) a %‘, czos 36[ ezvv.yz BZC ”N+1 +C»NL _ Oyu(N + 29N + DTGy + HF
Nf)i( ) = \/2 abj’v:os% Sln% [ N+2 7 YN (171) N(ZN + 'V)F(N + ¥ + 1) *
d¥u(0) = aj, sin® 30[CY s + 2C3,, + CRL,
dN(0) = a%,[cos 0C,» — 2Cl,y + cos 6CY Unfortunately, for the B = % and B = 1 functions,

e — such simple orthogonality properties no longer
For [1_2] = [R'] = 3 we have instead exist®; there one really requires a full knowledge of the
do(0) = ay,[Chye — 208 0Chy + Cxl. (18))  U(6) ® U(6) invariant-group element and an exhaus-
Case: B = 1; [W] = [W'] = 56 tive study of a{l the.grou.p representations, which we
, have not examined in this paper. The general ortho-
When [R] = [R] = 10: normality conditions therefore remain a problem.
d33(0) = ajy, cos® $0[Ciyys ~ 3Cx4z + 3Chiy — CHl,
d{}(0) = /3a}, cos’ 40 sin 36
X [Chis — CRy2 — Cia + CHL
Jfﬁ(e) = \/3a}, cos }0 sin 40

ACKNOWLEDGMENT

I wish to thank Dr. M. Scadron for many pertinent
comments.

8 For example, in O(4), the basic representation functions

X [Crys + Crye — Cyya — Cyl, T = Ciml o8]
d%3(6) = afy sin® 0GR + 3CKa + 3K + ) O = 7Rl

satisfy more involved orthonormality conditions:

(0 = d§3(0) — —= 2 A (),
H H \/ -4 3 f dieo (9) aie’5(6) sin?0 df = Oreio G’
] ji—o?

0) = —d™3(0) + — d 9 19
é( )= %( )+ \/ %%( )- ( ) We may conjective that the U(y) @ U(y) functions satisfy similar
sorts of conditions with a summation over various multiplicity
5 See the Appendix to M. Jacob and G. C. Wick, Ann. Phys. labels that serve to distinguish between the less degenerate sets of
{N.Y.) 7, 404, (1959). states.
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The partition function of a one-dimensional system of particles with all interactions active is formulated
in terms of Ising ferromagnetic spin states. It is shown how the partition function for two- and three-
dimensional systems can be obtained from the one-dimensional one by restricting the number of bonds
per particle. After writing the partition function in matrix form, the operator of interest is diagonalized
and its trace expressed in the form of a convenient infinite series. The series is shown to be absolutely
convergent and its analytic properties are briefly investigated. It is then applied to one-, two-, and
three-dimensional systems with nearest-neighbor interactions. The validity of the model is established by
summing the one-dimensional series and comparing it with the known solution obtainable by other
methods. Two- and three-dimensional series are determined by algebraic techniques identical to the
one-dimensional series. These are seen to agree with the low-temperature expansions obtained by other
authors. The method of this article is seen to have the advantage of simplicity and uniformity regardless
of the dimension of the system. A subsequent article is devoted to the thermodynamics of the model.

1. INTRODUCTION

It is well known that it has not been possible as
yet to formulate a completely satisfactory molecular
theory of the liquid state which correctly portrays
phase transitions and remains valid in the transition
region. Basically, the difficulty lies in the high densi-
ties of liquids which approach those of solids, while
symmetries of thesolid state are lacking. Consequently,
in liquid theory one is forced to deal with a general
N-body problem without recourse to the simplifications
and approximations that are available in dealing
with solids and gases. Nor has it proved feasible thus
far to extend the cluster expansions and virial series
to the transition region itself and to liquids.2~* While
these series converge absolutely and generally quite
rapidly for gases, it has not been possible to extend
these analytically to other phase regions. In view of
the work of Yang and Lee, such an extension may
well be impossible on theoretical grounds,® since, in
the thermodynamic limit, it seems probable that the
logarithm of the partition function is a lacunary
function® with a solid wall of singularities surrounding
the origin in the complex y plane (y = activity). Not

* Based upon a dissertation submitted in partial fulfillment of the
Ph.D. degree, University of Missouri at Rolla (1968).

t Work supported in part by a NASA Predoctoral Traineeship.

1 Present address: Department of Mathematics, University of
Ottawa, Ottawa, Ontario.
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surprisingly, there have been very few successful
attempts to find an exact mathematical representation
of a system exhibiting a phase transition. Some
typical exceptions are the two-dimensional Ising
model,”® the ideal Bose gas,® the spherical Ising
model,®1° and the Kac-Baker model.#11-13 All but
two of these deal with models in one and two dimen-
sions. While these do not correspond to any real
system except perhaps a surface film or filament, they
have the decisive advantage of being mathematically
tractable. One hopes, then, that some of the con-
clusions and properties of these models may generalize
to three dimensions.

We address ourselves in this series of two articles to
the study of a simple one-dimensional model. Van
Hove has shown that one-dimensional systems with
finite-range pairwise potentials with a cutoff will
show no phase transition.}* Accordingly, the inter-
action potential chosen for the model investigated
here has an infinite range with a hard-rod repulsive
core and possesses, as we shall see, variable range
and depth parameters. In these respects the model
resembles the Kac-Baker one, but it differs from the
latter in the analysis and technique of solution.
Moreover, the potential is a modified Lennard-Jones
one, rather than the exponential interaction potential
used by Kac and Baker. The system investigated here
is a cell model of a simple fluid in which the cells have

? L. Onsager, Phys. Rev., 65, 117 (1944).

® B. Kaufman, Phys. Rev., 76, 1232 (1949).

9 T, H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952).

10 H. A. Gersch, Phys. Fluids 6, 599 (1963).

11 M, Kac, Phys. Fluids 2, 8 (1959).

12 G, Baker, Phys. Rev. 122, 1477 (1961).

13 M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, J. Math. Phys. 5,

60 (1964).
141, Van Hove, Physica, 15, 951 (1949); 16, 137 (1950).

1940



CELL MODEL OF A FLUID. I

the purpose of specifying the instantaneous location
of the particles with an uncertainty equal to the cell
parameter. It is therefore not a lattice gas in the usual
sense, since the particles are not fixed at their lattice
sites but are free to move throughout the system. We
shall find that, by selecting the cell parameter equal to
the particle’s exclusion length, we are able to separate
completely the repulsive-core potential from the
attractive tail. This choice is equivalent to introducing
an exclusion principle into the system which limits
cell occupancy to one particle or none. It is therefore
convenient to designate such occupancy by means of
Ising spin indices. We shall see, however, that the
spinor-algebraic approach which proved so successful
in the two-dimensional Ising model appears not to
lead to a solution in the present instance. This is
because the infinite-range potential causes every
particle to interact with every other one, so that in
the thermodynamic limit the coordination number
becomes infinite. It is possible, however, to linearize
the partition function by a Fourier-type transform,
thereby obtaining a solution of the problem in the
form of an infinite series which converges absolutely
for all finite values of the activity. By applying the
solution to a nearest-neighbor potential, one can
confirm the validity of the approach, since the series
can then be summed and compared with the known
closed-form solution. This calculation at the same
time lays the ground work for obtaining low-tempera-
ture series in two and three dimensions by identical
algebraic techniques. We shall prove that, in order to
obtain such series, one need only modify the inter-
action potential in a suitable way. It will be established
that by this simple stratagem two- and three-dimen-
sional systems with more limited interactions can be
generated from the basic one-dimensional model.
While it is not necessary to restrict the interaction to
nearest neighbors in these higher-dimensional systems,
it is essential that the coordination number remain
small so that the approach be mathematically tractable.
The resulting series will be seen to agree completely
with those obtained by other authors.

The thermodynamics of this model will be explored
in the second article of this series. We shall find there
that the behavior is surprisingly realistic and that the
system undergoes a change of phase under certain
conditions.

2. MATHEMATICAL FORMULATION OF THE
PROBLEM

A. One-Dimensional System

The basic system considered is a one-dimensional
fluid in which every particle interacts with every other

1941

one. Extension to higher dimensions will be con-
sidered later. Let the particles be distributed on a line
of length L, bent to form a ring. All distance mea-
surements then occur mod. N. The periodic
boundary condition is introduced for mathematical
convenience only; it becomes insignificant in the
thermodynamic limit. We divide the line into N equal
segments or cells, each of length / = L/N. Cells may
be either occupied or empty, particles being free to
move from one cell to the next. The particles are
assumed to be completely symmetric and to interact
with a modified Lennard—-Jones potential of the form

[t (x < 1/2),

Vv —_
V=g ez 1),

(@A)
where x is the separation between particles, { is the
potential depth, and y is a parameter fixing the range
of interaction. The hard-core repulsive interaction is
most conveniently accounted for by letting the
cell-size / coincide with the exclusion length of the
particle and restricting cell occupation numbers to
zero and one. All other choices of / can be shown to be
trivial variations of this scheme. The interaction
potential in terms of the present discrete model is
then

¢s = %(Vs + VN—s)’

V={o (s =0)
*T=gs (5% 0)

where s is the distance between the two particles of
interest measured in units of the cell parameter / from
cell center to cell center. The ¢ potential is introduced
to symmetrize the interaction around the ring for
finite systems. The hard-core repulsive potential
having been built into the model by the above scheme,
the potential of the zeroth cell can be chosen arbitrarily
for mathematical convenience. The ¢ potential satisfies
the following symmetry conditions:

b = by = bsn-

Letting n, represent the occupation number of the
kth cell, the energy of the system is given by

(gln, = n) (2.4)

}mwwx 2.2)

2.3)

N

1 2 N
H = 2P3+z ann1‘+s¢s,
2m =1

r=1 s=1
where it is assumed that there are n particles in the
system and that the total interaction energy of the
system can be obtained by summing all pair-wise
interactions. “Surface” terms (i.e., interactions with

the boundary) do not occur by virtue of the periodic
boundary conditions.
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Now let the occupation number 7, be replaced by a
cell occupation index ¢, = 2n, — 1. The configura-
tional part of the system energy can then be written as

N N
U =42 31+ 0)1 + 0,9,

r=1 g=1

N N N
el GARE PIEALEE Drp L INED)
r=1 r=1 s=1
where ® =3V 4., and the primed summation
implies the restriction J¥ ¢, =2n — N.
The partition function appropriate for a system of
n particles is then

Qn=1/(n!h")fdx1---fdxnfdpl'--fdpn

X exp {—BH(P1, " Pui X1, * * X,)}

= 1/(n! AMZ, (B = 1/kT), (2.6)

where 4 = (Bh2[2mm)} is the thermal wave length and
results from the evaluation of the momentum inte-
grals.? A straightforward analysis shows that for large
systems the configurational part of the partition
function takes the form

z, =fdx1 - fd exp {—BU(x1, > X}

=l I"Sexp {(—pUor, ", 0n)},  (27)
{9

where
1

z =dl§1—’1‘ - Z, )

(> oxy=—1

The partition function is then
Q. = (I/A)" exp {—pND/[4}
x Zoxp|—f14(3 00py + 205 o) 28)
(&2 7,8 r

Since the present investigation is concerned with
systems subject to phase transitions, i.e., with systems
in which the number of particles is not constant, it is
preferable to deal with a grand canonical partition
function. This also eliminates the awkward restriction
on the sum of o’s. One then has

N
Oy = Z_OE”Q,,, where & =exp {fg} (2.9)

and g is the chemical potential per particle. Writing
&l/A = exp {fu} and using the identity

N
n=4%Y(1+oa),

R. G. TROSS AND L. H. LUND

we obtain
N N N
Oy=AySewp(S Soo.0,+v3 a,}, (2.10)
a r=1 s=1 r=1
where
1 1
2=2 3%, Ay=exp {N( — O)},
{a} o1=—1 ay=—1

N
0, = _iﬂ‘}ss’ C =§161’

and » = }$(u — ®). The remainder of the investigation
will use this form of the partition function as its point
of departure. Each term in this sum of 2V terms
represents one possible configuration or microstate
of the system. Since the particles comprising the fluid
are indistinguishable, the probability of finding the
system in a state of n observable particles is

W) = ANOR 3 exp {3 olet, b, + » Tl 1D
z 8 r
where o} represents the ith configuration of the rth
cell and Y implies a sum over all configurations
consistent with the macroscopic state of the system.
It is worthwhile noting that the cell structure of the
system does not imply any spurious symmetry or lattice
structure. The cells are used merely as a convenient
mathematical artifice to establish a discrete space
grid and fix the instantaneous position of the particles.

B. Multi-Dimensional Systems

The partition function of two- and three-dimen-
sional systems with a limited number of bonds per
particles is readily obtained from the preceding
analysis of a one-dimensional system with all inter-
actions active. Focussing attention first on a square
array with nearest neighbor interactions only, we find
that we can construct such a configuration by winding
the one-dimensional chain around a three-dimensional
torus (Fig. 1) and letting all interactions vanish except
those between nearest neighbors in the chain and those
between nearest-neighbor cells in adjacent rows.
Figure 2 is a plane projection of such a configuration.

Fic. 1. Toroidal topology of
2-dimensional model.
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FIG. 2. Two-dimensional model in plane projection.

Thus we obtain from Eq. (2.10) the partition function
for a two-dimensional square array with m cells per
row simply by use of the following potential:

—& r=Lml \od Wy,

V.= 0 (r#1,m)

(2.12)

with ¢, given by Eq. (2.3) as before. It is obvious that
this potential introduces certain spurious interactions.
In Fig. 2 these are shown by broken lines. While such
interactions are significant in finite models, they
become negligible in the thermodynamic limit. One
can proceed in exactly the same way to obtain the
partition function of a three-dimensional system. A
typical square array of 64 cells is shown in Fig. 3.
For a cubic array of N cells with m cells per row, k
cells per layer, the appropriate nearest-neighbor

F1G. 3. Three-dimensional array.
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r b4 r+1
Fig. 4. Anisotropic nearest-neigh- v,
bor and next-nearest-neighbor inter- % 3
action.
r+m A rem+l
interaction potential is
—{ (r=1,mk
V, = (r="1,m,k (Mod. N). (2.13)
0 (r#1,mk)

Extension of the one-dimensional system partition
function to higher dimensions is not restricted to
nearest-neighbor interactions. More complicated inter-
actions can also be accommodated, provided only
that the number of bonds per cell remains finite and
sufficiently small to make the analysis feasible mathe-
matically. An element of a typical anisotropic square
array with nearest-neighbor and next-nearest-neighbor
interactions is shown in Fig. 4. The partition function
of such a system can be obtained from Eq. (2.10) by
means of the following potential:

—ll (r= 1)!
—Cz (r=m—1am+1):
V,= 4 (r=m), (Mod. N).
0 r#l,m—1,mm+1),
(2.14)

In two- and three-dimensional systems, just as in one
dimension, the cell structure serves merely as a space
grid for the purpose of specifying the instantaneous
location of the particles with an uncertainty equal to
the cell dimension. To take account of the change
in the momentum integrals in multidimensional sys-
tems, the parameter A must, of course, be redefined
as follows: A = (Bh*2mm)¥2, where d is the dimen-
sionality of the system.

C. Multiple Cell Occupancy
One can readily extend the model to take account
of cell occupancies other than 0 and 1, provided that
intermediate occupancies are not considered. If, for
instance, one limits cell occupancy to O or m particles,
the partition function takes the same form as Eg.
(2.10) if one makes the following definitions:

¢, = average interaction potential of
particles in the same cell,

N-1
'_%ﬂmz‘ﬁs; = z Br’

= ifmlu + (1 + m)g, — m®],
exp {N(» — O)}.

Ay



1944

For the simple fluid with which this investigation is
concerned, such a modification is undesirable since the
cell size would have to be increased, thus reducing the
fineness of the space grid. In addition, the hard-core
repulsive potential could not be satisfied in this case.

D. Ferromagnetic Systems

The partition function in (2.10) is identical with that
of an Ising ferromagnet.®'> Comparison of the
definitions of the various parameters for the fluid and
ferromagnet yields the well-known isomorphisms
noted by Yang and Lee® and conveniently summarized
by Huang.? The analysis can be broadened consider-
ably, but this will not be done in the present context.

3. OPERATOR FORMULATION

Let u; be a state vector representing the state of the
ith cell and Z be an operator defined as follows:

3.1

We define now a vector y* representing the ath
configuration of the system:

Zu; = 044;.

Y= |ul, ps, A (3.2)

A convenient representation of * is a 2V-dimensional
one in which it is the direct product of the N two-
dimensional u-spinors. A corresponding operator Z,
can be defined in the same space as follows:

(3.3)
In the 2¥-dimensional representation the operator
Z, takes the form

Z,=101® - QI0Ze®lI® &I,

T 3.4)
kth factor

Zyy* = oy

where the I's are the two-dimensional identity. It is easy
to show that in terms of these operators the partition
function, Eq. (2.10), can be written as

2N
Oy = Ay 3 y*'Sy* = ANT(S), (3.5)
a=1

where
S =55,

N N N
S, = H Sy = 1—.[ exp {zzrzr+ses}’
r=1 r=1 s=1
N N
Sy = [1 Sz = T1 exp {vZ,}.
r=1 r=1

The partition functions for small systems are readily
computed from Eq. (3.5). Such partition functions

15§, Fluegge, Handbuch der Physik (Springer-Verlag, Berlin,
1962), Vol. XIII.
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are tabulated in Appendix A. In attempting a closed-
form solution of the problem it seems natural to
follow the approach of Kaufman and Onsager,”®
setting S, = 1 initially. It is obvious that this will not
be easy since the preceding analysis shows that the
general one-dimensional system considered here con-
tains the unsolved three-dimensional Ising model as a
particular subset. The analysis is outlined in Appendix
B and shows that the operator S, is not the spin
representative of commuting rotations, as it is for a
two-dimensional square lattice, but is rather part of
a tensor transformation. It does not appear feasible
therefore to determine the eigenvalues of S in this way.

4. EVALUATION OF THE PARTITION
FUNCTION

In the partition function, Eq. (3.5), consider the
exponent
N N N
U=y 32,2, .0, +v>Z,.
r=1s=1 r=1
This can be written in the form U= Y'®Y + @,
where Y=0— 0§, {=1Z1,Zy, ", Zy), (g Is a
constant vector yet to be determined, ®, is a scalar,
also as yet undetermined, and @ is a doubly-cyclic
matrix!®:

0 6, 6, 6, --- 0, 6, 6,

6, 0 0, 6, --- 6, 6, 0,
o=1 N B

6, 6, 6, 6, -+ 6, 6, 0

@.1)

ie, ®; =0, (we must remember that 6y _, = 0,).
One finds readily that ¥V, the kth normalized eigen-
vector of ®, is given by ¥V, = 1/Ntwy, ,,, where
wy, = exp {2nkli/N}, while the kth eigenvalue is

Ay =§cos [(27/N)kr19,.

The A’s are thus the finite Fourier cosine transforms of
the 6 potentials. The matrix @ being symmetric, its
eigenvectors form, of course, an orthonormal set.
We now make the following identifications:

; N N ' s y
g q)c =z lzrzrl—ses, C q)EO + COQC = _’VZIZT’

r=1s=
4.2)
T
(I)o = - Coq)co .
18 The symbols @, Dy, {, {,, and V; have the meaning defined here

only in the present section and must not be confused with the
corresponding symbols used elsewhere in this paper.
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One shows easily that {, = aVy,, while
= —N¥y22,.
The partition function then takes the form

Ql\" == B‘V TI' [exp {YT(I) Y},
‘BAV = AAY eXp {—022‘;\?}]. (4.3)

The quadratic form Y'®Y can be diagonalized in the
usual way by letting ¥ = S7, where Sisan N X N
matrix whose columns are the eigenvectors of ®.
Then we have that

1, < 2
Y oYy =21i77r| Zr

Remembering that the #’s are operators, we determine
their eigenvalues from the following equation:

1 N
ﬂrw“ = [I/Ngzlw—r(s—l)zs - aéT.N:l wa
S=

4 N
= |:1/N le—r(sA)U: - aar,N:\ 'P“
A

The partition function can then be written as follows:

4.4)

0 = By Te [exp | il 1)
~ 5 3 #(Cexp | i b 49

The sum in the last equation is over all macroscopic
configurations, g(C,) being the degeneracy of the ith
such configuration, i.e., the number of microstates
corresponding to the ith macrostates. It proves most
convenient to choose as the macroscopic configurations
appearing in the sum the number of particles (») in the
system. The sum can then be carried out in terms of
successive deviations from the perfectly ordered state.
One readily shows that [y,|? is given by

4/Nz zcos [27/Nr(q; — q;)] (r # N),

i=1j=1

()| =

(N + aN?t — 2n)*/N (r = N),

(4.6)

where it was assumed that the occupied cells are cells
g, through g,. One finds that this expression is
invariant to the substitution n — N — n; ie., Eq.
(4.6) is the same for a system of n occupied or n
empty cells, |x, (M| = |x,(N — n)]%. Before the sum
in Eq. (4.5) can be carried out, a consistency con-
dition must be satisfied. This results from the fact that

t y
WY =S = N,
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The consistency condition here is
x'y = N — 4an/Nt + 2aNt + a2

One can give this condition a geometrical inter-
pretation. The original sum in the partition function
in terms of the ¢’s can be thought of as a sum over the
corners of an N-dimensional cube having sides two
units in length. The transformation used above to
diagonalize the quadratic form Y'®Y rotates the
coordinate system and translates the origin. The
consistency condition then states that distances must
remain invariant under this transformation. One
readily verifies that every term in the expansion of
Eq. (4.5) satisfies this condition. Carrying out the
sum in (4.5) in terms of successive deviations from the
perfectly ordered state, after some simplification and
rearrangement one obtains

[N/2]

Qy=2Cy z exp {Nv} (fluid),

exp{NO} (ferromagnet),
4.7

T, = cosh [(N - 2?!)1’])‘""/2 11 — 30, x/0)s

Ly —(1/n')2 Z an(ar—qs)’

q1=1 an=1 r—l s=1

1\=

x, =exp {80,}, X = I—I1 X, .

The primed sums indicate that no index may be
repeated in any one term, while [m] means “nearest
integer equal to or less than m.”

5. CONVERGENCE AND ANALYTICITY

A. Convergence

Aslong as Nis finite, the series in Eq. (4.7) obviously
converges, so that the question of convergence is of
interest only in the thermodynamic limit, ie., as
N — o0. Convergence of the series in that limit depends
on the sign of the exponent

4[21 zle(q,—q,) - n®:|
n on N
- 4[;1 300,00 ngler] (5.1)

Remembering that in the limit ¥ — oo symmetries
due to boundary conditions disappear, we find that
none of the 0’s in the double sum occur with a
multiplicity greater than (n — 1). Hence for any
attractive interaction with hard core (not necessarily a
Lennard-Jones potential) the expression in (5.1) is
less than zero (since 6, > 0, Vr). For example, for a
potential of constant depth e, expression (5.1) is
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4n(n — N)e < 0, since € > 0 and 0 < n < N/2. Thus
we have

[N/2]
0 < cosh (Nv) + > 1/n!cosh [(N — 2n)]

n=1

3 S350

=1 an=1 r=1 g=1

—Qs n

@]}(1 — 1,0

N
<texp{Nv}3 {N} exp {—2nv} = 2% cosh? ».
"n=0 N
(5.2)
Hence
0 < Qn(r, 0) < 2VCy cosh? v
{(1 + exp {20}V (fluid), 5.3)
2exp {NO} cosh" » (ferromagnet).

Consequently,
0 < lim Q¥ < {(1 + exp {2v})  (fluid),
2exp {©®} cosh» (ferromagnet).
(5.4)

The series in Eq. (4.7) therefore has the following
properties:

(D) lim Q¥ exists;

N—x

(2) ¢ = lim (1/N) In (Qyp) exists;
N—©

N

(3) The series representing these functions are
absolutely and uniformly convergent for all finite
values of the parameter ».

B. Analyticity

The partition function of Eq. (4.7) can be written
in the form

[N/2]
Qy =2Cy 2 a,cosh[(N — 2np)(1 — 10, n/2)

n=0
PO, y) (<D
=Cyl s VO > (5.5)
N{y”/ PO,y (y> D),

where

N
= Eany", y = exp {2v},

@y = ()X 3 3 TT T 5o

=1 an=1 r=1

PN(G), }’)

It is readily shown that the coefficients have the
following properties:

* N
a, = a,, a, < s Ay = 0N_p,

a, 2 09 Ay = 1. (56)

Since Cyy = y"'2 for a fluid, we see that the partition
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function is analytic throughout the entire finite com-
plex y plane, but has a pole of order N at the ideal
point at infinity. This agrees with physical reasoning,
since the point y = 0 corresponds to a system of zero
density, while y — oo represents a system in which
every cell is filled, i.e., of density p = 1, where p is
defined as'’

p = (m/N. (5.7

Conversely, a ferromagnet has poles of order N/2 at
the origin and at infinity, corresponding to a diverging
free energy at these points. This behavior is again what
one would expect on physical grounds since these
points represent an infinitely large external magnetic
field aligned with the negative and positive z axis,
respectively.

In view of the connection established by Yang and
Lee between phase changes and zeros of the partition
function,® the distribution of these zeros is of partic-
ular interest. One concludes from Eq. (5.5) that the
zeros of Qy coincide with those of the polynomial
Py . It is apparent from Eq. (5.5) and the properties
of the coefficients in Eq. (5.6) that the roots occur in
complex conjugate pairs and inverse pairs; i.e., if
Yi 18 such a root, then y¥, yy1, and (p¥)~1 are roots
also. Furthermore, no roots can lie on the positive
real axis for any finite N. Using Yang and Lee’s result
that |y,| < 1, it follows at once that all roots must lie
on the unit circle in the complex y plane. Furthermore,
if N is odd, at least one of the roots must lie at
y=—L

The analysis can be carried considerably further;
this will be done in a later publication.

6. NEAREST-NEIGHBOR APPROXIMATIONS

In this section the series form of the partition
function in Eq. (4.7) will be applied to one-, two-, and
three-dimensional systems with nearest-neighbor inter-
actions. In the one-dimensional case the solution so
obtained can be checked against the known closed-
form solution to establish the validity of the present
approach and to develop the algebraic machinery for
two- and three-dimensional low-temperature series
approximations.

17 1t will be shown in the second of this series [J. Math. Phys. 9,
1957 (1968), following paper] that the density p is given by p =
($)X1 + Ty/NT), where

N/2
[Z ](N — 2n) - sinh [(N — 2n] X 21,(1 — §0n,572)

n=0
and
[N/2]
T= 3 cosh [(N — 2m] - X—7/21,(1 — 40 w/2).
n=0
Hence fory— —o0 or y =0, p = 0; while forv -+ 0 ory —
+ 0, p=1,
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A. One-Dimensional System

The potential to be used is
_C (r = 1)3
Ve= ‘o (r # 1).
Then

Xr = eXxp {46(61‘,1 + ar,N—l)} =1 + aAn (6'2)
where

6.1)

€=201=11§/3C’ a=X1_'1,
A, =90, + 6, y_1 (modulo N).

We can now evaluate the partition function term by
term. Thus [cf. Eq. (4.7)]

N
ty=1, ;=3 -1=N, (6.3)
q=1

ty = $24,0,%12 = 3{Zaye,X12 — Zgﬂxm}
= %{quqz(l + ald;p) — N}
= }(N? + 2aN — N)
= (N/2)(N + 2x; — 3),

where the following abbreviated notation was used:

N N
qu...qn= z Z s X5 = xq,-—q,, Aii=Aai—w

=1 =1
(6.4)
and

Z],Iﬂ,gx12 = X 0,X1200, 4, -
For the next term in the expansion we find
ts = 1/(3!) Zq 0p0.%12X13% 23
= 1/(3!) Zaq00,(1 + aA1)(1 + alyy) * (1 + algy)
X (1 — 8g,,0)(1 — 8g,,6)(1 — bey0,)
= 1/(3!) {Zq,00, — 3ayag0, + 22?:E7}(1 + alyy)

X (1 + aAp)(1 + ady)
= (N/3)[6x] + 6(N — 4)x, + (N — 4)(N — 5)].
(6.5)
In arriving at this result the following was used:

zalq,a,AmAlaAza =0, (6-6)

which follows directly if one notes that all d-function
products occurring in this sum are incompatible. If
one associates with each A function the corresponding
Boltzmann factor x, , or, equivalently, the correspond-
ing a factor, one can think of the function A;; as a
bond between cells g; and g;. From that point of view,
which will be useful in evaluating higher terms, one
can say that any triangular configuration of bonds
makes a vanishing contribution to the partition
function. This result is readily generalized: Any
configuration of bonds which includes a closed
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multilateral with an odd number of sides makes a
vanishing contribution to the partition function.
In expanding the primed sums in ¢,, one obtains

ty=(1/ 4'-)Z:zlq,aaqaxllesxmx23x24x34
= (1/4!){Ea1a2a,a4 - 62alaza304 + Szala.zaaq,
ed

+ 32?&% — 6X4,0,050, } X12X 15X 14X 23X 24
4

= (1/4!) Ealqzaah I—Il a+ aArs)
r=

s=1
(r<s)

- 62"1“2%(1 + aA12)2(1 + aAls)z . (1 + aA23)
+ 2alaz[g(l + aA12)3 + 3(1 + aA12)4] - 6N .

6.7)
The sums are easily evaluated except for the first one
where the algebra becomes somewhat tedious. It can
be simplified considerably by determining the number
of ways of distributing one, two,...,six bonds
among four cells. In this way, for the entire term one
has
ty = (N/4D[24x3 + 36(N — 5)x?
+ 12(N — 5)(N — 6)x; + (N — 5)(N — 6)
x (N—T7] (6.8)

In evaluating #; the following result is helpful:

m m k

S(Me =33 (7) ()=t
r=1\k w=1-0 \k/ \l (6.9)
Expansion of the primed sums yields

5
t5 = 1/(5')21’11 re0 Qs ];]I; xrs

8=1
(r<s)

= 1/(SNZq,...q; — IOZ?ﬂqaq‘qﬁ

+ 152.3_12.;,_3_,,‘,,,5 + ZOEQ&%% - 202'{_“1’13&

5
- 30201(1,«,0‘05 + 24Eala,asa405} H Xrs
—_ e—— 1 =1

s=1
(r<s)
5

+ Qg H(l + aArs)

ry8=1
(r<s)

- IOqungm 1+ aA12)2(1 + aly,)*

X (1 4 al)* (1 + alp)(1 + adp)(1 + alyy)
+ Zalaza,[ls(l + ‘1A12)4 1+ aA13)2(1 + aA23)2
+ 20(1 + ad,)°(1 + alR)’(1 + aly)]

— Z0,0,[20(1 + aA;5)* + 30(1 + alAyp)'] + 24N}

= 1/(5D[Z,, ..

(6.10)
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{b) Typical Non-Vanishing
Configurations

The sums occurring here are identical with those
encountered in previous terms and are evaluated in
the same way except for the first one. In carrying out
the first sum one observes that it can be decomposed
into ten equivalent single-bond terms, 45 equivalent
two-bond terms, 120 triple-bond terms of which ten
include triangular bond configurations and therefore
vanish, etc. Figure 5 shows some typical vanishing
and nonvanishing bond configurations occurring in
this sum. Reasoning in this way, one finds

5

Eamzqaam; ]._.[ (1 + aArs)

s—=1
(r <s)

= I, ... {1 + 10aA;, + 45a%A 5,5

+ 1108°A128158 14 + 15a°A15825A54A:4

+ 125a*A15A55A348 45 + 606°A 1585344,

X AArs + 10a°AA,A 580054 A 5 + zero terms}
= N[N* 4+ 20N%x, — 1) + 180N%(x} — 2x, + 1)

+ 10N(9x] + 52x3 — 210x? + 228x, — 79)

+ 20(5x% + 6x§ — 5xi — 140x3

+ 315x% — 250x, + 69]. (6.11)
For the entire term one finds
ts = (N/5D[120x] + 240(N — 6)x3
+ 120(N — 6)(N — T)x?
+ 20(N — 6)(N — T)(N — 8)x,
+ (N — 6)(N — T)(N — 8)(N —9)]. (6.12)

Combining these results, for the one-dimensional
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partition function correct to this term one has

Qn = 2Cy{cosh (N») + Nx7!cosh [(N — 2)]
+ (N/2)x7%(2x, + N — 3) cosh [(N — 4)»]
+ (N/3)x°[6xF + 6(N — 4)x,
+ (N — 4)(N — 5)] cosh [(N — 6)»]
+ (NJADXT 2453 + 36(N — 5)x2
+ 12(N — 5)(N — 6)x,
+ (N = S)(N — 6)(N — 7)] cosh [(N — 8)»]
+ (N/5Dx[120x} + 240(N — 6)x
+ 120(N — 6)(N — 7)x2
+ 20(N — 6)(N — T)(N — 8)x,
+ (N — 6)(N — T)(N — 8)}(N - 9)]

x cosh [(N — 10)»] + - - -}. (6.13)

Equation (6.13) suggests strongly that one should be
able to write the one-dimensional partition function in
the following form:

[N/2]
Oy =2Cy 2 x1"t,cosh [(N — 2npw(1 — 46, n/o),
n=0
(6.14)
where
1 (n =0),
t, = n
n N n\(N—n—1\ , .
— T 0).
nkgl(k)( k—1 )xl (n#0)

One can re-express ¢, in the form
NIM(N—n—-1

t,=— 1+ a)"*
2 e oo
N
n

St in\ (N—n—1\(n—k\ ,
0).
l=0k§1(k)( k—1 )( l )a (n #0)
(6.15)
Conversely, from Eqs. (4.7) and (6.2) one has that

t=(UnVE, ... TI (L + ad,) (n%0). (6.16)

r,8=1

(r<s)
If Eq. (6.14)is to be correct, then these two expressions
for ¢, must be equal. While an explicit proof of this
equality does not seem feasible, the coefficients of a
were determined from these two expressions for a
wide range of N and n by computer. The equality of
the coefficients in all cases examined presents per-
suasive evidence that the formulation of the partition
function in Eq. (6.14) is in fact correct.

It is possible to carry out the sum in Eq. (6.14),
thus obtaining a closed-form solution for the one-
dimensional nearest-neighbor model which agrees
with the solution found by other methods. This analy-
sis is carried out in Appendix C, where it is shown that
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the partition function of such a system has the form

Oy = Cycosh™ (){(1 + (1 + w)H¥
+(1 -+ )b,
_ [exp {Nv} (fluid),
v {exp {Ne} (ferromagnet),

(6.17)

w = (x71 — 1) sech® v,

Agreement with the known solution of this model
establishes the validity of the present approach as a
preliminary to applying this method to systems of
higher dimensions.®

B. Multi-Dimensional Systems

Considering now two- and three-dimensional
systems of N cells, the appropriate potentials are those
of Eqs. (2.12) and (2.13), respectively. The definitions
of Eq. (6.2) then change as follows:

261 == 20m = 20N_1 = 202\7—11',
(2-dim. system),

—_ 1 —
«=il= 20, =20, = 20, = 20,_; = 205 _,,
= 20y 4 (3-dim. system),
(6.18)
By Brm + Orxs + Oy
A (2-dim. system),

r

67.1 + 6r,m + 5r.k + ar,N—l + 6r,N—m
+ 6, n_i (3-dim. system).

The change in definition of the A functions reflects,
of course, the change in coordination number of the
system. One can now proceed to determine the terms
in the series expansion of the partition function
algebraically in exactly the same way as in the one-
dimensional case. The expansions of the primed sums
occurring in 7, remain unchanged, as do the coefficients
(expressed in series form) of the various powers of a.
Indeed, there are only two changes in this entire
process. One is the changed value of X defined in
Eq. (4.7):

. N x? (1-dim. system),
X =T[x =110 +ab) = x!

7 r=1

(2-dim. system),
x?  (3-dim. system).
(6.19)

Secondly, the value of sums of A-function products
changes because of the changed definition of A, . This
causes a change in the actual numerical value of the
coefficients of a. Table I shows the values of typical
such sums. These changes are sufficient, of course,

18 Further proof of the validity of the model appears in the second
article, where it is shown that for a hard-rod potential the present
solution reduces correctly to the Tonks equation of state.
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to modify the actual terms in the series materially.
As a typical example, one finds that the fourth term
in the series expansion is given by
T, = cosh [(N — 8)v]ta(1 — £84 n/2)

x7?  (1-dim. system),

8 (2-dim. system), (6.20)

x7** (3-dim. system),
Iy = 1/(4!)251%03(1,

4
1(1 + aArs) = {1/(4!)2‘1102‘13%

(r<s)

x {xT

- 62@11(12(13(14 + 8 Ealq2q3q4 + 3 Ealqzaaq4
| S— 1 bd b

4

T1A +ad,)

r,5=1
(r<s)

- 62(1,(12-1304}
1
= 1/(4){Z0 00050, [1 + 6al;p + 15a7AA,,
+ 16a3A12A13A14 + 40°ApA RN
+ 12‘14A12A13A14A34 + 3a"A1508050344,4]
- 62(11(1243[1 + (3 + 2a)ad,,
+ @4 +4a+ a2)a3A12A13A23]
+ g q,[11 + (36 + 42a + 20a® 4 3a®)
X al,] — 6N},
[24x3 4+ 36(N — 5)x} + 12(N — 5)(N — 6)x,
+ (N = 5)(N —6)(N —T7)]
(1-dim. system),
[24x} 4+ 432x3 + 24(8N — 85)x?
+ 24(N? — 21N + 18)x; + N® — 30N?
+ 323N — 1254] (2-dim. system),
[72x% + 1992x3 + 36(13N — 219)x?
+ 36(N? — 31N + 270)x, + N® — 42N?
+ 659N — 3906] (3-dim. system).
Structuring the other terms of the partition function
from the one-dimensional one in the same way, one
obtains for the two-dimensional series
Qn = 2Cy{cosh (Nv) + Nx7%cosh [(N — 2)»]
+ (N/2D)x7'[4x, + (N — 5)] cosh [(N — 4)v]
+ (N/3Dx7%[36x% + 12(N — 8)x,
+ N2 — 15N + 62] cosh [(N — 6)v]
+ (N/4Dx78[24x] + 432x% 4 24(8N — 85)x?
+ 24(N? — 21N + 18)x; + N®
— 30N? + 323N — 1254] cosh [(N — 8]
+ (N/5)x7°[960x; + 120(N + 43)x}
+ 1200(3N — 40)x3
+ 120(5N* — 132N + 926)x?
+ 40(N® — 39N? 4 536N — 2616)x,
+ N* — 50N® 4 995N* — 9370N 4 35424]
% cosh [(N — 10)»] + - - -}. (6.21)

2=
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TasLE 1. Sums of A-function products for systems of various dimensions.

Value of sums

Reference figure Sums of A functions

1-Dim. 2-Dim. 3-Dim.

system system system
— Zor0Br 2N 4N 6N
/\ DTN, PPV, O 4N 16N 36N
A D Y WY, Y VN 0 0 0
R DX S, SPY. VPYA VY 8N 64N 216N
L—_I DTN, PPV, PoY. PO, o7 6N 36N 90N
O D RN VOV, P9V, P9V VP74 O T 0 0 0
@ 2 asaaaaas 1214158258 50 Ags 10N 100N 318N

For the corresponding three-dimensional series one
has
Qn = 2Cy{cosh (Nv) + Nxi®cosh [(N — 2)»]
+ (N[2)x7°[6x, + (N — T)] cosh [(N — 4)]
+ (N/3D)x7°[90x3 + 18(N — 12)x,
+ N? — 21N + 128] cosh [(N — 6)»]
+ (N/4Dx7%[72x] + 1992x%
+ 36(13N — 219)x} + 36(N® — 31N + 270)x,
+ N® — 42N? 4 659N — 3906]cosh [(N — 8)v]
+ (N/5D)x*[5760x5 + 120(3N + 426)x}
+ 480(32N — 701)x}
+ 360(20N* — 163N + 1844)x}
+ 60(N® — 57N? + 1190N — 9216)x, + N*
— T0N® + 2015N% — 28490N + 169744]

x cosh [(N — 10y] + - - -}. (6.22)

Since one wishes eventually to go to the thermo-
dynamic limit, it is more useful to work with a series
expansion of e? = QYV where ¢ is Kramer’s grand
potential.* Using a method due to Domb,* one
obtains the following series for a two-dimensional
system from Eq. (6.21):

ONY = CYMyH1 + x®y + 20° — x)?
+ 2(3x7* — Tx® + 4x7%)°
+ (x7* 4 18x7° — 77x7°% + 98x77 — 40x7%)y,
+ (8x7° + 44x7® — 370x77 + 799x1®
~ 706x7° + 225x7%y° + - -} (6.23)

For a three-dimensional system from Eq. (6.22) in the

12 D, ter Haar, Elements of Statistical Mechanics (Holt, Rinehart
and Winston, New York, 1964).
20 C, Domb, Adv. Phys. 9, 149 (1960).

same way one has

QYN = C¥My A1 + 1% + 3(5° — X7
+ 3(5x77 — 11x7® + 6x7%)y°
+ (3x7® 4 83x7® — 309x°
+ 360x;™ — 137x7%))"
+ (48x710 + 429%™ — 2676x71% + 5055x7°
— 4041x7™ + 1185x7%))y° + - - -} (6.24)
These series are valid for y < 1. Corresponding series
for y > 1 can be obtained by the simple transforma-
tion of Eq. (5.5). It is also possible to obtain from (6.21)
or (6.22) a series for the grand potential. Thus, for the
three-dimensional system one has
q = pp’
=A1,im (1/N)In Qy

=147y + (37" — $x7°)°

+ (15%7 — 36x7° + 21§x7°)y°

+ (3x® + 83x7° — 3283x7Y

+ 405x7™t — 1623x71%)y*

+ (48x7™ + 426x7™ — 2804x7"? 4 5532x7 1

+ 4608x7™ + 14063x7%))° + - - - (6.25)
As mentioned in Sec. 4, these series represent succes-
sive deviations from the perfectly ordered state and
hence are in fact low-temperature expansions. Com-
parison with similar series computed by others using
entirely different techniques shows complete agree-
ment insofar as the terms overlap and after making
allowance for differences in notation.?*-2 This serves
to confirm the validity of the transformation discussed

21 A. J. Wakefield, Proc. Cambridge Phil. Soc. 47, 419, 799 (1951).

22 §. G. Brush, **History of the Lenz-Ising Model,” University of
California, Lawrence Radiation Laboratory Report UCRL-7940,
1964.
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in Sec. 2, whereby a one-dimensional system with
all interactions active can be converted to a system of
higher dimensionality with a more limited number of
interparticle bonds. It is not necessary to restrict the
bonds to nearest-neighbor ones; additional bonds
can readily be considered as long as their number
remains small enough so that the sums of A functions
are manageable. The two- and three-dimensional
series, it will be observed, were obtained by the same
algebraic technique as the one-dimensional one.
Consequently, once a term in the one-dimensional
series is known, the corresponding term for series in
higher dimensions can be found without much addi-
tional effort. Since the technique is basically algebraic,
it lends itself to programming by computer. It was
pointed out that coefficients for the one-dimensional
series were verified in this way. It may also prove
feasible to determine expansion terms for series in
higher dimensions by this method.

9. SUMMARY AND CONCLUSIONS

It was seen that the cell model underlying this study
describes a simple one-dimensional fluid in which all
particles interact with one another. The cells, as
pointed out, serve only to specify the instantaneous
position of the particles with an uncertainty equiv-
alent to the particle dimension. Artificialities intro-
duced by the model, in addition to this uncertainty in
position, are the periodic boundary conditions and
the hard-core repulsive potential that was assumed.
The latter restricts cell occupancy to zero or one and
hence causes the system to behave as an assembly of
fermions. This permits an isomorphism to be estab-
lished between cell occupation numbers and Ising
spin states so that the Ising formalism can be applied
to the model. In addition, the fermionlike nature of
the system results in characteristic behavior, as
evidenced by the primed sums and their expansion in
the series formulation of the partition function and
the commutation rules of the operators in Appendix
B. This fermionlike behavior also underlies, of
course, the success of the various operator methods
and field-theoretical techniques that have been
applied to the Ising model in recent years.?3-26

We saw that in the present model the spinor-
algebraic approach, which proved so successful in
solving the two-dimensional Ising model, will not

23 H. S. Green and C. A. Hurst, Order- Disorder Phenomena (Inter-
science Publishers, New York, 1964).

2 1. D. Schultz, D. C. Mattis, and E. H. Lieb, Rev. Mod. Phys.
36, 856 (1964).

28 R. W. Gifford and R. A. Hurst, J. Math. Phys. 7, 305 (1966);
8, 1427 (1967).

28 L. P. Kadanoff, Nuovo Cimento 44, 276 (1966).
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lead to a solution. The difficulty lies in the very much
larger number of bonds per particle in our model. This
results in an infinite coordination number in the
thermodynamic limit. The operators of interest are
therefore not the spin representatives of plane rota-
tions but turn out to be parts of tensor transforma-
tions.

It proved possible, however, to diagonalize the
operator, thus permitting the solution to be written
as an infinite series. We saw that the series converges
absolutely for all densities and offers a convenient
method of examining the analyticity of the partition
function. The results of this analysis agree with those
of Yang and Lee.

In applying the solution to a one-dimensional system
in which only nearest neighbors interact, we were
able to verify the validity of the approach and develop
a straightforward algebraic technique which proved
very convenient for obtaining low-temperature series
for two- and three-dimensional systems. These series
were seen to agree with those obtained by other
authors using entirely different methods. It is rather
remarkable that the simple scheme of applying the
potentials in Egs. (2.12)-(2.14) will convert a one-
dimensional system into one of higher dimension but
with a reduced number of bonds per particle. Looked
at from that point of view, the unsolved three-
dimensional Ising model is really a subset of the more
general one-dimensional system that forms the
central problem of the present series of papers. If
we can find a closed-form solution to the latter, then
we have automatically solved the three-dimensional
Ising model as well. The present analysis also sheds
some interesting light on the reason why a two-
dimensional array with nearest-neighbor and next-
nearest-neighbor bonds should pose the same level of
difficulty as the three-dimensional Ising problem.
From Eqgs. (2.13) and (2.14), we see that these two
systems are mathematically completely isomorphic.

In the second of this series of two papers the solution
will be applied to certain potentials for which the
series can be summed in closed form. We shall see
that for a system of point particles with no interaction
potential the model correctly reproduces the equation
of state of an ideal gas. If, on the other hand, we
retain the repulsive core and consider a system of
hard rods, we obtain the well-known Tonks equation
of state. This solution will be seen to hold in one,
two, and three dimensions. A one-dimensional fluid
with only nearest-neighbor interactions is then exa-
mined briefly and is seen to have interesting thermo-
dynamic properties but exhibits no phase transition,
of course. If we let the range parameter in the
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Lennard-Jones potential go to zero, we shall find
that the system does experience a phase transition.
The thermodynamic properties of this system are
examined by computer for various volumes and are
then examined analytically. In the thermodynamic
limit the transition temperature goes to infinity so that
a change of phase can occur at any finite temperature.
Finally, finite systems of different sizes interacting
with the unmodified potential are examined by com-
puter. They are seen to exhibit very realistic thermo-
dynamic behavior and give a number of indications of
an incipient phase transitions. One of the most cogent
of these is the behavior of the pair-correlation func-
tions. There is obvious long-range order up to a
certain temperature which coincides with the temper-
ature at which the specific-heat curve has a maximum.
For higher temperatures long-range order changes
very rapidly to short-range order. Two- and three-
dimensional systems with nearest-neighbor inter-
actions are also examined numerically and are seen to
have an incipient change of phase at temperatures
that agree with those of the corresponding Ising
model within quite close bounds.

APPENDIX A: PARTITION FUNCTIONS OF
SMALL SYSTEMS

The following partition functions were computed
directly from Eq. (3.5) of the text. All are written for
a fluid, the symbols having the meaning defined in
Sec. 2. To obtain the corresponding ferromagnetic
partition function, it is only necessary to premultiply
the expression given by the factor exp {N(® — »)} and
reinterpret the symbols as follows:

01‘ = _ﬁ‘?sr’
v = fmB,

x, = exp {86,},

¢r = 3, + JIns)s
where J, is the exchange energy of two spins separated
by r lattice spacings, m is the magnetic moment per

spin, while B is the external magnetic field. Then we
have

0, = 2 exp (2»){cosh (2») + x7%},
Qs = 2 exp (3v){cosh (3%) + 3x7' cosh ()},
Q. = 2 exp (4v){cosh (4»)

+ 4x;1x2'% cosh (2») + 2x7 x5t + x7%}, (A4)
Qs = 2 exp (5v){cosh (5v) + 5(x;x,) ™" cosh (3)

+ 5(x1%2) " 2(x1 + x5) cosh ()}, (A%
Qs = 2 exp (6v){cosh (6v) + 6(x1x2x’§)_1 cosh (4v)

+ 3(egxax3) (2%, + 2x5 + X;) cosh (29)

+ (xlxzxé)_3(6x1x2x3 + 3x3x, + x3)},

(AD)

(A2)
(A3)

(A6)

R. G. TROSS AND L. H. LUND

0, = 2 exp (Tv){cosh (7¥) + 7(x1x,x5)~* cosh (5»)
+ T(x1x9%3) " (x;, + x4 + X3) cosh (3»)
+ T(x1X5%3) (XX + 2X1Xg%g
+ x1x5 + X3x3) cosh ()},

Qs = 2 exp (8»){cosh (8») 4+ 8X* cosh (6%)
+ 4X73(2x; + 2x, + 2x5 + x,) cosh (49)
+ 8X 3 (xdxy + x3xy + Xpx2 4+ 2X,%0X5
+ 2x,x3x,) cosh (2v)
+ X(4x3x3x, + 8x3xgxyx, + 8xix,x2x,
+ 8xyx3x5xs + 4x,x3x3 + 2xixixi + x3x},
(A8)

(A7)

where X = xlxzxsxf, and

Q, = 2 exp (9v){cosh (9¥) + 9X* cosh (7)
+ 9X*(x; + x5 + x5 + x,) cosh (5)
+ 9X73(x3xy + 2x1XX5 + 2X;X5%, + X2X,
+ x.x% 4 2x,x5%, + 1x3) cosh (3»)
+ 99X (xIxixs + 2x3x3xyx, + xIxox3x,
+ 2x3xyXax5 4+ 2, X5x5%3 4 xIx,x3
+ 2X:1X9X5%5 + X1 X2X5%% + x,x3x2x,

+ x3x3x2) cosh (»)}, (A9)

where X = x;x9X3%, .

APPENDIX B: SPINOR-ALGEBRAIC
FORMULATION

Starting from Eq. (3.5) in the text, this appendix
shows that the operator S is not the spin representative
of a set of commuting plane rotations, but is part of a
tensor transformation. Hence it does not appear
feasible to determine its eigenvalues by the spinor-
algebraic approach. In order to reduce the problem
to its simplest terms, we shall consider only the case
» =0, i.e., S, = 1. We are then concerned with the
operator

N N
S, = H; 1]1' D,,, where D, =exp{ZZ,0,}
r=1 s=
To proceed we define a set of matrices that are the
generators of a complete set of linearly independent
operators that span the space of the operator S and
obey the following anticommutation rule:

[Ty, Tgly = 26, 4. (BD)

In the 2VN-dimensional representation that has been
adopted for the Z, [cf. Eq. (3.4)], the base matrices are
the I' matrices and all possible products of I' matrices.
It is readily shown that there are 2N independent
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matrices of this type. We choose the following repre-
sentation for the I"s:

Tyyn=2,-Z, X9y =2,--Z,,Y,. (B2)
We find then that the operator Z is given by
Z,=il' 0y, 4, (B3)
so that
D,, = exp {Z,Z,.0,}
= exp {— 0,15, Ly, 1 Do) Pagrina).  (B4)
Consider now the operator
D,yps = exp {(6/)T, T, L} (BS)
One proves readily that
D,,,, = cosh (6/2) + I',I' I' I sinh (6/2), (B6)

where the fact was used that (I',I',[',T'))? = 1, pro-
vided that u # v # p # o, which will be assumed in
what follows. Let us first examine the properties of a
related operator

Gype = exp {021, T, + T} (B7)
Observing that
(r,r, 4+ I,r)=2r,rrr, -1, (B
we have
Gpype = €082 (6/2) + (I,T', 4 T,T,) sin (6/2)
x cos (6/2) + T,T,I' T sin? (6/2)
=¥S,, + S,, +aD,,,, + b}. (B9)

Heretanh ¢ = 1 — cos 0, @ = sech ¢, and b is related
to a and ¢ by the equation

a®+ b +2)=0. (B10)
The operator S in Eq. (B9) is defined as follows:
S,,(20) = cos 0 + I',T", sin 6 = exp {6T',[",}. (BI11)

It is not difficult to show that this operator is the spin
representative of a plane rotation in the 4 — » plane
through an angle 26.3% We must now investigate the
properties of the operator G. The analysis is simplified

LT, cos? 0 sin 6 cos 0
rr, —sin 0 cos § cos? §
rr, T | —sinfcos®  —sin?6
T, sin2 0 —sin 6 cos 6
We note that
Q=0vRw (B20)

and
X=T®Tl,
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if we note that
(r,r,, Il =0 (u v, p,cdistinct), (BI2)
so that
G ypo = exp {(0/2)(I,T', + I',T)
= exp {(9/2T,I",} exp {(6/2)T, T, }
= 5,,(0)5,,(0) = 5,,(0)S,,(6).  (B13)

It follows that G-1G = 1sothat G is a unitary operator.
One finds then that

rr, =6 I G
= exp {—(0/2)(T,,[", + ', T )L, T,
x {exp (6/2)(T',T, + T, )} (B14)

v

=TI

utve
Similarly,
FPFG =G I e="r.T,,
FQFB = GG =TIy (o, 8 # u, v, p, 0).
(B15)
But
rr,=6¢'TI,G
= exp {—(6/2),I,}T', exp {(6/2)T',T",}
x exp {—(0/2)T,I',}T, exp {(6/2)T",T',}
= (I',cos 0 4 T, sin 6)(T", cos 6 + T', sin 6)
=TI, cos®0 + (I,[', + I',T',) sin 6 cos 6

+ I\, sin® 6. (B16)
And, similarly,
I, =¢6I,G=T,T,cos?0 + (I'\l', - T,T")

X sinf cos 6 — I'\" sin*6. (B17)

Other transformations follow the same pattern. Let us
define a new vector X, whose 4N2 components are the
second rank tensors [y = I',I; (x,=1,2,---,
2N). We can write these transformations symbolically
as follows:

X=0x (B18)

The nonidentity elements of this transformation are

sin 0 cos 6 sin? 6 r,r,
—sin?6  sinfcosf||I,T, B19
cos? sinfcos || I'\T') (B19)
—sinficosf  cos?0 r,r,
where  is a plane rotation with components
cosf sinf
. (B21)
—sin 6 cos 6




1954

and I' is a vector having the 2N I' matrices as its
components. Thus €2 is a tensor transformation
transforming I' dyadics into themselves. Using
summation covention and covariant—contravariant
notation, the transformation appears as follows:

[# = QmT, (B22)

It follows then that the operator G is the spin repre-
sentative of a tensor transformation. D, on the other
hand, is associated with the operator G through Eq.
(B9) but is not itself a spin representative. Accord-
ingly, it does not seem feasible to determine the
eigenvalues of D by spinor-algebraic analysis.

APPENDIX C: CLOSED FORM SOLUTION FOR
THE ONE-DIMENSIONAL MODEL WITH
NEAREST-NEIGHBOR INTERACTIONS

We consider first the case » = 0. In that case Eq.
(6.14) becomes

Ov(r=0)
- 2CN{1 + N[g]kil ,t(z ~ 1)
X (N ;—n ; l)xfk(l - Mn,m)}

— 2CN{1 + N[NZ/j]( 1) —kg(z ~ i) (N ;f 1— 1),
(C1)

where the order of summation was changed and the
d-function term was eliminated by taking advantage
of the symmetry of the summand with respect to the
substitution n -~ N — n. If we now use the following
relationship (which follows directly from the definition
of the combinatorial symbol),

(r—s) =(__1)t(s—r+t—1)’ (C2)
t t
where for a < 0 we define

a 1

(b) =5—!a(a—— Deer(@—b+ 1)

we find after some algebra that
N n—1 N—n—l)
ngk(k—l)( k—1
N—k —k —k
= ~1 N—-2k )
'ngk( ) (N—k—n)(n—k

- ( ;IV _‘21k). (C3)
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The following identity was also used:

g(?) (k . r) N (m . n)'

Thus for the partition function we have

(C4)

k=1

Ov(»=0)=2Cy(»= 0){1 +[1%2 (N) k}

-CNE( )[1+( 1]

= Cy{(1 + x7HY + (1 — x7ty™}
= 2¥C, exp(— Ne)(cosh? € + sinh” ¢).
(Cs5)

This agrees with the well-known solution of the one-
dimensional Ising model in the absence of an external
magnetic field.3-15

When » % 0, the analysis becomes considerably
more complex. The closed-form solution of the one-
dimensional Ising model is in that case (cf. Appendix
D):

Qn = Cycosh™ {1 + (1 + w)}}¥
+ 01— (1 + )P}, (C6)

where o = (x7! — 1) sech? (».) For the work to follow
it is desirable to rewrite this by means of the binomial
theorem in the form

ormsesest 5,5 0)(1(1

X (=1 ™x ™ cosh™%*(»). (C7)

In order to show that Eq. (6.14) of the text leads to
this expression, we must then establish the following
equivalence:

cosh? (1’)[:,;/:] éo éo (Zn) (k) (’I:l)

X (—1)*™xy™ cosh™* (»)
N2 Nim—1\(N~n—1
= cosh (N ~k
cosh ( ”)+,.§1kzlk( 1)( k—1 )x‘
x cosh [(N — 2n)vl(1 — 46, n/2)- (C8)
For m = 0 we must show that
[N/2] n
cosh¥ (3) 3 2( ) (7) - cost® )
n=0 k=0 \2n/ \k

= cosh (N»). (C9)

By retracing the steps that led from Eq. (C6) to (C7),
we find that this proof is trivial. Suppose now that
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Eq. (C8) holds for m = m; i.e., suppose that This last equation can be re-expressed as follows:
NEY = (N (n)\ (k 1k N2 n N k
22 ) () ) 0ot 2 L)) ()= mecneoncre
[N/2] — — -
- (5) cosh™ () (" 1) (N n 1) ~ (N/m) sech® (»)
m n=m \m — 1 m—1
[N/2] n k—2 N —k
x cosh [(N — 2np](1 — 38, x2). (C10) x> { > ( ) ( )(N —2%+2)
n=m+l k=m+1\m — 1/ \m — 1
We wish to show that it holds for m = m + 1, so that
the equivalence of the following expression is to be - (" - 1) (N —n- 1)(,, - m)}
proved: m—1 m—1
[N/2] = x cosh [(N — 2np](1 — 46, n70)s (C15)
£ 5 0 Jorr oo o
n=m k=m+1\2n/ \k/ \m + 1 where the following identities were used (which are
N2, — - i ; .
2 ( N ) cosh™¥ () 3 (n 1) (N n 1) readily established):
1 n=m+1 m m

X cosh [(N — 2np](1 — 46, ys2). (C11) coth (v) sinh [(N — 2n)]

. . . . 0 (n=NJ2),
This can be recast in the following more convenient
way: cosh [(N — 2n)v]
v a = (V2 (C16)
ot () S 3 (N) (n) (k) +2 3 cosh[(N — 2n — 2ky)]
n=m t=m \2n/) \k/ \m k=1

x (k — m)}(—1)*"™ cosh™% (») X (1 — 30 tvim-n) (n # NJ2),

=—I%[I%ﬂ(n—1)(N_n—1)(n—m)(N—-n—m) e

m® n=m\m —1 m—1 [%/:2][N/2]—n(n_1) (N_n—l)(N——Zn)

% cosh [(N — 2n)v}(1 — 36, n/2)- (C12) n=m %=1 \m—1 m-—1
We now let x cosh [(N — 2n — 2k)w]
F(N,v, m) X (1 = 30 (/o)1 — 85 /2

N/2) n /NN o\ [k [N2IT m _ -

“2 2 ) Q)o@ -5 8 (D)o

Then, using the assumed identity, Eq. (C10), the x cosh [(N — 2nw]l(1 — 36, n/2)- (c1n

equivalence to be established is
To complete the proof by induction, one must show

R enne EEEE
= }(coth » 3/dv + 2m)[£ sech® (») (N/m)::%i kéﬂ{ ("; ~ 21) (Z B ’1‘) (N —2k+2)
<2 G20 ()T )
x cosh [(N — 2np}(1 — één,N,z):l x cosh (N = 2np)(1 — 30, v,2)
[N/2] — — _
— (N/2m) sech™ (v)[:vz/z] (:l - 11) (N o 1) = (Nm5 2. (:: - i) (N -t 1)(n -
DR B x (N — n — m) cosh [(N — 2n)](L — 38, /0).

X {(N — 2n) coth (») sinh [(N — 2n)»]

+ (2m — N)cosh [(N — 2n)pJ(1 — 36, n/2).
(C14) Recognizing that » is arbitrary, this is equivalent to

(C18)
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establishing the following identity:
< k—2\(N—-—k+1 k—1\(N-—k
24G2)C) =000
k=ms1 | \m — 1 m m m—1
— (" - 1) (N - "). (C19)
m m

For m = 1 the proof is trivial. The identity is readily
established in general if one expands the left-hand

side of (C19) as
)= (R

(G

20
)
o)) 0620
(C20)
and uses the following two relations:
(-C2)=00) e
(2=

This completes the inductive proof of the equivalence
of Eq. (6.14) and (C6).

R. G. TROSS AND L. H. LUND

APPENDIX D: CLOSED FORM SOLUTION OF
THE ONE-DIMENSIONAL SYSTEM WITH
NEAREST-NEIGHBOR INTERACTIONS

From Eq. (2.10) using the potential of Eq. (6.1),
we obtain
N N
Oy = AN% exp {eza,aﬂ_l + la,}

r=1 T

= AN% (01| P log)ay| Plog) - - - (on] P oy

= ANT{PV} = Ax(2Y + 1Y), (D1)
where
e€+v e—E
P=|"__ (D2)
e e

and 4, and 4_ are the eigenvalues of P. We find readily
that
A, = exp (e){cosh » £ [cosh? v
— 2 exp (—2¢) sinh o)} (D3)
Hence
v = Ay exp (Ne) coshy W){[1 + (1 + o)}]¥
+ 01— (1 + )"}, (D9
where w = (x7! — 1) sech? (v) and x, = exp (4¢). And
since
__[N(» — ¢ (fluid),
Av = {1 (ferromagnet), (D3)
we obtain
Oy = Cycosh¥ ({1 + (1 + w)*}¥
+ 11— (1 + o)*1"}, (D6)
where
_[exp (N») (fluid),

N {exp (Ne) (ferromagnet). (D7)
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In Paper I of this series (preceding paper) the model was formulated mathematically and the solution
derived in the form of an infinite series. The convergence and analyticity of the solution were investigated.
It was then applied to one-, two-, and three-dimensional systems with nearest-neighbor interact@ons, and
low-temperature series for these systems were obtained. In the present article the thermodynamics of the
model are investigated. The series solution of the partition function derived in Paper 1 is applied to systems
with interaction potentials of increasing complexity. The validity of the model is established by showing
that in the appropriate limits it leads correctly to the ideal gas and the Tonks equation of state. It is shown
that the model is capable of portraying phase transitions and gives realistic results thermodynamically.
Finally various finite one-, two-, and three-dimensional systems are analyzed numerically by high-speed
computer and their thermodynamic properties and pair-correlation functions are examined. Interesting
conclusions emerge concerning the range of order in such systems and the probable critical temperatures.

I. INTRODUCTION

In the first! of this series of two articles, a one-
dimensional fluid was examined, in which every
particle interacts with every other one with a modified
Lennard-Jones-type potential. The system was cast
in the mold of a cell model which could be treated by
means of the Ising formalism. We derived the parti-
tion function for such a system, showed how the
partition function for two- and three-dimensional
systems with a limited number of bonds per particle
could be derived from the one-dimensional one and
found a solution to the problem in the form of an
infinite series. This series was shown to be absolutely
convergent and proved convenient for investigating
the analyticity of the system. The analysis confirmed
the results previously obtained by Yang and Lee.?
It was seen in I that the series could be summed for a
one-dimensional system with nearest-neighbor inter-
actions and that the resultant closed-form solution
agreed with that obtainable by matrix methods. This
served to establish the validity of the model in that
limit. In addition, the corresponding low-temperature
series for two- and threé-dimensional systems with
nearest-neighbor interactions were readily obtained
from the one-dimensional series. Thus it proved
possible to calculate series expansions in all dimen-
sions by identical algebraic techniques.

In this article we shall investigate the thermodynamic
behavior of this fluid model. First, certain potentials
will be considered for which the system can be

* Based upon a dissertation submitted to the Graduate Faculty of
the University of Missouri at Rolla in partial fulfiliment of the
requirements for the Ph.D. degree. Work supported in part by a
NASA Predoctoral Traineeship and an NSF post-doctoral grant.

t Present address: Dept. of Math., University of Ottawa, Ottawa,
Canada.

1R. G. Tross and L. H. Lund, J. Math. Phys. 9, 1940 (1968),

hereafter referred to simply as I or Paper I.
2C. N. Yang and T. D. Lee, Phys. Rev. 87, 404, 410 (1952).

analyzed in the thermodynamic limit. If there is no
interaction of any kind, we shall find that the model
leads correctly to the equation of state of an ideal gas.
If the hard repulsive core is retained, the fluid obeys
the well-known Tonks equation of state.® Next a
system with hard-rod repulsive and nearest-neighbor
attractive interactions is examined. It has the advan-
tage that one can write the equation of state in closed
form. Aside from the absence of a phase transition
the system exhibits interesting and quite realistic
thermodynamic properties and has the advantage of
being very tractable mathematically. Another potential
which allows one to proceed to the thermodynamic
limit is one in which the range parameter y is allowed
to go to zero, resulting in an infinitely long-range
interaction. While this does not correspond to any
real fluid, it is an interesting limit mathematically.
One can show rigorously, as we shall see, that such a
system exhibits phase transitions at all finite tempera-
tures.

Although it has not been possible thus far to go to
the thermodynamic limit in systems interacting with
the general Lennard-Jones potential,! the series
solution of the partition function, Eq. (4.7) of Paper
I, is well suited for numerical analysis by high-speed
computer. Accordingly one-, two-, and three-dimen-
sional systems of finite size are analyzed and their
thermodynamic properties determined. The results
are surprisingly realistic. Although no true phase
transition is encountered, as one would expect for
systems of finite size, there are a number of indications
that such a transition may occur in the thermodynamic
limit. The most convincing of these are the conclusions
on long-range order that emerge from a study of the
pair-correlation functions of the system.

3 L. Tonks, Phys. Rev. 50, 955 (1936).
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The point of departure for the analysis in this
article is the model developed in I and the series
form of the partition function in Eq. (4.7)

[N/2]
On =2Cy Zo T,; Cy = exp(Nv)
—

Tﬂ = cosh [(N - 2")V]X—n/2tn(1 - %6n.N/2)
1 N N, n o n
l, = (_) z’ T Z H qu,-—q.
n! a1=1 an=1r=1 s=1
(r<s)

N (L.1)
Xy = €Xp {801‘}; X = H Xy

r=1
6, = —(DB¢:;
Vo= —Ur

p=UKT; & = Ay oxp (e - ) 4))

where { defines the depth of the potential cell and y
is a range parameter. (For further definitions see
Paper 1.)

II. THERMODYNAMICS OF INFINITE SYSTEMS

In this section we investigate the thermodynamic
behavior of certain infinite systems, i.e., systems which
are infinite in the sense that the solution holds in the
thermodynamic limit, N — co, where N is the total
number of cells in the system. This limit implies that
either the cell parameter / = L[N goes to zero (L being
the length of the one-dimensional system) or the
length of the system becomes infinite. These two
limits are not equivalent as we shall see.

¢ =B, + Vy-p)

A. Ideal Gas

We wish first to check the validity of the model in
the ideal-gas limit and assume the interaction potential
to be V,=0. This potential does not, however,
eliminate the hard-core repulsive interaction which
was built into the model by our choice of cell param-
eter and the introduction of an exclusion principle.
We neglect this point for the moment and come back
to it later. The series, Eq. (1.1), now takes the form

Q= 2exp (Nv)mfl(” )

n=0 \I

x cosh [(N — 2n](1 — 46, n/)
N N 14 N
=”§0(n) exp (2nv) = (1 -+ Hi—) , (21)

where we have used the obvious identity
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n! a1=1 an=1 n
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In Eq. (2.1), Vis the “volume” of the system. For the
basic one-dimensional fluid the volume is, of course,
the length of the line L. However, since there is no
attractive interaction among the particles, we may
assume the cell to be a tiny square of dimensions
I x I or cube of dimensions / x / X I. The string of
squares or cubes can then be wrapped around a torus
as in Sec. 2B of I to generate a two- or three-dimen-
sional system. For higher-dimensional systems we
must, of course, redefine 1 in an appropriate way.
[We must then use the following definition: A =
(Bh?[2mm)*2, where d is the dimension of the system.
This follows directly from integrating the kinetic part
of the partition function.]

The hard-core repulsive potential can now be
eliminated in going to the thermodynamic limit. To
do so, we let the cell parameter / shrink to zero while
N — 0, i.e., we keep the volume ¥ fixed. Then

0 =1£11n Oy = exp (VE/2) = exp (BpV). (2.2)

We have then that In Q = fp¥V = V&/A. From the
well-known relation (n) = £[9/0&(In Q)], we then
obtain the equation of state of an ideal gas*®

BpV = (m), 2.3)

where ( ) designates an ensemble average or expecta-
tion value. It should be observed once more that in
obtaining this equation of state from our model we
were obliged to let the particles shrink to ideal points
in order to eliminate the built-in repulsive potential.

B. A Fluid of Hard Rods

We next consider a fluid of hard rods, i.e., a system
of particles with a hard repulsive core and no attractive
interaction. The partition function, before we go to
the thermodynamic limit, is then the same as that in
Eq. 2.1), i.e.,, @y = (1 4 I£/1)N. The hard repulsive
core has, of course, not been eliminated. In order to
retain the repulsive potential, we must go to the limit
in a different way: we keep /, the cell parameter, fixed
while we let N— co. This is tantamount to letting
the volume go to infinity. For the density of the system
we obtain

p = §[0/05(1/N) In (@n)]y = (E[A)/(1 + 1E[3). 24

Here p = (n)/N is a dimensionless density. [This
density is related to the usual density as follows:
p = (m)[N = Ifv. If m, is the mass per particle, then
p = my(1/v) = mep[l is the density as usually

4 K. Huang, Sratistical Mechanics (John Wiley & Sons, Inc.,
New York, 1963).

5 D. ter Haar, Elements of Statistical Mechanics (Holt, Rinehart,
and Winsiwon, Inc., New York, 1964).
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defined.] One can also think of p as the proportion of
the line occupied by particles, for we can write p =
(m)INI = Ly/L, where L, is the length which the
particles would occupy if they were tightly packed.
Using (2.4) and keeping the cell parameter / fixed,
one can now go to the thermodynamic limit and
obtain:

ppL =I£i_1)n In(Qn) = (M/(1 — p)

PL(L — p) = pLyy = (KT

(2.5)

or

which is the well-known Tonks equation of state,?
with L = L(1 — p) denoting the net length of the
line not occupied by particles, i.e., the free “volume”
of the system. (We use the symbol p to represent the
“pressure’”’ of the system in the appropriate units.
Thus, in a one-dimensional system pressure has the
units of force.)

By identical arguments to those given in the preced-
ing section one sees that the analysis holds for systems
of all dimensions and that consequently L and L.
can be replaced by ¥ and Vg, respectively. Thus the
model yields the correct equations of state for a fluid
of hard rods, hard disks, or hard spheres.

One can show in this connection the effect of the
hard-core potential on the series solution of Eq. (1.1)
and on the choice of the cell parameter /. This is
done in Appendix A.

C. One-Dimensional Fluid with Nearest-Neighbor
Interactions

We examine in this section the thermodynamic
properties of a one-dimensional fluid comprised of
particles with hard-core repulsive potential and
nearest-neighbor attractive interactions. While such a
fluid is of very limited practical interest, it has the
advantage of being mathematically tractable since the
equation of state can be written in closed form.
Furthermore, there are many striking parallels with
real fluids, although such a system cannot have a phase
transition, as we know from Van Hove’s work.®

It was shown in I (Sec. 6A) that the partition
function of this fluid is given by

Oy = Cy cosh? (»)
x {[1 + 1+ )V +[1 — 1 + o)}, (26)

where Cy = exp (NMv) and o = (x7* — 1) sech?». In
the thermodynamic limit we obtain for the grand
potential®

q = fpl =1lim 1/N In (Qn)
N-w

=+ In(coshv) + In[1 + (1 + 0)}]. (2.7)
8 L. Van Hove, Physica 16, 137 (1950).
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TaBLE 1. Relationship between density p, Gibbs free energy g,
and parameter v.

P 0 ¥ 1
£ —® 1/8 In Gx7Y/D) + o0
v — 0 + ©

The density is then

p = (m|N = £(09/08), = (3)(9q/0v),
= (DIl + tanh »/(1 + w)}]. (2.8)

While » is a function of the temperature, interaction
potential, and Gibbs free energy [cf. Eq. (1.1)], we
can in fact consider it a free parameter in Egs. (2.7)
and (2.8) so that these two equations give the equation
of state parametrically. Table I gives the relationship
between p, g, and ». Pressure-density data computed
from these two equations are plotted in Figs. 1 and 2.
(Actually ¢ = Bpl is plotted vs p. For a given
isotherm this is, of course, proportional to p.) The
graphs show clearly that the pressure of the system is
reduced by a decrease in the temperature or by an
increase in the strength of the interaction potential.
We wish next to compute the isothermal compress-
ibility. This is given by
Ky = —(1/v)(9v/dp),
= (1/p)(3p[0p)s = (BI[2p*)(0p(3¥),
= (Blx* sech®)[[p*(1 + ). (29)

Figures 3 and 4 are plots of compressibility vs
density corresponding to the p—p plots in Figs. 1 and 2,
respectively. The behavior is physically reasonable:
compressibility increases with decreasing temperature
and increasing strength of the interaction. This
parameter is, of course, of interest because of its
relation to the slope of the p—p curve [cf. Eq. (2.9)]
and its well-known connection with fluctuations in
the number of particles of the system. The compress-
ibility is therefore a valuable indicator of a change in
phase and one expects the compressibility curve to
have a discontinuity at the critical density. No such
behavior is apparent in these two figures in consonance
with Van Hove’s theorem.$

The internal energy density of the system is deter-
mined as follows:

u = (H)/N = —(9q/9p);
= —[(0g/0v)4(3v/0B); + (3q/0B)]
—2p(0v/0B); + (94/B),
BpkT — (£/2)
X {2p — [x;*sech®4]/[1 + o + (1 + w)i]}.
(2.10)

[
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FiG. 5. Internal energy density vs temperature for a one-dimensional
system with nearest-neighbor interactions.

Energy density is plotted vs temperature in Fig. 5
for p = 4. One can readily check the validity and
meaning of the various terms in (2.10) by proceeding
directly from the partition function. This analysis is
carried out in Appendix B. It is apparent from (2.10)
that the zero-point energy density of the system is
u = —{p, which corresponds to a zero-point energy
per particle of —{ and thus accords with physical
intuition.

From (2.10) one can compute the specific heat of
the system as follows:

C'v = (au/aT)v = _kﬁz(au/aﬁ)p

= (Hkp + DKBY*x
x sech?o/[(1 + @)}(1 + 1 + o)} (@.11)

As is well-known, the interest in the specific heat
arises from the obvious connection between it and the
fluctuations in energy of the system. One expects
these to be very large in the critical region so that the
specific heat is a valuable indicator of phase changes.

In the critical region, (2.11) reduces to
C,(p=1% =k/4+ ke®sech® ¢, (2.12)

where € = (})B{. Figure 6 is a plot of this relation.
While the maximum at T, = 0.208(/k obviously
represents large fluctuations in density, it does not
correspond to a phase transition. If we let = 2k 7/,
we can recast (2.12) in the form

(C, — k/4) = k% exp (—1/n)
X 20(—1)’+‘r exp [—(r — D]
=k ?exp [—1/n] (nK1), (2.13)
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FiG. 6. Specific heat vs temperature for a one-dimensional system
with nearest-neighbor interactions; p = .

which shows that the configurational specific heat
approaches zero exponentially as T— 0, i.e., faster
than the 73 law of Debye.”

It is possible to eliminate the parameter » in the
equation of state and to write the pressure as an explicit
function of the density. One obtains then from Egs.
(2.7) and (2.8):

pl(1 — p) = kTx;*
x {(p— 1)+ [(p — H* + x0(1 — p)I}.
(2.14)

One may notice in passing that for x; — 1 this merges
into the correct equation of state for the Tonks fluid.
One can rewrite (2.14) in a somewhat more suggestive

way: Plug = kTp,q, 2.15)

where Ly = I(1 — p) = (UN)L(L — p) = (N)Lg

[ef. Eq. @5)] and pr = (p — ) + [(p — D +

xp(t — p)Ib. Ly thus represents an effective cell

parameter related to the effective or free “volume™ by

the relation /4= lim {(L — Ly)/N}. Similarly p.
N-—+>w®

represents an effective density which, by virtue of the
interaction potential, is lower than the true density.
The pressure of the system is thus reduced by the
interaction as we saw in Fig. 2. One can also cast the
equation of state in the form of a van der Waals
equation

(p + a)(L — b) = (kT @.16)
where

a = plx,/l(1 = L[2Lo) + (1 — L[2L,)?
+ x(L/Ly— D] -1}

7J. M. Ziman, Principles of the Theory of Solids (Cambridge
University Press, Cambridge, England, 1964).
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and
b= Lp=m)l=L,.

The effect of the hard-core repulsion is contained in b,
while a reflects the effect of the attractive potential.
It is readily shown that a > 0. This form of the
equation of state lends itself to a virial expansion
which yields
p=pkTIL + (2 — x)p + (4 — 5%, + 2xD)p?

+ (8 — 18x, + 16x] — 5x3)p* + (16 — 56x,

+ 82xF — 55x¢ + 14x1)p* + (32 — 160x, + 340x}

— 365x] + 196x; — 42x})p° + -+ °]. (2.17)
Figure 7 is a plot of the second virial coefficient
obtained from this expansion and of the true virial
coefficient for a three-dimensional fluid. The similarity
of these curves is rather surprising; their limit as
T— o, however, is different. From (2.14) it is
possible to compute all thermodynamic functions in
nonparametric form. Only a few results will be given
here. For the internal energy density one finds, for
example,

u= )pkT — p{{l —2(1 — p)/[1 + 2((p — B’
+ xip(1 — )}, (2.18)
while the specific heat is given by
C, = (Dkp + 2k(BD*{p(1 — p)[[1 + 2((p — ¥)?
+ xp(1 — PDAE(x/lp — )* + xp(1 — PR},
(2.19)

which for p = } reduces again to expression (2.12).
The chemical potential per particle is

g = kTIn (1) + 2kTIn {pa/[x:(p(1 — )1},
(2.20)

SECOND VIRIAL COEFFICIENT
FOR ONE-DIMENSIONAL FLUID

TRUE SECOND VIRIAL COEFFICIENT

b,
I
o

|—-20

4 s 6 k4 ]
| | | 1 |

kT/¥

FiG. 7. Second virial coefficient vs temperature for a one-dimen-
sional fluid with nearest-neighbor interactions.
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F1G. 8. Degenerate phase transition of the one-dimensional fluid
with nearest-neighbor interactions.

where p.s is given by (2.15). Other functions are
readily determined from (2.14) but are not included
here.

Before leaving this system we observe from (2.14)
that p =0 at T=0 for all values of the density
except p = 1. For the latter density we find

limp = lim (kT/D[3 In T + {/kT + g/kT]
-0 -0
p—1 g oo

+ finite terms = +c0. (2.21)

Thus at T = O this system experiences a degenerate
phase transition as shown in Fig. 8. One can also
arrive at this conclusion by considering the analyticity
of the partition function. One finds then that the zeros
of the partition function of this fluid, just like those of
the corresponding one-dimensional Ising ferromagnet,
are distributed on the unit circle in the complex y
plane.® These zeros cannot approach the real axis
closer than ay;, =2cos*[(1 — x;1)}]. Hence? a
phase transition can occur only as T'— 0 or x; — o,
and these transitions are degenerate.

D. A Fluid with Infinite-Range Interactions

We shall consider next a fluid with an attractive
potential of infinitely long range, i.e., a potential
where the range parameter y goes to zero [cf. Eq.
(1.1)]. A comparable magnetic potential in which all
exchange interactions are identical has been applied
by Kittel and Shore to a Heisenberg ferromagnet.®
For a fluid such a potential has no physical counter-
part; however, it constitutes an interesting limiting
case to systems with interaction potentials of increas-
ingly longer range. An alternative point of view is also
possible. It was shown in I that, in considering systems
with nearest-neighbor interactions, the coordination
number increases as the dimension of the system is
increased. The system considered here could therefore
be thought of as a limiting case to a sequence of

8 T. L. Hill, Statistical Mechanics (McGraw-Hill Book Co., Inc.,
New York, 1956).
? C. Kittel and H. Shore, Phys. Rev. 138, 1165 (1965).
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nearest-neighbor systems of increasingly higher dimen-
sionality. Specifically, then, the potential we wish to
examine is

v, = { 0 (=0

- (s#0)

If we substitute this potential in the partition function,
Eq. (1.1), we find that

N N n n
= (Un) S S exp (22 Eﬂc)

q:=1 =1 r=1 s=1
1 an <3

} (Mod. N).  (2.22)

= (1:) exp [n(n — DBL]. (2.23)

Consequently the partition function takes the form

Oy = CN§ (f)x‘"“"“”’ cosh [(N — 2n)v] (2.24)

n=0
or
N
N 7 —n({N—n)
= X R
On Eo(n)y

where y = exp (2»), Cy = exp (¥»), and x = exp (80).
The sum in (2.24), although suggestive, is not readily
evaluated. It is suited, however, to numerical evalua-
tion and theoretical analysis. We present some numer-
ical results first. For the density one obtains

p = (})(9g/v), = A1 + T,/NT), (2.25)
where
To ) =3 (1’:’ ) x~N=1) coch [(N — 2m)]
and
T, = (0T [Ow),.
For the compressibility we find:
Ky = (Bl[4p?)IT,,INT — (2p — 1)*N], (2.26)

where T,, = (02T/0»?),. The internal energy density is
u = (BT — {[(N — Dp — (T,/NT)], (2.27)

N30 N=100
s / & T2

rd ot o

C, /K

[-02

om0 Moo w0 0 ep0 oo eopo
TEMPERATURE (°k)

F1G. 9. Specific heat vs temperature for a one-dimensional system
with infinite-range interactions; p = 4.
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SPECIFIC HEAT

TEMPERATURE

FiG. 10. Typical experimental specific-heat curve. (See Refs. 10
and 11.)

where T, = (0T/0x), . Finally, the specific heat is

C, = (Dkp + k(BL)®

X {(I/NDI2p — DNT, — T,,F*/[(2p — 1)

X NT, — T,,)] + A/NT*(TT,, — TH}, (2.28)
where T,, = (92T/0x0v) and T,, = (0*T/0+?),.

Figure 9 is a plot of specific heat vs temperature
for systems ranging in size from 10 to 240 cells and for
a density of p = }. It appears from the graphs that
the maxima tend to some sort of a limit, although it is
not clear what this limit is. However, inspection of
the data in Table II suggests that the quantity N{j,,

TasLe II. Tabulated data on the maxima of the specific heat
curves in Fig. 9.

System size Temperature of specific-

N) heat maxima (7,) N{Bn
10 193.95 3.30
20 438.35 292
50 1233.76 2.69

100 2637.53 2.43

200 5558.49 2.30

240 6729.81 2.28

approaches a limit 2.0. The analysis which follows at
the end of this section shows that this is in fact the
correct limit. One also observes from Fig. 9 that the
specific heat curves assume a characteristic shape. A
typical experimental specific-heat curve is shown in
Fig. 10. It is based on the curves obtained by Nix and
Shockley for alloys exhibiting typical order-disorder
phase transitions.!® A similar specific heat curve for
xenon was published recently by Edwards, Lipa, and
Buckingham.!! It is quite apparent that the curves in
Fig. 9 approach the characteristic shape of the
experimental curves. Pressure-density curves are

10 F, C. Nix and W. Shockley, Rev. Mod. Phys. 10, 1 (1938).
11 C. Edwards, J. A. Lipa, and M. J. Buckingham, Phys. Rev.
Letters 20, 496 (1968).
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FiG. 11. Pressure-vs-density isotherms of one-dimensional systems
with infinite-range interactions.

presented in Fig. 11. It is obvious that the isotherm of
the 240-cell system at its “critical” temperature (i.e.,
the temperature where the specific heat curve has a
maximum) is very nearly that of a system undergoing
a phase transition. Conversely, the 8000°K isotherm,
which is well above the “critical” temperature for this
system, shows no such behavior. For comparison the

n
L

Ky'= (4KkKy /8) X 10?

FiG. 12. Compressibility-vs-density curve for a one-dimensional
system of 240 cells with infinite-range interactions.

R. G. TROSS AND L. H. LUND

“critical” isotherm for a very much smaller system
also gives no indication of any phase change. “Crit-
ical” isotherms for systems of intermediate size (not
shown to avoid confusion) gradually approach a
phase transition with increasing system size.

A compressibility-vs-density plot for the 240-cell
system at its “critical” temperature appears in Fig. 12.
The compressibility curve very clearly approaches a
discontinuity which is in keeping with the nearly
horizontal isotherm in Fig. 11. Since the system is
finite there is, of course, no true discontinuity, but the
maximum value of the K curve cannot be determined
from the computer data.

Figures 11 and 12 show quite convincingly that the
system approaches a change of phase. It is possible to
generalize and confirm the numerical results by
analyzing Eq. (2.24). Suppose that T,,, is the maximum
term in the partition function, then clearly

q =}’im (I/N)In (Qy) = » + lim (1/N) In (T,) + R.
- N-w

(2.29)
Here

R =lim (I/N) In (1 +> Tn/Tm) =0,
N-w n

since there are N terms appearing in the argument of
the logarithm, and |T,/T,| < 1 so that

IR] < lim (1/N)In N = 0.
N—~+ow

In the thermodynamic limit we can thus determine all
thermodynamic functions from the maximum term,
T, . Since we are interested in phase transitions,
furthermore, it suffices to examine the case p = §,
i.e., » = 0. To find the maximum term in the sum

N (N
T,,(x, 0) = z ( )x—-n(N—'ﬂ)
n=0\1N
we observe that the summand can be written as an
exponential by means of the Stirling approximation.
Noting that the summand attains a maximum as the
exponent does, we obtain the following condition:

In(Njn — 1)+ 20 — N)B{ = 0. (2.30)

Letting n/N = p as before [where we have used (2.29)]
this leads to the following transcendental equation:

z = tanh (a2), (2.31)

where z = (2p — 1) and a = NB{/2.

One obvious solution is p = %, which does not
correspond to a phase transition. However, if we
now plot the curves fi(z) = z and f;(z) = tanh (az)
as in Fig. 13, we see that two other solutions are
possible corresponding to z=2p — 1 = %z, or
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FiG. 13. Graphic solution of Eq. (2.31).

p=14%+x;. It is obvious that these additional
solutions can exist if and only if the curve f,(z) has a
slope at the origin greater than 1, i.e., if @ > 1. Hence
a phase transition can occur only if Nf{ > 2; then p
is ‘truly a multiple-valued function of the pressure,
having the values p = } + z,,4,and } — z,, all corre-
sponding to the pressure p = (kT/]) lim (1/N)In (T,,).
N

The critical temperature of the system must therefore
be given by the condition NA{ = 2. This, then,
confirms the limit of the quantity NB{ discussed
in connection with Table II. We note that in the
thermodynamic limit the critical temperature is
infinite. For finite systems the preceding conclusions
hold only approximately, since in that case T,, is no
longer the only significant term. There is then also a
contribution from the remainder term. Table III
allows a comparison of the “critical”” temperatures of
finite systems obtained numerically and from the
relation @ = 1 (which, as pointed out, does not hold
exactly for such systems). For infinite systems one
notes that lim a = oo so that from Eq. (2.31) z can

N—w

only take on the values £1; i.e., p is restricted to the
values zero and one. Consequently the phase transition
of this system in the thermodynamic limit is a de-
generate one resembling that in Fig. 8.

III. ANALYSIS OF FINITE SYSTEMS

In Sec. II we examined various fluids with
interaction potentials that allowed us to go to the

TasLe III. Comparison of critical temperatures for a one-
dimensional system with infinite-range interactions.

N T, (Numerical) T, (Analytic)® T./T]
10 193.95 320 0.60
20 438.35 640 0.68
50 1233.76 1600 0.78
100 2637.53 3200 0.82
200 5558.49 6400 0.87
240 6729.81 7680 0.88

» The analytically determined temperature 7¢ holds exactly only
in the thermodynamic limit. For the finite systems considered here
it is an approximation.
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thermodynamic limit. This section is devoted to an
investigation of systems in which every particle
interacts with every other one, i.e., which interact with
the full Lennard-Jones potential. In that case we
cannot go to the limit N — co. However, the series
solution of the partition function, Eq. (1.1), is well
suited to numerical analysis. Hence we consider sys-
tems of finite and in fact quite modest size for which
the thermodynamic properties were determined by
means of an IBM 360 model-40 computer. Computer
time increased very rapidly with system size so that
it was not feasible to investigate systems with more
than 15 cells. Some caution is in order in speaking of
the thermodynamic functions of such systems since we
are dealing here with finite assemblies and cannot go
to the thermodynamic limit. We shall denote these
functions by their usual symbols but interpret them in
a common-sense way.

A. Formulation of the Problem for Numerical
Analysis

We define a function T as follows [cf. Eq. (1.1)]:

[N/2]

T B, N)= > T,. 3.1
n=~0
The grand potential is then given by
q = ppl =v+ (1/N)In 27). (3.2)
The density of the system is
p=H( + T,/NT), (.3)

where T, = (dT/0v),. For the compressibility one
obtains:

Ky = (Bl[4p®)IT,,[NT — 2p —1)’N], (3.4)
where T,, = (02T/0v?),. The internal energy density
is

N
u=PpkT + p3 V,— TINT, (3.5
r=1

where T, = (0T/0p),. For the specific heat one finds
C, = kp + kf*[(Tys/NT) — (1/N)(T/T)]
+ kB(T,5) — Q@p — DNT,P
INT(2p — *N*T — T,))], (3.6)
where Ty, T, etc., have the obvious interpretation.
We next wish to find a pair-correlation function
that is amenable to numerical analysis. For this

purpose we define an average correlation parameter as
follows:

N
S; = (I/N)<glaror+i>‘ 3.7
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One observes that S; = 1 if cells in the system sepa-
rated by i cell parameters are either all occupied or all
empty. If one cell is occupied while the other is empty
for every pair of cells separated by i cell parameters,
then perfect anticorrelation exists and §; = —1.
Finally, S; = 0 corresponds obviously to a state of no
correlation. In order to find the relationship between
the correlation parameter defined above and the usual
pair correlation functions, we restrict ourselves to the
case p = % since we are principally interested in the
order of the system in the transition region. It is shown
in Appendix C that this relationship is as follows®:

S=A/N S Va0~ 1, (3.8)

or in terms of the Kirkwood correlation functions,
which have found more frequent use in dealing with
fluids:

Si= U = D3 890, 00— 1. (39)

For convenience we shall refer to the correlation
parameter S; simply as correlation function in what
follows.

The correlation functions are readily computed
from (1.1) by noting that

S; = (3N)(9/06,)
N N N
X In {E exp (2 > 0,00, + v a,)} (3.10)
{a} r=1

r=1g=1

It follows then that:

S; =1+ (T, /2NT) (3.11)
where
Ty, = (aT/aBi)v = 8(aT/axi)v
[N/2)
= Y cosh [(N — 2n)v]X~3{(t,)s, — 8n} (3.12)
and

(tn)a; = (at’ﬂ/aol)
N N »n =n
= (8/n!) 2' e 2' H Hx(af—aa)a(ar—a.),z"

a=1 an=1r=1 s=1
(r<s)

(We assume for convenience that N is odd.)

B. Results for One-Dimensional Systems

Specific-heat curves for systems ranging in size from
two to fourteen cells are shown in Fig. 14. The curves
are for a potential-well depth of { = 64k which
corresponds roughly to that of Neon.!? One observes

12\W. Band, An Introduction to Quantum Statistics (D. Van
Nostrand Co., Inc., New York, 1955).
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F16. 14. Specific heat vs temperature for a one-dimensional
system; { = 64k; y = 6; p = 4.

that the maxima of these curves becomes higher and
steeper with increasing system size and moves toward
lower temperatures. Table IV summarizes this
information. The term critical” temperature is used
loosely in this table and in what follows to mean the
temperature at which the specific-heat curve has a
maximum. It is apparent that the specific-heat maxima
approach a limit; however, from the information
available one cannot say with any certainty what this
limit is. If one expands {/kT, in inverse powers of N
and fits the expansion parameters to the numerical
data, one obtains

kT, ~ 6.43 — 31.16/N + 87.36/N%. (3.13)

Table IV also shows the values of {/kT, obtained from
this equation. The fit is seen to be excellent for
systems of six cells or more. If Eq. (3.13) were to
remain valid for larger systems one would conclude
that lim {/kT, = 6.43 which, for the neonlike

N—

potential used in Fig. 14 would correspond to T, ~
10°K.

Specific-heat curves for different potential-well
depths are plotted in Fig. 15 for a 12-cell system. The

TaBLe 1V. Summary of critical data for one-dimensional
specific heat curves.

Critical LIkT,
System size temperature
(N) (Te) True Eq. (3.13)
2 26.68 2.39 12.69
4 20.90 3.06 4.10
6 17.99 3.56 3.66
9 15.64 4.09 4.04
10 15.14 4.22 4.18
11 14.74 4.34 4.32
12 14.33 4.44 4.44
13 14.08 4.55 4.55
14 13.76 4.65 4.65
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FiG. 15. Specific-heat vs temperature for a one-dimensional system;
N = 12; various potential-well depths; y = 6; p = }.

maxima of these curves occur at higher temperatures
as the potential-well depth is increased. Comparable
curves for a fixed depth of the potential well but for
various range parameters are shown in Fig. 16. It
appears from these data that the effect of increasing
the effective range of interaction, i.e., of decreasing
the parameter y, is similar to that of increasing the
potential-well depth. Both shift the maxima to higher
temperatures. One can incorporate the y and {
dependence into an equation similar to (3.13)
[kT, = «, exp {(m — 1)/100}

x [1.53 — 7.42/N + 20.80/N?],
where m is given by { = 2™k and

x, =y — @ — D=2 = 3)/18 +2).

This equation fits the numerical data with quite good
accuracy.

Pressure-vs-density data for systems of various
sizes are plotted in Fig. 17. As the size of the system
increases, the interaction becomes more effective and
the pressure for a given density is reduced. Figure 18
shows the change of the p—p isotherms with temperature
for a 12-cell system. Pressure is seen to decrease with
decreasing temperature as one would expect. There is,

(3.14)

Y 6

Tew 15.144°K

/K

° — 1 1
100 200 300
T(%k)

Fi1G. 16. Specific-heat vs temperature for a one-dimensional system
with different potential range parameters; N = 10; [ = 64k; p = }.
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FIG. 17. Pressure-vs-density isotherms for one-dimensional systems
of various sizes; T == 10°K; { = 64k; y = 6.
however, no indication of a phase transition. However,
in Fig. 19, which depicts the “critical”” isotherms for a
10-cell system with various interaction potentials, we
observe a noticeable inflection and flattening of these
curves. This is rather reminiscent of the curves in
Fig. 11 and could presage a change of phase. Interest-
ingly enough it is found that all critical isotherms fall
within the narrow band bordered by the curves
marked A and B. This seems to suggest that a law of
corresponding states may apply approximately. At the
critical density one finds from the upper curve, which
coincides with all but two of the isotherms, that
plkT, = B pl = 0.135. Hence, B.p,V, = B,pilp, =
0.270. Hill shows in Table II, p. 232, that the mean

osh T=30°
T=20%k
. Tx14.33°
TeSek
04|
[ |
<
~
=
0.2
o O T N SN T IO S |
0.2 04 06 08 10

3

Fic. 18. Pressure-vs-density isotherms for a one-dimensional
system; N = 12; { = 64k; various temperatures.
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Fi1G. 19. ““Critical” pressure-vs-density isotherms for a one-dimen-
sional system with different interaction potentials; N = 10.

value of this parameter for Ne, N,, A, and CH, is
0.292.8 The potentials plotted in Fig. 19 are approxi-
mately those for Ne and A. Consequently the critical
value obtained from the present one-dimensional
model lies within 7.5%; of the experimental value for
real three-dimensional fluids.

Compressibility curves for systems of various sizes
are plotted in Fig. 20. These are seen to exhibit normal
fluid behavior, without any indication of a phase
transition. Figure 21, on the other hand, shows
compressibility evidencing some rather interesting
anomalous behavior. These curves are the analogs of
those in Fig. 19 for a potential-well depth of 64k.
The anomalies clearly correspond to the inflections in

6
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F1G. 20. Compressibility vs density for one-dimensional systems of
various sizes; T = 10°K; { = 64k; y = 6.

ranging in size from 5 to 15 cells are plotted in Fig, 23
for a temperature of 32°K and a density of p = }.
These are seen to agree quite well qualitatively with
experimental curves and curves for radial distribution
functions computed by other methods.8:13-14 Correla-
tion is largest for nearest neighbors, then drops off and
approaches zero. However, one observes an absence of
the local maxima and minima that are usually so
characteristic of these curves. The difference in behav-

Fic. 21. Compressibility vs density for a one-
dimensional system with various potential ranges;
N = 10; { = 64k.

slope in Fig. 19 and may be associated with an incipi-
ent phase transition. This behavior appears even more
clearly in Fig. 22, where pressure and compressibility
isotherms are plotted on the same graph. Both are for
a 12-cell system at its ‘“‘critical” temperature. The
inflection in the p—p curve and the corresponding
anomaly in the compressibility curve are plainly visible.

The pair-correlation functions for selected systems

ior appears to be due to the discrete nature of the
cellular model used here. De Boer has shown that the
undulations are due to contributions to the potential
of average force from the screening effect of particles

13 8. Fluegge, Handbuch der Physik, Vol. XIII, (Springer Verlag,

Berlin, 1962).

14 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular
Theory of Gases and Liquids (John Wiley & Sons, Inc., New York,
1954).
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FiG. 22. Pressure and compressibility vs density for a 12-cell one-
dimensional system; T = 14.33°K; { = 64k.

surrounding the particle of interest.’® The effect,
according to de Boer, is to superpose an extra repulsive
force at distances smaller than 1.5/, an extra attractive
force between 1.5/ and 2.2/, and a small repulsive force
at larger distances. In the present model all potentials
are averaged over the whole cell. Thus the variations
discussed by de Boer are smeared out over the entire
cell and are more than compensated for by the
attractive Lennard-Jones potential. In Fig. 24 we see
the effect of temperature on correlation for a 13-cell
system. At temperatures well below the critical point
one sees that correlation is perfect, or very nearly so,

20 34 3 S er T |2 28 32 a2 58 6

F1G. 23. Pair-correlation functions for one-dimensional systems of
various sizes; T = 32°K; { = 64k; y = 6; p = %.

15 J, de Boer, Rept. Progr. Theoret. Phys. (Kyoto) 12, 305 (1949).
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FiG. 24. Pair-correlation functions for a 13-cell system at various
temperatures; { = 64k;y = 6;p = }.

throughout the entire system. Long-range order
exists. As the temperature increases, correlation is
gradually reduced, less so for nearest-neighbor cells
and more for cells far removed from one another.
Long-range order changes to short-range order. The
drop in correlation is particularly marked for tempera-
tures higher than the critical one. This is shown more
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Fic. 25. Pair-correlation functions vs temperature for a 13-cell
system; { = 64k;y = 6; p = }.
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Fi1G. 26. Specific heat vs temperature for typical two-dimensional
systems; { = 64k; p = §.

clearly in Fig. 25 where the correlation functions for
this same system are plotted against temperature. We
see that nearest-neighbor correlation decreases only
slowly; however, the longer-range correlations drop
off markedly as the critical temperature is approached
and passed. The graph shows very clearly how long-
range order changes to short-range order at the
“critical” temperature. The behavior is completely
analogous to that found by Kaufman and Onsager in
their investigation of the two-dimensional Ising
ferromagpet.! Since in the two-dimensional Ising
model this behavior is associated with a phase
transition, one surmises that in the present instance it
might be indicative of an incipient change of phase.
The surmise is reinforced by the behavior discussed in
connection with Fig. 22.

C. Results for Two- and Three-
Dimensional Systems

Section 2B and 6B of Paper I dealt with applica-
tion of the present model to multi-dimensional
systems. In this section we present some results for
small two- and three-dimensional systems with
nearest-neighbor interactions only that were obtained
by computer. The potential used was:

two-dimensional three-dimensional

system system
V = {—64k s=1,m) G =1,m,k) Mod. N.
¢ 0 s=1,m Gs£1,mk
(3.15)

Two-dimensional systems accessible within the
restriction N < 15 are those having 4, 6, 8,9, 10, 12,
14, and 15 cells, respectively, while three-dimensional
systems are confined to N = 8 and 12.

18 g, Kaufman and L. Onsager, Phys. Rev. 76, 1244 (1949).
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FiG. 27. Specific heat vs temperature for two typical three-dimen-
sional systems; { = 64k; p = 4.

Specific-heat curves for typical two- and three-
dimensional fluids are shown in Figs. 26 and 27,
respectively. As in the one-dimensional case, the
curves exhibit a characteristic peak which is shifted
to higher temperatures with increasing dimensionality
of the system. Table V summarizes the “critical”
temperature data available for these systems. For the
two-dimensional system the exact value for the ratio
L/kT, is 1.76.1" 1t is seen that the values in Table V

TaBLe V. “Critical” temperature data for two- and three-
dimensional systems for { = 64k, p = 4.

*“Critical” temperature

(1) {IkT,
System
size 2-Dim. 3-Dim. 2-Dim. 3-Dim.
N) system system system system
6 36.76 — 1.74 —
8 39.62 59.63 1.61 1.07
9 40.10 — 1.59 —
12 39.34 61.32 1.62 1.04
14 35.65 —_ 1.79 —

fluctuate about the exact ratio within approximately
+109. These fluctuations are attributable to the
small size of the systems investigated, the differences
in symmetry of the systems, and the consequent
strong influence of boundary effects (spurious inter-
actions). (The 14-cell system, for example, consists of
two rows of seven cells each, while the 12-cell one has
three rows of four cells. There are thus obvious
differences in symmetry.) For the three-dimensional
system, Wakefield’s value of the corresponding ratio
is generally considered the most accurate!s:

exp {—2J/kT,} = 0.641.

17 L. Onsager, Phys. Rev. 65, 117 (1944).



CELL

[
<
-~
a
° ] ] 1 i ] | 1 1 1
02 04 08 08 10
DENSITY
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In terms of the parameters of the present model this is
equivalent to {/kT, = 1.05. (& for the nearest-neighbor
fluid corresponds to 4J for the ferromagnet.) Other
estimates of this ratio range from 0.98 to 1.09.13 The
values obtained from the model considered here fall
well within this range and differ from the best value
by less than 27;. This accuracy is most likely due to
the perfect and almost perfect cubic symmetry of these
two systems. It is nonetheless remarkable that such
close agreement should be obtained for assemblies of
so small a size.

Pressure-vs-density graphs for typical two- and
three-dimensional systems are shown in Figs. 28
through 30. They exhibit normal fluid behavior except
that there is, of course, no phase transition. Lowering
the temperature and increasing the system size are
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FiG. 29. Pressure-density curves for a nine—cell two-dimensional

system, various temperatures; § = 64k.
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Fic. 30. Pressure~density curves for an eight-cell three-dimensional
system; { = 64k.

both seen to lower the pressure for a given density.
In addition, one observes again the rather character-
istic inflection of the isotherms. The compressibility
curves for the 9-cell two-dimensional system in Fig. 31
correspond to the p—p curves in Fig. 29. One clearly
discerns anomalous behavior in these curves at
temperatures below the “‘critical” one. This same
behavior and the correlation between the inflection
of the p—p curve on the one hand and the correspond-
ing inversion of the K;—p curve on the other is shown
even more clearly in Fig. 32, where these two curves
for a 12-cell three-dimensional fluid have been super-
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Fic. 31. Compressibility-vs-density isotherms for a nine-cell two-
dimensional system; { = 64k.
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FiG. 32. Pressure-and- compressibility-vs-density isotherms for a
12-cell three-dimensional system.

posed on the same graph. Since we know that two-
and three-dimensional systems in the thermodynamic
limit are subject to phase transitions, one surmises that
this behavior in the pressure-and-compressibility
isotherms is indicative of an incipient transition. The
analysis in Sec.Il.Dand in particular Figs. 11 and 12
lend further credence to this surmise.

IV. CONCLUSIONS

The fluid model examined in this series of two
articles was seen to combine mathematical conven-
ience with considerable flexibility. Despite its simplicity
it proved capable of yielding realistic and consistent
thermodynamic results and of portraying phase
transitions correctly. In I it was found that the
introduction of a cellular structure made an otherwise
difficult problem mathematically much more tractable.
The price paid for this simplification was an uncer-
tainty in the instantaneous locations of the particles
comprising the system. One could only say that a given
particle is located within a certain cell with an un-
certainty proportional to the cell parameter. By
keeping the cell size small and in fact letting it
coincide with the particle’s exclusion sphere it was
possible to keep this uncertainty within reasonable
bounds. The model then represents an approximation
to real physical systems but is not exactly equivalent
to any such system. This is not the only approxima-
tion incorporated in the model. Others include the
assumption that the system can be treated classically,
the restriction of the configurational energy to pairwise
interactions, the adoption of the Lennard-Jones
potential with hard-core cutoff for the interaction
energy, etc. These latter approximations are fairly
standard, however, in theoretical investigations of
this type and appear to be quite reasonable for simple

R. G. TROSS AND L. H. LUND

nonquantum fluids such as the inert gases. The
discrete cellular structure also does not seem to affect
the thermodynamic behavior of the model too adver-
sely. In any event, qualitative agreement with the
behavior of real fluids is seen to be quite good and
even phase transitions can be reproduced in a quali-
tatively correct manner. Since the basic model investi-
gated here is a one-dimensional one, qualitative
agreement is perhaps all that can be expected. None-
theless, on occasions we found quantitative agreement
as well. The critical ratio 8,pv, mentioned in Sec. II
is a case in point. Such agreement may, of course, be
fortuitous.

Despite the relative mathematical simplicity of the
model it is surprisingly versatile. We noted this in I
already, where we saw how the basic one-dimensional
system in which all particles interact with one another
can be converted into a two- or three-dimensional one
with more limited interactions. It proved possible by
virtue of this transformation to obtain series expan-
sions in all dimensions by an identical straight-forward
algebraic method. Also, we noted there that the model
offers a convenient method for investigating the zeros
of the partition function, thereby providing further
insight into the analyticity of that function and
therefore into the nature of the phase transitions to
which it may give rise. Current research is being
focused on this area.

In the present article we have explored this versa-
tility of the model further by applying it to various
types of systems in order to investigate their thermo-
dynamic behavior. Thus we saw that the model
correctly and almost trivially yields the equation of
state of an ideal gas and of a Tonks gas in the limit of
no interaction and of only a hard-core interaction,
respectively. This provided further evidence of the
validity of the model, at least in that limit, over and
above the analysis in I. The one-dimensional fluid with
nearest-neighbor interactions, which was investigated
next, offered the unique advantage that the equation of
state and all thermodynamic functions can be written
in closed form. This system consequently offers a
mathematically very tractable model for investigating
thermodynamic behavior in a fluid having attractive
interactions of limited range combined with a hard
repulsive core. Obvious limitations of the system are
its one-dimensional nature and the consequent (by
virtue of Van Hove’s theorem) absence of a phase
transition. Nonetheless the behavior of this system
turns out to be surprisingly realistic in many ways.

If one is primarily concerned with phase transitions,
the one-dimensional fluid with attractive forces of
infinite range (i.e., where y — 0) provides an interest-
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ing test case. While physically this obviously does not
correspond to any real system, it represents an interest-
ing limit exhibiting typical transition behavior.
Investigation of finite systems of this type showed how
a phase transition is approached gradually with
increasing system size without need for recourse to a
Maxwell-type construction. In a 240-cell system the
pressure—density isotherm is practically indistinguish-
able from that of a fluid undergoing a true phase
transition, while the compressibility curve shows a
very realistic approach to a true discontinuity. Exact
analysis confirms the numerical results and indicates
that in the thermodynamic limit this fluid has an
infinite critical temperature.

In investigating finite one-, two-, and three-
dimensional systems of quite modest size the series
solution of the partition function used in this study
proved quite convenient for computer analysis. It
was found that small one-dimensional fluid systems
interacting with the full Lennard-Jones potential
exhibit many of the characteristics of real fluids.
There is, however, no phase transition for systems of
so small a size. Nevertheless several indicators suggest
that if one could investigate larger systems one would
see an approach to a phase transition just as one did
in the case of the infinite-range fluid:

(1) The maxima of the specific-heat curves seem to
approach a limiting critical temperature, other than
absolute zero, and also approach a typical shape.

(2) The pressure~density isotherms begin to show
a typical inflection that is usually associated with
systems approaching a phase transition. The com-
pressibility isotherms display a corresponding in-
version which could well presage an approach to a
discontinuity.

(3) Analysis of pair-correlation functions with
respect to temperature shows quite conclusively that
long-range order prevails at low temperatures and
changes quite abruptly to short-range order as the
“critical” temperature of the system is passed.

Analysis of small two- and three-dimensional
systems with nearest-neighbor attractive interactions
indicates that the “critical” temperatures obtained
from their specific-heat maxima agree within a few
percent with those obtained by other methods in the
thermodynamic limit. The excellent agreement
achieved is rather surprising in view of the very small
size of the systems investigated here and the conse-
quently quite pronounced effect of spurious inter-
actions. These systems exhibit the same behavior in the
pressure-and-compressibility ~ isotherms as  that
mentioned in (2) above. Since we know from other
evidence that two- and three-dimensional systems
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in the thermodynamic limit are subject to phase
transitions, one can by analogy construe this analogous
behavior of the pressure-and-compressibility isotherms
as further indication of a possible approach to a phase
transition in the one-dimensional case.

The model investigated in this study appears quite
promising and worthy of further examination. It
would be of particular interest to investigate the
general one-dimensional system with all interactions
active in the thermodynamic limit. To that end one
must either aim at finding a closed-form solution or a
valid approximation. Alternatively one should try to
extend computer analysis to very much larger systems.
These approaches are currently being investigated.
Other present research is concerned with critical
exponents and it is hoped that some results concerning
these will be available in the near future.
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APPENDIX A: THE HARD-CORE POTENTIAL
AND CELL PARAMETER

We first wish to show the connection between the
hard-core potential and the primed sums that occur
in the series solution, Eq. (1.1) of this article or Eq.
(4.7) of 1. Let us temporarily revoke the convention
adopted in I for mathematical convenience that
Vo= ¢y =0 (Mod. N). Instead we write the po-
tential explicitly as follows:

n={% (s =0)
Pol=ys' (s#0)
where [, , = 4o is the hard-core potential. The
corresponding Boltzmann factor is

exp (— B (s = 0)}
exp (BL[s") (s #0)

(Mod. N). (A2
The hard-core part of z, can be written as (1 — d; ) so
that the entire Boltzmann factor becomes:

z,=(1— 68,0) exp (BV)

=l e oo
—fs” (s #0).

It will be observed that V, is the potential of Paper I

with the convention ¥V, = ¢, = 0, which is seen to
arise naturally in this way. Consider now the primed

} (Mod. N). (A1)

z, = exp {—pn,} = {

(A3)
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sums in Eq. (1.1)
N N =n n
ta=0/nY Y - 2T I X0y (AD)

g1=1 gp=1 r=1 s=1
{r<s)

The primes imply that no index may be repeated in any
given term of the sum. Hence one can also write

N N n =n
t, = (1/n) 2 e z II H(l - 6(0,»0,))x(q,—q,)

gy==1 a,=1 1‘?—;1<§)=1

N N a2 =n
=(1/n')22 HHz(ar—a,H

q1=1 gg=1r=1 s=1
{r<s}

(A5)

where the sums in (A5) are now unrestricted and
where Eq. (A3) was used. Thus the primed summations
arise from the hard-core repulsive potential and
incorporate the exclusion principle that has been built
into the model. The expansion of these primed sums
is given, for the first few terms, in Sec. 6 of L.
Next, we wish to clarify the relationship that exists
between the cell parameter / and the hard-core
repulsive potential. Let d be the diameter of the
particle’s exclusion sphere (the particle’s exclusion
length in one dimension). Suppose we choose a cell
parameter such that /, <d. Then each particle
occupies —[—d[l,] =m’ cells, where [ ] means
“nearest integer equal to or less than.” The entire sys-
tem has L/l, = k cells where k > N, N being given by
L[l and [ is the usual cell parameter used in this study
(! = d). Assuming for convenience that m is odd, we
define m = (})(m’ — 1). The appropriate true po-
tential is now given by (A2). In view of the change in
cell dimension we must rewrite Eq. (A3) as follows:

2y = (1 - 63,0 - 6s,1 -t 6s,m - 63,N—1
_—rr 68,N—m) exp (ﬂvs)' (A6)

Upon introducing this Boltzmann factor into the
expression for z, one finds that one can write

k k n n
t, = (l/n D 2 e 2 H H(l - mla(qr-a,))x(q«*cs)’
=1 qn=1r==1 3=1
{r<s) (A7)
for a fluid of hard rods x, = 1, so that one has:
t, (x;=1,Ys) = (1/nDkk — m")
X k—=2m) -k —(n—Dm). (A8
Letting now k = Nm' (we shall choose /; such that N

is an integer), we find ¢, = (¥)(m’)" and the partition
function is:

=2, ) =3 ()

where y = exp (2») and 5 = my. Observing that

(A9)
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(M) = 0 for n > N, we obtain:
m’N(N

Qk=2

=)

n)ﬂ“ =L+ 7)Y = [1 + ('l

= (1 + DY = Qy. (A10)
This is the same as Eq. (2.1) and shows that choosing
the cell parameter smalier than the particle’s exclusion
length is a trivial variation of the choice adopted in
this study. It was pointed out in I that a choice of
1> d would not be useful in the present context.

APPENDIX B: COMPUTATION OF THE INTER-
NAL ENERGY DENSITY BY A DIFFERENT
METHOD FOR THE ONE-DIMENSIONAL

FLUID WITH NEAREST-NEIGHBOR
INTERACTIONS

The following analysis serves to check the validity
and meaning of Eq. (2.10). Obviously the first term in
this equation is the kinetic contribution and reflects the
one degree of freedom of the system. It requires no
further analysis. To proceed with the other terms we
define the following quantities:

N, = Expected number of occupied cells = (n).
N_ = Expected number of empty cells = N — (n).
N, , = Expected number of nearest-neighbor cells
with both cells occupied.
N__ = Expected number of nearest-neighbor cells
with both cells empty.
N,_ = Expected number of nearest-neighbor cells
with one cell occupied and one empty.

The following relations are easily seen to hold
between these quantities:

2N,, + N, =2N,
2N__ + N,_=2N._
N, +N_+N_=N.

Let us define a parameter (short-range order param-
eter) o as follows:

(B)

N
0= (lfN)<§16fO'r+z> =({/N)(Nip + N__—N,)

=1—N, [N=1+4y— 4p, (B2)

where # = N, . [N. One can determine ¢ from the
partition function as follows [see Eq. (2.10) of 1]:

N
o= Ay/N % {Z_lo'ra,ﬂ

a.

N N
X exp {:E z o'sgs—l»l + v z Gs]}/QN
s=1 s=1

where € = 0, = (})B{ and Ey = 43'Qy. We have
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then, using (2.7),
o = (9/d¢){e + In (cosh ») + In [1 + (1 + w)}]},
=1 — [2x7" sech?»)/[1 + @ + (1 + 0)}].  (B4)
For the configurational energy of the system we have:

N N
U, = (%)<z z a+ Ur)(l + Gr+s)>¢s3 (BS)

r=1s=1

where ¢, = —({/2)(d,1 + O, y_1). Carrying out the
summations indicated one obtains

U, = —LI(N4) + (N[2)2p — 1) + (N[4)d], (B6)
so that, using (B4), we have
u, = U,N
= —p — [x*sech®s]2(1 + o + (1 + w)}]}.
(B7)

This is exactly the configurational part of (2.10). By
means of (B1) and (B2) one notes that (B6) can be
rewritten

U, = —Np— } + 3o)l = —INy = —IN,,. (BS)

This represents just the interaction of all nearest-
neighbor occupied cells, as one would expect on
physical grounds.

APPENDIX C: RELATIONSHIP BETWEEN
VARIOUS CORRELATION FUNCTIONS

We wish to establish the relationship between the
correlation parameter used in this study and defined
in (3.7) on the one hand and the usual pair-correlation
functions. Attention is confined to the case p = } for
reasons indicated following Eq. (3.7). The a priori
probability that a cell is occupied or empty is 4. The
joint probability that cells i and j have occupation
indices o, and ¢, respectively is

W(o;, o) = W(e)Wl(o,[o,) = H)W(a;fo;), (C1)
where W(a,/0,) is the conditional probability that cell
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i has occupation index o; given that cell j has occupa-
tion index o,. Let us suppose that we can write this
conditional probability in the form

W(o,Jo) = W(g)(1 + M) = B[ + M,).
Then

(&)

W, o) = DU + M, (C3)

Now, given that cell j has occupation index o,, the
probability that cell i has the same occupation index
and the probability that it has the opposite index are
mutually exclusive events. Consequently,

(0;0,) = (probability that cells i and j have the same
occupation index) (41) + (probability that
cells 7 and j have opposite indices) (—1)

=M,

and so
W(o;, 5,) = (D + (5,0,)). (C5)

We can therefore write the correlation parameter in
the following form, with the help of Egs. (3.7) and
(C5)
N
S; =(4/N)> W(o,,0,,) — L.
r=1
One readily verifies that this equation yields the correct
limiting values of 41, —1, and O for perfect corre-
lation, perfect anticorrelation, and no correlation
respectively.
In terms of the usual pair-correlation function,
defined as follows:

W(a;, 0,) = W(c)W(c,)C?(0,, 0,)
= (HC?(q;, 0,); (e9)]

we can write the correlation parameter in the following
forms:

(C6)

5= N300~ 1 ()

Or, in terms of the Kirkwood correlation functions?®:

Si=1/(N — 1)% g¥(0,, 0 — 1. (C9)
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Class of Exact Invariants for Classical and Quantum
Time-Dependent Harmonic Oscillators*
H. R. Lewis, Jr.
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A class of exact invariants for oscillator systems whose Hamiltonians are
H = (1/2¢) [p* + Q%1)q?]
is given in closed form in terms of a function p(¢) which satisfies
e d2p/dt® + Q(t)p — p~3 = 0.

Each particular solution of the equation for p determines an invariant. The invariants are derived by
applying an asymptotic theory due to Kruskal to the oscillator system in closed form. As a consequence,
the results are more general than the asymptotic treatment, and are even applicable with complex Q(t)
and quantum systems. A generating function is given for a classical canonical transformation to a class of
new canonical variables which are so chosen that the new momentum is any particular member of the
class of invariants. The new coordinate is, of course, a cyclic variable. The meaning of the invariants is
discussed, and the general solution for p(¢) is given in terms of linearly independent solutions of the
equations of motion for the classical oscillator. The general solution for p(¢) is evaluated for some special
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cases. Finally, some aspects of the application of the invariants to quantum systems are discussed.

I. INTRODUCTION

The systems to be discussed are those for which
there is a Hamiltonian of the form
1
H=—[p"+ Q%t)q"], (1)
2e
where ¢ is a canonical coordinate, p is its conjugate
momentum, Q(¢) is an arbitrary complex function of
t, and e is a positive real parameter. If the system is a

quantum system, then g and p satisfy the usual
commutation relation

l9, p] = ih. @

For brevity, we refer to a system whose Hamiltonian
is given by Eq. (1) as a time-dependent harmonic
oscillator.

For a time-dependent harmonic oscillator there is a
class of exact invariants I of the form!-2

I'=13[p¢" + (pp — £'9’), 3
where p is any function of # satisfying
ep” + Q¥(p — p? =0, 4)

and the prime denotes differentiation with respect to 7.
Equations (3) and (4) define a class of invariants

* Work performed under the auspices of the U.S. Atomic Energy
Commission.

1H. R. Lewis, Jr., Phys. Rev. Letters 18, 510 (1967); also an
erratum: Phys. Rev. Letters 18, 636 (1967).

2 Professor K. R. Symon has brought to my attention that these
invariants are related to quantities used in the analysis of beam
oscillations in an alternating-gradient synchrotron. See, for example,
E. D. Courant and H. S. Snyder, Ann. Phys. (N.Y.) 3, 1 (1958).

because p may be any particular solution of Eq. (4).
The quantity 7 is an invariant for quantum as well as
classical systems.

If Eq. (4) be solved recursively to give p as a series in
positive powers of e, then that p can be substituted
into Eq. (3) to give I as a series in positive powers of e.
For classical systems with real €2, that series for /is the
usual adiabatic-invariant series whose leading term is
proportional to (eH)/Q. The study of the adiabatic
invariant has received considerable attention in the
literature,31! often in connection with the motion of
a charged particle in a particular electromagnetic
field.*? Recently, Kruskal'® has developed a general

3 A. Einstein, Inst. intern. phys. Solvay, Conseil phys., Rapports
et discussions, 1, 450 (1911).

4 R. M. Kulsrud, Phys. Rev. 106, 205 (1957).

5 F. Hertweck and A. Schliiter, Z. Naturforsch. 12a, 844 (1957).

6 G. Backus, A. Lenard, and R. Kulsrud, Z. Naturforsch. 15a,
1007 (1960).

7 S. Chandrasekhar, The Plasma in a Magnetic Field, R. K. M.
Landshoff, Ed. (Stanford University Press, Stanford, 1958), p. 3.

8 A. Lenard, Ann. Phys. (N.Y.) 6, 261 (1959).

® L. M. Garrido, Progr. Theoret. Phys. (Kyoto) 26, 577 (1961).

10 J, E, Littlewood, Ann. Phys. (N.Y.) 21, 233 (1963); also, Ann.
Phys. (N.Y.) 29, 13 (1964).

11 G. Knorr and D. Pfirsch, Max-Planck-Institut fiir Physik und
Astrophysik (Munich, Germany), Report No. MPI-PAE/PL.15/65,
1965.

12 The equations of motion for a classical time-dependent har-
monic oscillator with complex ¢ and p are exactly equivalent to the
equations of motion for a charged particle moving nonrelativistically
in the electromagnetic field for which the scalar potential is zero and
the vector potential is A = 34()B, X r, where k(f) is a function of
time, B, is a constant vector, and r is the position vector. (See the
reference given in Footnote 5.) With these electromagnetic potentials,
the magnetic field B is given by 4()B,, and the electric field E is
given by —(1/2¢)(dh/dt)B, X r. The quantities {}(#) and e in Eq. (1)
are, respectively, $B(s) and the ratio of mass to charge of the particle.

There has been some confusion in the literature about the gener-
ality with which the equations of motion for a time-dependent
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asymptotic theory of a class of nearly periodic classical
systems, among which is included the classical time-
dependent harmonic oscillator with real . The class
of exact invariants defined by Eqs. (3) and (4) was
derived as a result of applying Kruskal’s asymptotic
theory to the classical oscillator with real Q.1 It is
possible to apply the theory to that system in closed
form, in terms of ¢, p, and the function p(¢), without
demanding the adiabatic results in the limit of small e.
As a consequence, from the asymptotic theory we
obtain exact, nonasymptotic results that are even
applicable with complex €2 and quantum systems. This
is apparently the first example of an application of
Kruskal’s theory in which nonasymptotic results are
obtained, or in which the structure of the functions
defined in the theory can be examined in detail.
Possibly this example can serve as a model for
application of the theory to more complicated
problems to obtain similar results.

In Sec. II we derive the invariant defined by Egs.
(3) and (4) starting from Kruskal’s asymptotic theory.
In Sec. ITI we give a generating function for a classical
canonical transformation to new canonical variables
which are so chosen that the new momentum is 1.
The new coordinate is a cyclic variable, as it must be,
since I is an invariant. In that section we also discuss
the interpretation of I and its relation to the adiabatic
invariant series, and we give the general solution for

harmonic oscillator are equivalent to the equations of motion for a
particle moving in a uniform but time-dependent magnetic field.
(See the references given in Footnotes 5, 7, 9, and 11.) The point
that is sometimes overlooked is that there are many possible electric
fields that are consistent with the uniform magnetic field. The
electric field given above is the only axially symmetric electric field,
for which the charge density is everywhere zero, that is consistent
with the uniform but time-dependent magnetic field A(1)B, . However,
if the symmetry and charge-free restrictions are removed, then there
are other electric fields possible. We can change E without changing
B by introducing any space- and time-dependent scalar potential
@ and by adding to the vector potential the gradient of any space-
and time-dependent scalar function y. The charge density corre-
sponding to the new electric field is proportional to

Vi + (1/c)0x/01].

Even if this expression vanishes, the new electric field can still differ
from the one given above. The equations of motion for a particle
moving in the new electromagnetic field are generally not equivalent
to the equations of motion for a time-dependent harmonic oscillator.

13 M. Kruskal, J. Math. Phys. 3, 806 (1962).

14 See also R. M. Kulsrud, Princeton University Plasma Physics
Laboratory Semiannual Report No. MATT-Q-20 (July 1, 1962-Dec.
31, 1962). The existence of this unpublished reference was kindly
made known to me by Dr. Clifford Gardner after the present work
was completed. The last term of Eq. (5) of the reference should be
multiplied by £, with corresponding changes in subsequent equa-
tions. Except for that error, an invariant equivalent to 7 was derived
by Kulsrud in this reference by a different method. His objective was
to obtain the asymptotic series representation of the adiabatic
invariant of the system in positive powers of e. It was apparently not
realized that the result obtained was an exact, nonasymptotic result;
that a class of exact invariants had been defined, rather than just
the one adiabatic invariant; and that the result is applicable to
classical systems with complex () and to quantum systems.
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p in terms of linearly independent solutions of the
equations of motion for a classical oscillator. The
function p is given explicitly in Sec. IV for some special
cases. In Sec. V we show that 7 is a constant of the
motion for a quantum time-dependent oscillator,
derive its eigenvalues and eigenstates, and calculate
the expectation values of H in those eigenstates. A
complete discussion of the quantum system in terms
of I will be given later.'s

II. DERIVATION OF THE INVARIANT START-
ING FROM KRUSKAL’S THEORY

A. The Equations in Standard Form

We begin by considering a classical time-dependent
harmonic oscillator for which Q is a real function.
In that case Hamilton’s equations of motion for the
system can be written in the standard form to which
Kruskal’s asymptotic theory?® is applicable. The usual
form of Hamilton’s equations of motion is

dg _oH _1

dt ap e

dp oH 1

L= = = — = Q¥g. 5
" % - (g (%)

In order to apply Kruskal’s theory, these equations
must be replaced by an equivalent first-order auton-
omous system, all of whose solutions are periodic
in the independent variable in the limit € = 0. This
can be achieved by introducing a new independent
variable s, defined by s = t/¢, and treating ¢ as an
additional dependent variable. The system of equations
so obtained can be represented compactly as

dx/ds = F(x, €), (6)
where x and F(x, ¢) are vectors defined by
Xx=(¢q,p1),
F(x, €) = (p, —Q%(t)g, €). )

Because ¢ is now a dependent variable, this system is
autonomous. The € = 0 system, obtained by replacing
F(x, ¢) in Eq. (6) by F(x, 0), is

dq/ds =p
dplds = —Q2(t)q, ®
dt/ds = 0.

The solution of the last equation is 7 = const and,
therefore, the other two equations are just the

15 H. R. Lewis, Jr., and W. B. Riesenfeld, “‘An Exact Quantum
Theory of the Time-Dependent Harmonic Oscillator and of a
Charged Particle in a Time-Dependent Electromagnetic Field ” (to
be published).
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Fic. 1. Defini-
tion of the vari-
ables v and ».

a(t)q

harmonic-oscillator equations with a constant fre-
quency. Since 2 is real, this means that the dependent
variables of the € = 0 system are all periodic in s with
period 27/€(t). Therefore, Eq. (6) is indeed of the
standard form required by Kruskal’s theory.

B. More Appropriate Variables

The next step in applying Kruskal’s theory is to
transform variables from x to so-called “more appro-
priate variables” y = Y(x) and v = N(x). These vari-
ables are to be defined such that y, a two-component
vector, is constant on the integral curves of the e = 0
system, and such that », an angle variable, changes
monotonically by an amount 2+ around each of those
closed curves. The definition of the more appropriate
variables that we use is

y=Y(x) = (1),
and

v = N(x) = tan™ [ ()

P
Q(t)q}
v = [Q(D)g® + P

The relation between the variables (v, v) and the
variables (g, p) is shown in Fig. 1. The inverse trans-
formation is given by

where

X = [—U- cos ¥, v sin ¥, t]. (10)
Q1)

The equations satisfied by y and » are!®

dylds = eg(y, "),

dvlds = y(y, v), (11)
where
eg(y, ) =1-V,.Y = e(v dln Qcos2 v, 1),
oy, ) =1-UN = -0 — e 0L 0 s cosn. (12)

16 The quantities v, N, and y correspond, respectively, to the
quantities —2mv, —27 Y, and —2my defined by Kruskal.
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C. Nice Variables

The reason for defining the more appropriate
variables is to provide a convenient means for defining
one further transformation of variables—from the
more appropriate variables to so-called “nice vari-
ables,”

z=1(y,),
and

(13)

The variable z is a two-componerit vector and ¢ is an
angle variable. The functions Z and ® are to be chosen
such that the equations of motion for the oscillator,
written in terms of z and ¢, are

@ = Oy, »).

dizjds = €h(z),

dolds = w(z), (149)

where h(z) and w(z) are functions independent of ¢
that are to be determined along with Z(y,») and
O(y, »).

The motivation for defining nice variables is that
we can use them to specify an important set of closed
curves known as rings. The rings are those curves on
which z is constant, and they are closed because ¢ is an
angle variable. The definition of the rings does not
depend on the variable s because, by virtue of the
fact that the function h(z) appearing in the first of
Egs. (14) is independent of ¢, the family of rings is
continuously mapped into itself if each ring is allowed
to change with s according to Eqs. (14). In our
oscillator problem it is possible to choose the rings
such that they lie in the planes given by ¢ = const,
and we shall choose them in that way. As a result, the
rings can be used to define an invariant / in terms
of an action integral:

1=+

d
27T ringp q
1 (& 0X
= — — X, dog, 15a
2rte 2 op ¢ (15)
where
q = Xl(za ¢):
P = X,(z, ¢). (15b)

This invariant is the one given by Eqgs. (3) and (4).

The equations that must be satisfied by Z, ®, h, and
w are easily determined. The periodicity conditions
on Z and @ that result from taking ¢ and » to be
angle variables are

Z(y, v + 2m) = Z(y, ),

Oy, » + 27) = By, ) + 2. (16)
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The partial differential equations that must be satisfied
subject to these periodicity conditions can be derived
by substituting Eqs. (13) into Egs. (14), performing
the differentiations, and using Eqs. (11) to eliminate
dy|ds and dv/ds. The equations are

0Z
g-V,Z+yp F ¥ eh[Z(y, )],

gV, 0 + w%? = o[Z(y, v)]. 1mn
Thus, to calculate the invariant J/, we must first solve
Egs. (17) for Z and @ subject to the periodicity
conditions. Then we must invert the transformation to
nice variables to obtain ¢ and p in terms of z and ¢.
Finally, we must evaluate the action integral given in
Eq. (15a).

Kruskal showed that nice variables can be found
which are asymptotic series in positive powers of e,
and he gave a prescription for finding the terms of the
series recursively. He also showed that the inverse of
the asymptotic transformation to nice variables exists
and can be constructed. For our oscillator problem
it is possible to find a class of transformations to nice
variables expressed in closed form. The transforma-
tions depend on the function p which is defined by Eq.
(4), and each particular solution of that equation
determines a transformation. The recursive solution
of Eq. (4) in positive powers of ¢ gives the asymp-
totic transformation considered by Kruskal.

Probably the major complication of Eqs. (17) is that
the terms to the right of the equality signs are unknown
functions of unknown functions, and the first step in
solving the equations is to remove that complication
The clue to domg so is obtained by actually carrying
out the recursive solutions of Eqgs. (17) for two or three
terms of the series, and then to notice that the de-
pendences of these terms on their arguments can be
represented as follows:

Z(y, v) = {Z\(y, ), Z(y, )}
= {vf1(t, v), 1},
O(y, v) = fo(t, v), a8)
h[Z(y, v)] = {Z,(y, )k, (1), 1}
= {v/1(t, vk, (1), 1},

w[Z(y, V)] = ky(?).

The next step is to realize that these special forms of
the unknown functions are completely consistent
with Eqs. (17) and with the periodicity conditions.
We now take Eqgs. (18) as a special ansatz for finding a
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class of particular solutions of Eqs. (17). By substitut-
ing Eqs. (18) into Eqgs. (17) we obtain the following
equations for fi(z, v), f5(t, v), ki(t), and ky(¢):

%y fll:kl(t) _4 lntQ cos® v],

at
Ly f = k),

at ”’a

where, as before,

(19)

dln Q

py=—0Q—c¢ sin ¥ cos ».

The periodicity conditions on Z and @ require

fl(t’ 4 + 277') =f1(t’ ’V),

fult, v + 27) = fi(t, v) + 27, (20)

We have now replaced the problem of solving Egs.
(17) subject to the periodicity conditions on Z and ®
by that of solving Eqs. (19) subject to the periodicity
conditions on f; and f,. By so doing we have achieved
an enormous simplification. Firstly, Egs. (19) do not
involve unknown functions of unknown functions.
Secondly, the equations for f; and f; are not coupled.
Thirdly, f;, fa, k1, and k, do not depend on the
variable v.

It is convenient to approach the problem of solving
Egs. (19) by the method of characteristics. The two
sets of characteristic equations are

i
a_ v
dfl fl[ dln O cos? v], 1)
and
e(dvfdt) = vy,
e(dfyldr) = k. @)

We shall solve Eqs. (19) via their characteristic
equations by first solving them for a special choice of
Q(t), and then generalizing that method of solution to
include arbitrary choices of Q. In determining the
solutions, for a general Q as well as for the special
choice, we shall always take fi, f;, k,, and k, to be
O(1) in e, so that they agree with the asymptotic
treatment given by Kruskal. This will mean that the
function p(t) will be taken as a solution of Eq. (4)
that is O(1) in . However, after the problem has been
solved with those restrictions, we shall notice that we
still have valid solutions for f1, f;, ky, and k, even if
p(t) is taken to be any particular solution of Eq. (4),
without regard to its order in «.
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D. A Special Case

We can learn how to solve the characteristic
equations [Eqs. (21) and (22)] with an arbitrary Q(z)
by first solving them with an Q(¢) for which the
e(dv/dt) = v equation is separable. We choose

Q= 1/(B— Ap), (23)
where A and B are constants, so that
dIn Q)dt =
Then Eqs. (22) take the form
dv
dt At (1 + €A sin ¥ cos »),
e(dfs/dt) = k,. (22)

The general solutions of these equations are given by

gt 12D+ e(4/2)
$(t,7) = ta :{1 - [e(A/Z)lz}é}

— e 2t
—{—I—-I(Aiﬂll-ln(At—B)=

i
51 f ka(t") dt' = const, (24)
€
where C = const. Thus, the general solution of the
second of Eqgs. (19) is

(25)

fults ) = f k(t') dt’ + 2[4t )],
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where y is an arbitrary function. In order to satisfy
So(t, v + 2m) = fo(1, v) + 27, we take y such that
2(w) = w. (A constant could be added to this, but it
would be redundant, because of the indefinite integral
in the expression for f;.) Then, in order that f, be
O(1) in €, we take k, such that

f k() dt” = [e(A {1 — [P

where Fyis an arbltrary function that is O(1) in e. The
expressions for f,(¢, ) and k,(¢) are then

-1 [ tanv + €(A4/2) F
! {{1 —[e(A/2>12}*} o0

ko(t) = — {1 — [e(Alz)F}*

In (At — B) + €Fy1),

ft,v) =ta
+ eFy(n). (26)

In order to find f; and k;, we must integrate Egs.
(21). For the Q given by Eq. (23), those equations
can be written as

‘Z At (1 + €A sin » cos »),
dfi/dt =f1[k1(t) — AQ cos®7]. (219

The first of these equations has already been solved
[Egs. (24)]. Using that solution, we rewrite the
second equation as

dn fi/dt = k() — G(¢, C),
where

AQ

G(t,C) =

The general solution of this equation is given by
t
Inf; — f {ki(t") — GIt', §(t, »)]} dt’ = const.

The integral involving G can be brought into a stand-

f GIe', 4, )] dt

1+ { ~e(A]2) + {1 — [«(4/)T} tan [C _ il—_[e(;ﬂ)]z_}* ftg(t,) dt’]:z.

ard form' by changing the variable of integration

from ¢’ to .
o = d(t, 5) — L= [A2TF f o) ar.

The result is

cos® w
dw,

w
=f {1 + [e(A[2)F} cos® 0 + {1 — [e(4/2)T*} sin® w — 2[e(4/2)]{1 — [e(4/2)]F}? sin o cos w

where

nt ot
W = é(t,») — ﬂ;[ﬂﬂf Q') dt’

— tan-1 { tany + €(A4/2) }
{1 — [(4/2F}

Remembering that any function of ¢(f,») may be
added to the integral, we can write the value of the

17W. Grobner and N. Hofreiter, Integraltafel, Erster Teil:
Unbestimmte Integrale (Springer-Verlag, Vienna, 1961), 3rd ed.,
p. 124.
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integral as
t
J GIt', $(1, )] dt’
A 17
-2 j Q(t') dt’ + } In (cos® W
+ {—e(Af2) cos W + {1 — [(4]2)1*}} sin W}
A [t 1 + tan®»
== | UtYdt' + }In| ————1|. 27
ZJ () de 3 [1+tan2W] @7
Thus the general solution of the first of Eqs. (19) is

Inf, = f "ty dt’ — GIY, §(t, W]} di’ + 71905, 7]
- f Tty dt’ — % f ‘) dr

1 4 tan®y
— 1 [—————1 - W} + 21, ¥,

where y is an arbitrary function. In order to satisfy
f(t, v + 27) = f1(¢, v), and simultaneously to make
/1 be O(1) in €, we must take y to be a constant func-
tion:

t A t
Inf, = f () di’ =2 f Q') dr’
2
—}1n [———1 + tan ”].
1 + tan® W
We now introduce another function, F,(¢), such that

t t
f k(1) dt’ = ﬁ;- j Q(t') dt’ + In Fy(f),

where F,(?) is an arbitrary function that is O(1) in e.
The expressions for f1(¢, v) and k,(¢) are then

1+ tan® w7t
t,v) = Fy(f)| —22 2
£t ») 1()[1+tan2v}

{ tan v + €(4[2) }2 4
{1 — [(4/ 1
1 4 tan®»
14 dlnF,
kl(t)_ZB—At+ dt

Thus, with Egs. (26) and (28), we have solutions of
Egs. (19) and (20) for our special Q. We shall generalize
these solutions to a wider class of solutions that are
also valid for an arbitrary €.

= Fy()

b

(28)

E. fi,f2, ky, and k, for Arbitrary Q
We now turn to the solution of Egs. (19) for
arbitrary  and, as with the special case, work with the
characteristic equations, Egs. (21) and (22). The
initial step is to generalize the first of Eqs. (24) to
find a function ¢(, ») such that ¢(¢, ») = C = const
is an integral of e(dv/dt) = . This is equivalent to
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requiring ¢(¢, ») to satisfy
o . 94
== —=0. 29
o Vo )

It is convenient to replace the variable » by u = tan »,

so that Eq. (29) becomes

¢ 2 dIn Q04

—— | Q1 u——|==0. (30

€at [(+u)+e dt }au (30)

As a generalization of the first of Egs. (24), we let
¢(2, v) be of the form

ot u + egy(t)
é(t, v) = tan (—{1 — [egg(t)]z}%)

42 f {1 = [egs(R Q) ar,

where g;, g,, and g; are functions to be determined
such that ¢ satisfies Eq. (30). If we substitute ¢ into
Eq. (30) and clear of fractions, we obtain a quadratic
expression in u that must vanish. Setting the coeffi-
cients of 1, v, and u* equal to zero separately, we
obtain three equations for g;, g, and g;. After some
manipulation, we find that these functions can be
replaced by the single function p(¢) defined by Eq. (4).
The final expression for ¢(¢, ) in terms of p(7) is

é(t, v) = tan™! |:p2(Q tany — e diir; P):I

i
+ [, on
€
where p is any particular solution of

p” + Q¥ ()p — p* = 0. )
The particular solution of Eq. (4) that appears in the
first of Egs. (24) is
p= {1~ [(4DT} 4B — ant.

The determination of f; and k, now proceeds
exactly as in the special case. The general expression
for f, is given by Eq. (25), and we again take y such
that y(w) = w. Assuming for the moment that p(¢)
is O(1) in €, we choose k, such that £, is O(1) in € also:

1 t
f k(t") dt’ = — f P ) dt + eFy(t),

where F,(¢) is an arbitrary function that is O(1) in e.
Then the final expressions for f(t, ¥) and k,(¢) are

fo(t, ) = tan™" [p2<Q tany — e di; p):l + Fy1),

ky(t) = —p7(1) + €Fy(1). (32)

Even if we drop the requirement that p(¢) and Fy(t)
be O(1) in €, Eqs. (32) represent a valid solution of the
second of Egs. (19), with the correct periodicity
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condition on f,(¢, ). We do drop that requirement
and thereby obtain a more general solution.
We now determine f; and k. Using the solution

H. R. LEWIS

Egs. (21) as
dlnf,

dt

= kl(t) - G(ta C)a
where

1

of the e(dv/dt) = y equation, we write the second of
Gt, C) = dln Q
dt dinp

As in the special case, the solution of this equation is
given by

In f; _ft{kl(t’) — G[t', ¢(t, »)]} dt’ = const.

The integral involving G[t’, (¢, )] can be represented
by a formula similar to Eq. (27), which holds for the
special case. In particular, it can be represented by

¢ t
f G[t', ¢(t, V)] dt' = f ri(t’) dt’

+ 3 1n {cos® W + [—ry(t) cos W + ry(f) sin W]*},
where

t
W=don - [/, 63
€

and where ry, ry, and r; are functions to be determined.
By differentiating this formula and clearing of
fractions, we obtain a homogeneous quadratic equa-
tion in sin W and cos W. Satisfying the equation
separately for the coefficients of sin?® W, sin W cos W,
and cos? W, we obtain equations for ry, ry, and r;.
After some manipulation, we find that the integral
can be represented in terms of p(f), with no further
need of r,, ry, and ry. The result is

f ‘GIt', $(t, W] dt =10 Q — }1n p°

2
+ %ln {cos2 W+ Q‘zl:e d i; P cos W + p~%sin W:l }

(34)
Using this formula, we can now write the general
solution of the first of Egs. (19) as

mﬂ=f%ﬁ0—Gm¢@ﬂHW+mW@ﬂ]

t
= f k() dt' —1n Q + 3 1n g~

din p

—3In {cos2 W+ Q‘”[e cos W

2
+ p7%sin W] : + 2[$(t, )]
= tkl(t’) dt' —In Q + }In p?

2
‘+““”]+xwan

—3In [1——+ o 35).

1+Q‘2{——
““u T

e “tan [C - % f tp_z(t') dt’]}z.

where x is an arbitrary function. As in the special
case, we take y to be a constant function, and we
choose k, such that

t
f k@) dt' = 1n Q — }1n p~° + In Fy(1),

where F) is an arbitrary function. We no longer require
ps F1, f1, or k; to be O(1) in €. The final expressions
for f1(t, v) and k,(¢) are

1 + tan? w)?
t,v) = Fy()|—————
) a%1+mﬁv}
2\ §
14 [pz(Qtanv—eﬂl—p):l
=F1(t) d -
1 + tan®w

ky(t) = —;itln [F,Qpl. (36)

F. The Invariant

The transformation from x = (g,p,t) to nice
variables z = (z,, z,) and ¢, which is defined by Eqgs.
9), (13), (18), (32), and (36), can now be written as

7t
2= RO + o p - L] ],
Zg =1, (37
1| sfP dinp
@ = tan l:p (— —€ ):l + Fy(1).
q dt

The rings, defined by z = const, are simply ellipses
in the planes defined by ¢ = const. The inverse
transformation, from the nice variables to x, is

Zy
F,Q[L + tan®(p — F)I}’
zl[e‘—i—g;—e + p%tan (p — Fa)]

’

q =X1(Z, (P)= +

= X " = &+
P =Xz ) F,Q[1 + tan? (¢ — F)Jt

(38)

At this point it is easy to calculate the invariant I by
means of Eq. (15a). The result is

2\F,Qp)’

t=z,.
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or, expressed in terms of ¢ and p,

I=1}0p7g* + (pp ~ €p'9)’) L)

Although, in order to satisfy the requirements of
Kruskal’s asymptotic theory, we originally assumed
Q) to be real, it is clear that the derivation of the
invariant in no way depends on that. As a matter of
fact, it is easy to verify dI/dt = O for the general case
of Q, g, and p complex, with any particular solution
of Eq. (4), by differentiating Eq. (3), using Egs. (5)
to eliminate dg/dt and dp/dt, and using Eq. (4) to
eliminate d2p/df?. We shall see later that 7 is also an
invariant of the quantum time-dependent harmonic
oscillator even if € is complex. Throughout the
remainder of this paper, we shall allow € to be
complex, except where the contrary is explicitly
stated.

I. GENERAL DISCUSSION OF I AND p
A. A Generating Function

Having found the explicit form of the invariant I,
it is possible to define a transformation to new canon-
ical variables in which the new momentum is the
invariant itself. A generating function of the canonical
transformation can also be found.!® Kruskal'® showed
that the new canonical coordinate Q and its conjugate
momentum P can be taken as

dIn
-orma (i 4]
Q ® n [p . <

P=1=13[p"¢ + (pp — ep'q)*].

[The arbitrary function Fy(f) has been arbitrarily set
equal to zero.] It is simple to check that the Poisson
bracket of Q with P satisfies

[0, P]1=1

for any p(t), even if p(r) does not satisfy Eq. (4).

The transformation to the variables Q and P can be
generated by a function F(g, Q, t) by the following
scheme?®:

(39)

p = 0Fjoq,
K = H + (0F/or),

(40)

where K is the Hamiltonian appropriate to the new
canonical variables. The first two of these equations
may be integrated to give F(q, Q, t) by expressing p

18 More than one generating function can be found, one of which
is given in Ref. 1. A much simpler generating function is given in the
present paper.

1% H. Goldstein, Classical Mechanics (Addison-Wesley Publ. Co.,
Inc., Cambridge, Mass., 1950), p. 240.
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and P in terms of ¢, 0, and ¢:

p = p?q(epp’ — tan Q),
P = }p~%¢*(1 + tan® Q).

When that is done, we find that a suitable generating
function and new Hamiltonian are

F(g, Q, 1) = —}p~°q(tan Q — €pp’),

K = (1]¢) p~°P. (41)

Equation (4) is necessary in deriving this expression
for K. Since K does not involve Q, we see again that P
is an invariant provided that p satisfies Eq. (4).
Hamilton’s equations of motion written in terms of
Q and P are

9 _oK _1 .,
dt oP € P

dP dK

— =——=0 42
dt 00 “2)

It is interesting that the first of these equations can be
written as
140 _

3
P
e[P*p] r

P.

This is of the same form as the equation expressing
conservation of angular momentum for a particle of
mass € moving in an axially symmetric force field, if
we interpret (P¥p) as a generalized radius, Q as a
generalized angle, and P as a generalized angular
momentum.

B. Interpretation of

To within a constant factor, the invariant 7 is the
most general invariant of a time-dependent harmonic
oscillator that is a homogeneous quadratic form in ¢
and p. This is because there is a two-parameter family
of functions p(¢) that satisfy Eq. (4). By writing the
most general such invariant in terms of two linearly
independent solutions, f(¢) and g(¢), of

2
¢y g =0, (@3)
dr®
and then using the equivalence between I and the
general homogeneous quadratic invariant, it is possible
to write the general solution of the nonlinear equation
for p(t) in terms of f(¢) and g(¢).

We can write the general solution of Egs. (5) in

terms of fand g as

q=D1f+ ng’
p = <D’ + Dig),
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where D, and D, are arbitrary complex constants.
Solving these equations for D; and D, in terms of g,
p, f, and g, we obtain

D, = (e} (eg'q — gp),

D, = (e (fp — ¢f'g),

where « is a constant (the Wronskian) defined by
a=fg —gf.

Using these expressions for the constants D, and D,,
we can write the most general invariant that is a
homogeneous quadratic form in ¢ and p as

(44)

AD? + B®D: + C*D, D,,

where A, B, and C are arbitrary complex constants.
The allegation is that this is proportional to 7. That is,

A®D? + B®DZ + C2D,D, = 2E°I,

where E is another arbitrary complex constant. By
expanding both sides of this equation and comparing
terms, it is seen that the equation is indeed correct,
provided that 4, B, C, and E are related by

BRI

and provided that p is given by
A\? BY
p= 71(606)_1{ (E) g+ (E) f?
AV (B LAY
{4 -,

=+l

where

and
ys = 1.

This is the general solution of Eq. (4), written in
terms of f(t), g(t), and the constants (4/E), (B/E),
y1, and y,. In Sec. 1V we shall use Eq. (45) to work
some examples explicitly.

Before leaving the question of the interpretation of
I, we make note of an interesting connection between
the classical time-dependent harmonic oscillator and
the Schrodinger equation. Equation (43) is of the same
form as the time-independent, one-dimensional
Schrodinger equation if we let ¢ represent the spatial
coordinate and ¢ represent the wavefunction. For
bound states (Q is imaginary, and for continuum states
Q is real. Thus, the invariant I specifies a relation
between the wavefunction and its first derivative.

(45)
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C. The Adiabatic Invariant Series

It is possible to solve Eq. (4) recursively to give p
as a series in positive powers of €2 or (1/e2). If we take
that solution in positive powers of € whose leading
term is Q~%, substitute it into Eq. (3), and expand the
result in powers of e, then we obtain the usual adia-
batic invariant series. As we shall see in Sec. IV,
there are examples in which the solutions of Eq. (4)
that are O(1) in ¢ can also be obtained in analytic,
closed form. In some examples at least, the analytic
solutions have series expansions in positive powers of
€* which are convergent. Sometimes the radius of
convergence is even infinite, as is the case when the
analytic solution is a polynomial in €2. When there is a
convergent series expansion of that p which approaches
Q% as e approaches zero, then the adiabatic invariant
series is a convergent expansion of an exact invariant,
usually with a different radius of convergence. It
would be interesting to know how general these
results are. In any event they give new insight into the
nature of the adiabatic invariant series.

The recursive solution of Eq. (4) in positive powers
of €2 whose leading term is Q~# is given in the Appendix
to order €.

IV. EXAMPLES

In this section we use Eq. (45) to calculate p

explicitly for some soluble cases.

A, Q = const
We take as the linearly independent solutions of
Eq. (43):
. (Q Q
f= sin (— t), g = cos (— t).
€ €
The Wronskian is

x = —(Q/E)s

and the general solution for p is
AV Q BY . 5 (Q
= () = (1) + () o ()
pP=n {(E)C )T E G
2 /g2 1 3
#2n] (5 () - o om (o) = ()

If we want p to be O(1) in e, then we must take
(AJ/E)? = (B/E)* = +Q.
In that case p becomes
p =Dt
B. Q=

In this case we take the linearly independent solu-
tions of Eq. (43) to be

f = té+l g = t%—;-,

B
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where
A= 31 — b

The Wronskian is
o = —24,

and the general solution for p is

(AN B\?
p = 71(2) 1! (E) ey (E) 2l

o (2 (] - eon] )

For € < 2b, A is imaginary, so that

12 = 213 = g2llInt
If we want p to be O(1) in ¢, then we must take

A|E = BJE =0,
in which case p becomes
p = pittbi — (ef2by 4,
C. Q=bmi2, m# =2

The solution of this example is in terms of Bessel
functions.?® We take the fand g to be

f=2850), g==EN0),

where
y = 2 flmt2)/2
e(m + 2)
and
g =1/(m + 2).
The Wronskian is
« = (m + 2)/=,

and the general solution for p is
A 2 B 2
P=n Zn—t:{) ti{ (E) N3(» + (E) J5(»)
4\2 /B\2 2 2)? 3 3
+ 272[ (‘) ("‘) - f‘(ﬂ:——):l J/x(,V)Nﬁ(,V)} .
EJ \E T

As € approaches zero, y approaches infinity. By using
the asymptotic forms of J, and N,, we find that we
must take

(A/E)? = (BJE)® = %[e(m + 2)]/m
if we want p to be O(1) in e. In that case p becomes
$
Vam trg 200 \18
=y,| ——"——1 F*[H H , (46
p=n| 2T [ AupoEp o, @9

20 E. Jahnke et al., Tables of Higher Functions (McGraw-Hill Book
Company, New York, 1960), 6th ed.
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where
HP =J; +iN, and H{¥ =J; — iN,.

We obtain an interesting specialization of Eq. (46)
if we choose

m 1

2 2nt1

_1’ n=0’:l:1’:t2"'.s

so that Q, §, and y are given by

Q — bt—2n/(2n+1)’ ﬂ =n + %’
y = é(zn + 1)11/(2"+1).
€

Then Eq. (46) becomes

p = yuyib HM GG, Y,
where

n . (4 k)
6.9 = | 20 e

¢ k 3
% ( )t—k/(2n+l):] .
2ib(2n + 1)

This p is a polynomial in €* and, therefore, its expan-
sion in powers of € has an infinite radius of conver-
gence.

V. QUANTUM SYSTEMS

In this section we still consider systems whose
Hamiltonians are given by Eq. (1), but we now require
that g and p satisfy the commutation relation

lg, p] = ih. 2

By using this commutation relation, it is straight-
forward to show that the invariant I, now considered
as an operator, is also a constant of the motion for
the quantum system for any function p that satisfies
Eq. (4). That is, I satisfies

dr ol 1
— =—+4 =[[LH}=0.
dt ot ih[ ]

Therefore, I has eigenstates whose eigenvalues are
time-independent.

We now restrict attention to the special situation in
which p(?) is a real function, as is always possible if
0?2 is real. In that case the eigenstates and eigenvalues
of I can be found by a method that is completely
analogous to the method introduced by Dirac? for
finding the eigenstates and eigenvalues of the Hamil-
tonian for a harmonic oscillator (€2 real and time-
independent). We first introduce “raising” and

)

21 P. A. M. Dirac, The Principles of Quantum Mechanics (Claren-
don Press, Oxford, 1947), 3rd ed.
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“lowering” operators, a' and a, that are defined by

= ),} [pq — i(pp — €p'q)),

(2h
[p™'a + i(pp — €p'D)]. (48)
= h)* pa+ ipp —<p'q
These operators satisfy the relations
[a,a']=1,
haa' = I + }h. 49)

The operator a operating on an eigenstate of I
produces an eigenstate of I whose eigenvalue is %
lower than that of the original eigenstate. Similarly,
a' acting on an eigenstate of I increases the eigenvalue
by 4. Once these properties are established, the
normalizability of the eigenstates of J can be used to
demonstrate that the eigenvalues of I are (n + $)4,
where n is zero or a positive integer. Letting - |n)
denote the normalized eigenstate of / whose eigenvalue
is (n+ A, we can express the relation between
Jn + 1) and |n), to within an arbitrary time-dependent
phase factor, as

n+ 1) = (n + 1)t |n). (50)

The condition which determines the state whose
eigenvalue is 34 is

al0) = 0. (51)

The wavefunction in the g representation associated
with the state whose eigenvalue is 4% can be calculated
easily. Denote that wavefunction by ¥,. It is deter-
mined by the differential equation that is obtained by
writing Eq. (51) in the g representation:

{p™'q + i[—ihp(d/9q) — ep’ql}'¥y = 0.
The normalized solution of this equation is
. q2
Vg, 1) = e""’(wii,oz)_?f exp [— —— 1 — iepp'):l,
2hp
(52)
where d, is an arbitrary real quantity that may depend
on ¢t but is independent of ¢.

By means of Eqs. (49), we can use operator tech-
niques to calculate the expectation value of the

H. R. LEWIS

Hamiltonian in a state |n). The result is
1
(n H |n) = (P2 + Q% + €p")(n + DA (53)
€

It is interesting to note that the expectation values of
H are equally spaced at every instant and that the
lowest value is always obtained with n = 0, just as
with the harmonic oscillator.

All of the quantum-mechanical results reduce to the
usual ones for a harmonic oscillator if we take €2 to be
real, positive, and constant, and take p = Q% so
that 7 = eH/C. A further and more complete discus-
sion of the application of the invariant / to quantum
systems will be given in a later paper.!s

APPENDIX: SERIES FOR p IN POWERS OF ¢2

The recursive solution of Eq. (4) in positive powers
of €% was carried out and checked to order €® with
the IBM 7094 computer, using the IBM FORMAC
computing system. The leading term was chosen to be
Q-1 The result is

P = pot+ pa€® + pyet + pee® + * - -

In the following expressions for the coefficients,
derivatives with respect to ¢ are indicated by the
notation

Q™ = grQ[dt".
The coefficients are
Po = Q_—i’
pe = 3QIQ®@ — FO-1QW*
pa = —&QFQW 4 SQ-¥QE@QW
— 185, 2 — 18
— 2070 QEQM 4 2o O-FQ@?
17 4
+ gHOPQO,
Pe = T;_E;Q—‘,,—“Q(s) —_ _u_Q—llQ(a)Qu)
— B3O-FQWQE 4 8130 QUQW?
+ ;ggg——ug(s)g(z)gu)
— 2883()-RQ@Q° _ 8. (O)-FQ@*
+ 2080320)-22O) Q)"
— 450150)-FQ@PQ)® | 12870)-32()(2)°

~25 6
— 208037()-()1)°,
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We find the irreducible representations of the three-dimensional pure rotation group by Weyl’s
method, which makes use of the homomorphism of the special unitary group of order two onto the whole
three-dimensional rotation group. The representations are realized, however, in terms of the angle of
rotation in a specified direction and the spherical angles of the direction of the rotation rather than in
terms of the familiar Euler angles. The results are then compared with those obtained by different methods
and the advantages of the present technique are pointed out. We also derive the differential operators
corresponding to infinitesimal rotations about the coordinate axis in terms of the new variables.

1. INTRODUCTION

Recently, the irreducible representations of the
rotation group Oy were given in terms of a param-
etrization of the rotation through the finite angle
and direction of the rotation.~3 The expression
obtained for the matrix elements of the operator
exp (iyn - J),

1.n

where J = (J;,J;,J;) are the usual infinitesimal
generators of Oy, was shown to be rather simple. In
Eq. (1.1), v is the angle of rotation in a direction
specified by the unit vector m, the latter being ex-
pressed by its spherical angies

(m| exp (iyn - J) |n),

n = (sin 6 cos ¢, sin 6 sin ¢, cos ).

(1.2)

Such a parametrization is possible since every rotation
can be realized as a rotation about some axis through
a suitable angle . In all previous discussions on the
representations of Oy the parameters used to be taken
as the Euler angles.

The new representation was also shown to be useful
in discussing the behavior of wavefunctions under
rotation in a prescribed direction. Presumably, for
many applications one would prefer a parametrization
in terms of the new variables instead of the Euler
angles.?

Consequently, the orthogonality relations between
the matrices (1.1) were demonstrated. Also, two sets
of Hermitian operators with the usual commutation
relations were introduced and their action on the
matrices (1.1) was found.?

In this paper we deduce the new form by an alter-
native method which was originally suggested by

* This work was initiated while the author was at the Department
of Physics and Astronomy, University of Maryland, College Park,
Maryland.

! H. E. Moses, Ann. Phys. (N.Y.) 37, 224 (1966).

2 H. E. Moses, Nuovo Cimento 40A, 1120 (1965).

3 H. E. Moses, Ann. Phys. (N.Y.) 42, 343 (1967).

Weyl and has been widely adopted as a method for
finding the representations of O; when Euler’s angles
are used.? The method is based on the fact that O, is
homomorphic to the unimodular unitary group of
order two (SU,), such that to every rotation g € O,
there correspond two matrices Fu € SU, and, con-
versely, to every u € SU, there corresponds some
rotation g € Oj. It thus follows that the description of
the representation of Oy is equivalent to that of SU,;
a representation g — T, of Oy is single- or double-
valued according to whether or not T, is equal to
T,.5

We point out that, by using Weyl’s method, one
can obtain a general invariant result that is a function
of u € SU,, valid for any parametrization one uses to
describe the rotation [see Eq. (3.9) below]. To find
the representations of Oj in terms of the new param-
eters, one has merely to express # in terms of these
parameters, as is the case when the Euler angles are
employed. This, indeed, can easily be done (see Sec.
2 below). Thus the present method is much easier for
the interested physicist to follow than the previous
works'~3 since it is most closely related to the usual
derivation of the representation, such as Wigner’s,*
when the Euler angles are used; the two forms be-
come two particular realizations of the same represen-
tation.

In addition, by having the results as functions over
the group SUs,, certain relations will be obtained which
are then invariant under change of the parameters. As
an example, the orthogonality relations between the
matrix elements of the irreducible representation can
be written as an invariant integral® over SU, [see Eq.

1 E. P. Wigner, Group Theory and its Applications to the Quantum
Mechanics of Atomic Spectra (Academic Press Inc., New York,
19“591\)/[.. A. Naimark, Linear Representations of the Lorentz Group
(Pergamon Press, Inc., New York, 1964).

% A. Weil, Actualites Sci. Ind., No. 869 (1938). [This article was

also published as a book: L’integration dans les groupes topologiques
et ces applications (Hermann & Cie., Paris, 1940).]
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(3.15)]. Hence the relations are valid for any param-
etrization, and one does not have to prove them
separately for the new variables, as is done in Ref. 3.
After mentioning some elementary facts about the
rotation group in Sec. 2, we find the explicit form of
the unitary matrix u € SU, corresponding to a rotation
in a specified direction in terms of ¥, 6, and ¢. Typi-
cally, the unitary matrix is expressed in terms of
Euler’s angles.®3
In Sec. 3 we derive the matrix elements of the irre-
ducible representation in terms of u, 6, and ¢. For
completeness, we briefly review the method for deriving
these matrix elements as functions of u € SU,, but
after that we substitute for u its expression as a function
of p, 0, and ¢. The matrices obtained are then
compared with those obtained in Refs. 1 and 2.
Finally, in Sec. 4 we derive the differential operators
corresponding to infinitesimal rotations about the
Ox;, Ox,, and Oxg in terms of the new variables.
The corresponding operators when Euler’s angles are
used are well known in the literature. We here use a
method similar to that of Gel’fand and Shapiro.”®
Throughout this paper we will adopt the notation
and terminology of Naimark.®

2. PRELIMINARIES

An orthogonal matrix describing a rotation with
angle ¢ about some direction n is given by?®

&rs = 0,5cos v + nn(l — cosy) — ¢, nfsinyp,
2.1

where n is given by (1.2) and r, s, and ¢ run from 1 to
3. Rotations g,(¥), g:(y), and gg(v) around Ox,
Ox,, and Ox;, are obtained from (2.1) by putting the
proper values of 8 and ¢.2* The infinitesimal matrices
g, corresponding to rotations about the axis Ox, are
defined byl

a=|aw)] @2

71. M. Gel’'fand and Z. Ya. Shapiro, Usp. Mat. Nauk 7, 3 (1952),
Am. Math. Soc. Transl. Ser. 2., 2, 207 (1956).

8 1. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro, Representa-
tions of the Rotation and Lorentz Groups and their Applications
(Pergamon Press, Inc., New York, 1963).

? The direction of rotation here is taken opposite to that of Refs.
1-3 and is in accordance with Ref. 5.

12 These matrices are given by

1 0 0
31(1/))=(0 cosy —Sinlp),---.

0 siny cosy
1 The g, are related to g,(y) by g,{¢) = exp (yg,), and are given by

0 o0 0
g1=(0 0 —1),-~-.
0 1 o0
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and satisfy the commutation relations

[gr ’ gs] = Erstgt ° (23)

We denote a representation of Qj in an n-dimen-
sional Euclidean space R by g— T, and for con-
venience'? we put

AW =T, ,- 2.4

The basic infinitesimal operators of the representation
are then obtained by

A representation of O, is uniquely determined by its
basic infinitesimal operators 4, . The determination of
all the finite-dimensional representations of O is
based on the fact that the operators 4, satisfy the same
commutation relation that exists among the infinitesi-
mal matrices g,:

(2.5)

[A4,,A] =€, ,A,. (2.6)

The A4, are skew-Hermitians, AI = —A,, since,

without loss of generality, every finite-dimensional

representation of O, can be considered to be unitary.
Defining

H. =id, + Ay, H, = id,, Q.7
one finds that
[H=, Hy] = +H=, [H+, H]= 2H,,
H.=H_, Hl =H,. (2.8)

The problem then reduces to the determination of
H_, Hj satisfying conditions (2.8). This is answered
by the following®: Every finite-dimensional representa-
tion of Oy is uniquely determined by a nonnegative
integer or half-integer j, the weight of the represen-
tation. The space of the representation corresponding
to such a number j has the dimension 2j 4 1; the
operators H-, H; of this representation are given

relative to its canonical basis f_;, f_;1, -, f; by
H+fn = a'n+1fn+l’ H—fn = anfn—ls Hafn = nfn:
a,=[(j +m( —n+ D, (2.9)

where n = —j, —j + 1, -, j13

12 4,(y) are called the basic one-parameter groups of the given
representation and define one-parameter groups of operators that
satisfy A4,(,)A,(p:) = A, (p; + ,); they are differentiable functions
of y and may be expanded as 4,(y) = exp (pA4,), where 4, is defined
by Eq. (2.5).

13 It also follows that for each j there corresponds an irreducible
representation of Oy . If the operators H+ and H; of a representation
of O, in a (2j + 1)-dimesional space are given relative to some
basis f;, f i1, *sfi» then by Eqgs. (2.9), that representation is
irreducible.
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We now find the unitary matrix u corresponding to
the rotation g, Eq. (2.1). They are related by

(2.10)
@2.11)

&rs = 3 Tr (0"uc®u®),
u=F(1 + 070°g,)2(1 + Tr o)},

where ¢” are the Pauli matrices

al=(0 1, 02=(0 i), 0_3=(1 0)'
10 —i 0 0 -1

(2.12)
Using Eq. (2.1), a direct calculation gives

cosf +i sinlpcos ] isin ¥ sin fe'?
2 2 2

u=-

Y

i sin—2 sin B¢ ¥ ¥

cos— — isin—cosf
2 2

(2.13)

This is the unitary matrix u € SU, corresponding to a
rotation with angle y around the direction n specified
by 0 and é. The corresponding matrix when Euler’s
angles are employed is well known in the literature.’
It will be noted that u(—y, 6, ¢) = u(y, 0, ¢).

The unitary matrices u;(y), w(yp), and wuy(y),
corresponding to the rotations g,(y), g.(%), and
gs(y) around the axis of coordinates, are obtained

from (2.13)'5;
\

cos ¥ isin ¥
2 2
u(yp) = F ,  (2.14a)
isin< cos ¥y
2
cos ¥ —sin ¥
2 2
u(y) = F , (2.14b)
sin ¥ cos —
2 2
evr 0
wW=F| o _p) (2.14¢)

Using these matrices, the operators 4,(y) of SU, will
be determined in the next section.

3. MATRIX ELEMENTS OF AN IRREDUCIBLE
REPRESENTATION

A matrix u of SU, can be considered as that of a
linear transformation of the space of all pairs of

14J. N. Goldberg, A. J. Macfarlane, E. T. Newman, F. Rohrlich,
and E. C. G. Sudarshan, J. Math. Phys. 8, 2155 (1967).

15 The infinitesimal matrices u, corresponding to rotations around
Ox,,

u, = [du, @) diplyp=o,

are related to the Pauli matrices by v, = F (i/2)o,.
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complex numbers (&', £2):
2
F?2=uf (p=1,2). (3.1)
=1

A representation of SU, can be obtained if one
considers several pairs (&, &),---, (&, &) and
forms all products &7 - - - &%, letting p,, * - -, p, take
the values 1, 2, independently.> Under the transforma-
tion (3.1), this product transforms like

2
D1 Dk a1
1 k. z Upigy UparS1
ar, e ee=1

v (3.2)

The products &P1--- &% may be considered as a
vector in the linear space R; of all 2* complex numbers
&1 "%, The linear transformation 7* of the space
R; is then given by

2

z ul’lql‘. ’
1

'S TR

'L DR . cg
E ! - umchéql =,

(3.3)

The correspondence u — T'® is a representation of
SU,, not irreducible in general, since the subspace
Sy, of R, of all symmetrical vectors £ is invariant with
respect to all the operators T'®. The correspondence
u— T is irreducible, however, in the space S;. We
denote this representation by Z, .18

An equivalent realization of the representation Z,
is obtained if one identifies the space S, with the
(k + 1)-dimensional space of homogeneous poly-
nomials p(z;, z;) of degree k in the two complex
variables z; and z, and sets up a one-to-one corre-
spondence between & of S, and p(z,, z,) in the form
g my .,

p(zl9 Z2) = z

P, 0, m=1

3.4

p P
The operator ¥ for this new realization of the space
Sy is then given by

T.P'p(z1, 29) = p(z1, 20),

2
Z, =zlumzp (9 =1,2).
—

Introducing a new variable z = z/z,, the polynomial
p(z1, z,) can be written as zfp(z), where p(z) is a
polynomial in z of degree not exceeding k. The
operators T of the representation Z, are then given
by

(3.5)

T®p(z) = (tsaz + 4ze)'p (ﬂ) (3.6)

UyeZ T Uy
This relation gives, in particular, the operators

161t will be noted that Zj, is the spinor representation of weight
k/2. For more details see Ref. 5.
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A,(p) = T, ,, when the matrices u,(y), Egs. (2.14),"7
are used.’®

It follows that every irreducible finite-dimensional
representation of SU, is uniquely determined by
some nonnegative integer or half-integer j = k/2, the
weight of the representation.'® The functions

j—n
fu(®) = (=) z , (7
(G —m!G+mit
where n= —j, —j+1,-+-,j, form a canonical

basis for the representation Z, in the space S;,.% Using
Eq. (3.6), one finds

T @) = 3 Tl

Me=—

(3.8)

where T (u) are the matrix elements of the operator
T, of the irreducible representation of weight j
relative to the canonical basis, which corresponds to
an arbitrary rotation g. Its explicit expression is?

i) = (= [L=I0E L "’)T
(G—=—mG+n!
X 3 € Ci il " ug " ug
3.9
where the summation runs froma = max (0, —m — n)

to min (j — m, j — n), and C, denotes the number of
combinations of m elements from n:

Ch =nl/(n—m)!m.
In Eq. (3.9) the indices m and » take the values —j,
—'J+ 1"":j;j=03%, 13%923“

17 For the determination of the operators 4,(y), one needs u,(y)
only for small values of 4. The signs in (2.14) are determined by the
conditions lim #,() = 1 when 9 — 0. Hence the 4 sign must be
used.

18 For example, A4(yp) is given by

Ap)p(z) = e~Pl2p(etvz).

The basic infinitesimal operators A, are obtained by differentiating
such relations with respect to w and putting = 0. For 4,, for
example, one obtains 2

Asp(z) = i(z-a—z - ék)p(z).
Consequently, one obtains

H,p= —0p|oz,

H_p = z%(0p/0z) — kzp,

Hyp = —2(9p/0z) + ¥kp.

13 Conversely, for any nonnegative integer or half-integer j,
there exists an irreducible representation of SU, of weight j. A
representation of weight j can be realized as the representation Z,,
where k = 2j; and evety finite-dimensional irreducible representa-
tion of SU, is equivalent to one of the representations Zj,.

20 This can easily be seen by checking that H.f, and H,f, are
indeed given by Egs. (2.9) when f, is put for p in the corresponding
equations of Footnote 18.

211t will be noted that T7 (—u) = (—1)*T} (u). Thus the
representation is single-valued for integer j and double-valued for
half-integer j. In the sequel the matrix u of Eq. (2.13) will be taken
with the 4 sign.
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To find the matrix elements (3.9) in terms of the
variables y, 0, and ¢, we simply substitute for u,,
their expressions as functions of these variables. These
expressions were calculated in Sec. 2 and are given
by Eq. (2.13). We obtain

Th(u) = (—1)2f—m~n[

(G—m!({+ m)T
G—=mG+n)!

m+n
X (cos ¥ _isin¥ cos ) eittn—m
2 2
j. a
x2 Cff"cﬁfn—a(l — sin® % sin® 6)
2j—2a—m—n
X (i sin %‘) sin 6)

The matrix 77, (1) can also be written in the form

[ = m)L(G + myip
T:rm = _121mn
(=00 [(j—n)!(j+n)!]

L \m—n
X (i sin -g sin Be_"”)

(3.10)

mtn
X (cos% — isin —1; cos 6) S(j, m, n, x),

(3.11)
where22

S(j, m, n, x)
= 2"H(j = w1 + n)!
y z . (X _|_ 1.)a(x — 1)1—m—a
al(j—n—a)!l(j—m-—=a)!(a+ m+ n)!
(3.12)

and x is defined by
x =1 — 2 sin? (y/2) sin? 6. (3.13)
If the direction of the rotation is reversed, v will
then have to be replaced by —v in the above formulas
since u(yp, 6, §) = u(—v, 6, ). The matrix elements
are then given by

_ (—m!(+mit
T () =
malt”) [(J'—n)!(i+n)!]

_A\m—n
X (i sin g sin Oe'“")

r(/) 'P m+n
X (cos—i + isin—zcos 0) S(j, m, n,x).

(3.14)

This form of the matrix elements was first obtained
by Moses through different methods.
22 It will be noted that S(j, m, n, x) is equal to the Jacobi poly-

nomial P*#(x) when s=j— §(m + n| + [m — n)), &« = |m — n|
and § = |m + n|.
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We conclude this section by pointing out that the

matrix 77 satisfies the invariant orthogonality relation®
; 1

[T T8, 0t = S B 319

The integral in (3.15) is an invariant integral over

SU,, independent of the parametric representation

of the rotation group. In fact, relations similar to
(3.15) are valid for any compact group.®

4. DIFFERENTIAL OPERATORS CORRESPOND-
ING TO INFINITESIMAL ROTATIONS

We are now in a position to find the differential
operators corresponding to infinitesimal rotations
about the coordinate axis, namely, the operators 4,,
Ay, and A4; (see Sec. 2) and, consequently, the oper-
ators H , H;. These operators are well known in the
literature when the Euler angles are employed. We
here apply Gel’'fand and Shapiro’s method’ to derive
these operators in terms of the new variables.

Letg — T, be an irreducible representation of weight
j of the group O, and let T,, = T, be its matrix
elements. We consider these elements as functions of
the rotation g, T,, = T,,(g). Since g— T, is a
representation, we have T,, = T,T,. In terms of
matrix elements, the last relation is

T,.(22") =li T Ton(2),

—_

4.1)
where T,,,(gg’) are the matrix elements of the operator

gy, 0, ¢)
cos

+ sin? O cos? ¢(1 — cos )

= sin? 6 sin ¢ cos (1 — cos ) cos y

+ cos Osin p

sin 6 cos 0 cos (1 — cos )
— sin 0 sin ¢ sin p

The matrix of rotation gg’ is given by some angles ¢,
6, and ¢ which depend on the rotation angle « and
which are equal to y, 0, and ¢ when « = 0. Ex-
pansion of the matrix gg’ in a power series in « gives

' a d p
g8 =g(v, 6, 4) + a{—g'—w
a"/) doc a=0
og db og dé
e 2” - S . 4.7
ae da =0 a¢ da a=0} + ( )

23 See, for example, L. S. Pontrjagin, Topological Groups (Prince-
ton Univ. Press, Princeton, N.J., 1946); M. A. Naimark, Normed
Rings (P. Noordhoff Ltd., Groningen, The Netherlands, 1959).

4+ sin? 6 sin? (1 — cos y)

sin § cos 0 sin $(1 — cos p)
+ sin 6 cos ¢ sin y
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T,, - Define a transformation U such that
Ua’Tmn(g) = Tmn(ggl)‘ (42)

Comparing Eqgs. (4.1) and (4.2), we obtain

j
Uy Trn(8) =l_Zij(g’)Tmz(g)- 4.3)
Furthermore, one can show that

U, U, =U,,. 4.4)

It thus follows that the transformation U, realizes a
representation of O, in the space of 2j + 1 functions
of the mth row of the matrix T, [compare Eq. (3.8)],
and that the matrix elements of U, are T;,(g").%*

To find the operators A, we take g’ as the rotation
through some angle « around the axis Ox, and
expand the relation (4.2) in powers of «.”"12 Expansion
of Tn,(gg"), which we denote by T,,,.(¥, 0, §), gives

T, (s 6_’ $) = Tmn('/)’ b, ¢)

0T, dg 0T, dd
+ oc[ — + —
oy da 00 du

0T n dj]
04 do_fa=o

(4.5)
To obtain A4, we have to determine

d__w , d_0 and ‘1(—;
do |,mg do da
for each case.

Now the matrix of the rotation g is a function of the
angles v, 6, and ¢, which, by Eq. (2.1), has the form

’
=0

a=0

sin® f cos ¢ sin $(1 — cos ) sin 6 cos 6 cos $(1 — cos )
— cos O sinp

+ sin 0 sin ¢ sin
sin 0 cos 0 sin ¢(1 — cos y) (4.6)
— sin 6 cos ¢ sin

cos y
+ cos? (1 — cos p)

To find A4, we identify g’ with the rotation with angle
« around Ox, given by

1 0 0
g1 =10 cosa —sina
0 sina coSs o
1 00 00 0
={0 1 0)+«f0 0 —1)+---, (48
0 01 01 0

24 The representation g'— U,  in the space of fupctions Tn(g),
= —j,—j+1,---,j, isirreducible, and the T,,,(g) form a canonical
basis in this space. Hence the operators H. and H, of this representa-
tion satisfy the relation (2.9). See Ref. 7.
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Therefore
0 g13 —812

81 =8W, 0,0+ |0 gy —ga]+-. (49
0 gs3 —ga

On the other hand, gg; is given by (4.7) when g, = g’.
Comparing these two expressions for gg;, we obtain
equations from which

af

3
a=0 do

ay

, and d—J)
do

a=0 o

a=0

can be determined for the case of rotation about Ox;.
We obtain®
¢

2 sin 0 cos ¢ sin %(—sin 0 sin ¢
o

a=0

-+ cos 0 cos ng—

1)
a=0.

o
+ (—cosi; + sin® 6 cos® ¢ cos %)%’U o
(4.10a)
d
2 sin 0 sin ¢ sin f(sin 6 cos ¢ -—‘Z

2 & |z=0

+ cos 0sin ¢ dé )
& |z=0.

+ (—cos ¥ 4 sin® 6 sin® ¢ cos l))d—w

2 2/ da |,y

= sin 0(cos 6 sin ¢ sin}g — cos ¢ cos 22) , (4.10b)

2cos03in$@

+cos—1/-)sin()-al2
o 2

o

a=0

a=0

= cos 0 sin ¢ sinf2 + cos ¢ cos % . (4.100)

25 One obtains nine equations; only three of them are independent.
Our equations (4.10) are obtained by equating the diagonal elements
of the matrices (4.7) and (4.9).
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The solution of Eqs. (4.10) is

d

—J) = } cosec 0(005 0 cos ¢ — cot ¥ sin qS),
dO( a=0 2

do 1/, k4

— | = —{sin ¢ 4 cot— cos 0 cos ¢},

da |0 2( ¢ 2 ¢)

dp .

—] = cos ¢sinb. (4.11)
do a=0

Using Eq. (4.5), we find

A; = cos ¢sin 08%)14_ %(sin ¢+ cotl;cos 6 cos ¢)a—ao

The operators 4, and Ay are found in a similar way:

Ay = sin ¢ sin 056;) - %(cos ¢ — cot%cos 6 sin ¢)a—ae

+ % cosec 0(cos 6 sin ¢ + cot —Z cos qS) ¢

(4.12b)

o _19 (4.12¢)

A3—cos6—a——1cot—s f— — ——.
oy 2 2 00 20¢

Using these results and Eq. (2.7), for H,, H_, and
H, we obtain?®

H, = ieﬂ"'{sin 0 —a- -+
dy

+ % cosec 6(cos 0 4 icot 1/’) 895} (4.13a)

1
—(q:i + cot £ cos 0)—8— ’
2 2 a0

H cos@—a——lcot
37 ( dy 2 2 a0

(4.13b)

26 An operator with similar expressions was also introduced in
Ref. 3, but with no explanation of the way by which they came to it.
Of course, the operators Hy and Hj, using Eqgs. (2.9) and (4.13),
satisfy the following relations with respect to the canonical basis
Th—ss Timisrs " T

HiTl (@) = [ £ n+ DG F 07, , .0,
HsT,’,,,,(g) = "Tjnn(g)-
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